
Calibration of beam size monitors

Scott Williams

June 18, 2020

1/24

Introduction

I Responses to previous comments

I Software status

I Hardware status

2/24

Previous comments

3/24

Previous comments

Some questions regarding hardware performance

I How fast is the communication, and how quickly can we move the lens?

I How stable is it?

Regarding software

I What are the software goals/performance criteria/requirements?

I What does it need to do?

I How do you know when you’ve reached your goal?

4/24

Previous Qs - How fast is the communication, and how quickly can we
move the lens?

I When the lens is attached to a proper camera, autofocusing should be able to
track fast moving objects. Eg., according to1, lenses from approx. 10 years ago
can track moving objects 10m away moving at approx 70km/hr

I Currently, it takes around 70 microseconds to send a byte using the current code.
Time taken for the lens to respond varies and depends on command, but ranges
from 10 microseconds to 100 microseconds. In the current code sending lots of
commands quickly wasn’t required, so a lot of ’safety’ wait times are inserted
between commands, which could be removed or finetuned if required.

I Ultimately, we’d like to be able to focus the camera in a similar time compared to
how long it takes to move the test USAF1951 calibration chart into position

I Currently working on benchmarking common use cases.

1https://web.archive.org/web/20131014113454/http:

//www.canon.com/camera-museum/tech/report/200304/200304.html

5/24

https://web.archive.org/web/20131014113454/http://www.canon.com/camera-museum/tech/report/200304/200304.html
https://web.archive.org/web/20131014113454/http://www.canon.com/camera-museum/tech/report/200304/200304.html

Previous Qs - How stable is it?

Stability varies between lenses.

I The Tamron lens currently used at ThomX is very temperamental, and will often
become unresponsive if a malformed command is sent, requiring a power cycle.

I The Canon pancake lens appears to ignore malformed commands, and processes
the next command

I The Tamron aspherical lens used for testing in Australia appears to get stuck on
malformed commands, but will respond after sending the lens sync command a
few times

Overall, when sending reasonable commands to the lenses, the interface is stable.
However, for ease of use, we’ll include a relay to make it easy to power cycle the lens.

6/24

Previous Qs - Software goals and requirements

Hard requirements:

I Find and report the group and element number of the smallest element(s) visible

I For the largest element(s) visible, measure their dimenions and find the group and
element number

I Write the calibration information from the previous points in an easily parsed file
format

Soft requirements:

I Script completes in ’reasonable’ time

I Accurate results

I Consistent results

I Results clearly presented

Hard requirements are simple pass/fail, while soft requirements are more debatable.

7/24

Software

8/24

Software - Measuring clarity of image
As part of implementing a software based autofocusing method, we’ll have to be able
to numerically or comparitively describe how in or out of focus an image is.
Unfortunately, we only have a few images where the focal length of the lens has been
varied, so we’ve had to improvise by comparing different parts of an image using our
current datasets.

Figure 1: Example image - blurriness of target patterns varies with vertical coordinate

9/24

Software - Measuring clarity of an image

Two methods for computing focus score investigated:

I Method developed by undergradutes under guidance of Nicolas based on high
frequency discrete FT components. Take 2D DFT of image, then take a subset of
the DFT (indexes 1:15), and return the sum of the normed elements, ie.
u=15,v=15∑
u=1,v=1

|Fu,v | ÷
∑
u,v
|Fu,v |

I My readaptation of the above method, but with dynamically set boundaries to
capture the top 25% of frequencies

10/24

Software - Measuring clarity of an image

Method:

1. Extend analysis software to also compute focus score on detected regions of
interest

2. Save focus score to results files

3. Look at how focus score varies depending on vertical coordinate, and whether this
relates to successful or unsuccessful analysis.

Key questions: Is focus score/clarity linked to successfully analysed images, and does
focus score increase with vertical coordinate?

11/24

Software - Measuring clarity of image

Figure 2: Scatter plot of focusing score as function of vertical coordinate. Relationship between
vertical coordinate and focus score does not seem clear

12/24

Software - Measuring clarity of image

Figure 3: Histograms of focusing scores. Low statistics, but no clear graphical relationship
between focus score and analysis success

13/24

Software - Measuring clarity of image

At this stage it isn’t obvious whether we can compare the different levels of focus
throughout the image. A lot of variation being introduced by using dissimilar images
not normalising ROIs before attempting to quantify focus quality.
At this stage we could try to refine the algorithms more, particularly by doing some
ROI normalisation before running the focus score algorithms, but it would probably be
more prudent to wait until we have a dataset where the focus has been moved.

14/24

Software

Status:

I Implemented and tested some algorithms to try to give a numerical quantity
describing how in focus the image is

I Found that these algorithms weren’t particularly suited for within image
comparison at this stage.

Goals:

I Get a dataset of images where the focus has been shifted, and test on that

I Implement autofocusing with lens

15/24

Hardware

16/24

Hardware - status

Since last presentation:

I Can now control aperture, though issue with apparently high current draw

I Finalised Arduino/lens interface and tested commands with lens

I Created two separate web interfaces for controlling lens via Arduino, one using
ethernet adapter and one using separate computer

17/24

Hardware - HTTP interface for lens

We decided to use a HTTP for the following reasons:

I We can expose a straightforward and discoverable interface for users

I We can expose a consistent and easily parsed interface for machines

I It allows us to abstract away low level details (instead of sending byte 0x0a, issue
a GET to http://192.168.0.1/lens_sync)

I It can be extended or wrapped later on

18/24

http://192.168.0.1/lens_sync

Hardware - HTTP interface for lens

We created two web interfaces, one using a separate single board computer (Raspberry
Pi) and one running on the Arduino using an ethernet adapter, with similar
functionality.
The pros and cons of each approach were approximately the inverse of the other:
Separate web server:

I Easy to extend and reprogram, separation of responsibilities

I Few hardware/processing restrictions

I Requires forwarding on commands to Arduino

I Extra infrastructure requirements

19/24

Hardware - HTTP interface for lens

Web server on Arduino:

I Reprogramming requires reflashing Arduino, Arduino now providing interface and
hardware control

I Limited memory (2kb RAM, 32kb flash) and processing speed. SD card can be
used to extend memory, but requires manipulating file system.

I Extra ethernet board required, but doesn’t require extra power sources etc

At this stage due to reduced infrastructure requirements we will probably base the web
server on the Arduino.

20/24

Conclusion

Status:

I Attempting to quantify whether image or parts of are in focus.

I Tested two approaches for HTTP interface to lens.

I Controlled the lens via HTTP interface, browser and programmatically.

Goals:

I Set up lens and camera for focusing demonstration

I Finish board

21/24

End

22/24

Backup

23/24

Hardware - benchmarking

Using python and the requests library I’ll run some quick benchmarks on how long it
takes to do certain operations. Currently need to rework some solder joins, so results
are not available in time for presentation. With the current http interface:

I Time to get a blank page: approximately hundreds of ms

I Time to get a lens sync response: approximately hundreds of ms

I Time to do focus range sweep: couple of seconds, with generous wait times at
ends of focus

24/24

	Previous comments
	Software
	Hardware
	End
	Backup

