Searches for rare SM and BSM Higgs decays in ATLAS

Adriana Milic

September 20-22, 2021
Higgs Hunting 2021 - Paris, France
On behalf of the ATLAS collaboration

Overview of rare and exotic Higgs decays

- Decays via loops, $H \rightarrow Z\gamma$
- Decays to mesons, $H \rightarrow M\gamma$
- Direct decays to fermions and bosons

- $H \rightarrow aa, H \rightarrow Za$ decays
- <u>Lepton Flavor Violating (LFV)</u> Higgs decays
- Higgs decays to long-lived particles
- Invisible decays, $BR(H \rightarrow invisible) < 9\%$

Analyses covered in this talk

Rare Higgs decays

- \circ $H \rightarrow ll \gamma$
 - Low mass $(m_{II} < 30 \text{ GeV})$
 - $\blacksquare H \rightarrow Z\gamma \rightarrow ll\gamma$

BSM Higgs decays

- \circ $H \rightarrow long-lived particles$
- \circ $H \rightarrow aa \rightarrow bb\mu\mu$
- \circ $H \rightarrow aa$ summary plots

All analyses from 2021 and using 139⁻¹ fb!

Rare Higgs decays

- $H \rightarrow ll \gamma$ decays explored where $l = e, \mu$
- Analyses separated in
 - Low-mass $m_{II} < 30 \text{ GeV}$
 - m_{II} close to Z peak

Phys. Lett. B 819 (2021) 136412

Low $m_{ll} H \rightarrow ll \gamma$

- Electron channel experimentally challenging due to
 low invariant mass of electron pair and high pair p_T
- → Electrons **collimated and merge** in the EM calorimeter
- → Special trigger for merged electrons with relaxed shower shape cuts deployed
- → Dedicated **merged electrons calibration** procedure and identification algorithms used

Low $m_{ll} H \rightarrow ll \gamma$

- Event categorization based on lepton flavor and topology.
- Background shapes taken from templates and modeled using analytical functions
 - \circ *lly* taken from MC
 - $\circ \quad \gamma + jets$ and ll + jet taken from data template.

Best-fit values of **signal strength parameters** in fits for the different event categories.

$$\mu = 1.5 \pm 0.5 = 1.5 \pm 0.5 \text{ (stat.)} ^{+0.2}_{-0.1} \text{ (syst.)}$$

Low $m_{ll} H \rightarrow ll \gamma$

- First evidence for $H \rightarrow ll \gamma$!
 - \circ 3.2 σ observed, 2.1 σ expected
 - \circ xsec \times BR = 8.7 $^{2.8}_{-2.7}$ fb

• Search statistically limited (syst. uncertainty 35% of stat. uncertainty)

Phys. Lett. B 819 (2021) 136412

$H \rightarrow Z\gamma \rightarrow ll\gamma$

- Event selection
 - Choose events with e^+e^- or $\mu^+\mu^-$ and one γ
 - \circ 80 GeV < $m_{_{I\!I}}$ < 101 GeV for Z candidate
 - \circ 105 GeV < m_{Zy} < 160 GeV for **Higgs** candidate
 - Five cut-based event categories, one BDT based categorization of VBF like events
- Fit $m_{\mu\nu}$ with signal + background functions
 - o Signal: fit with double-sided crystal ball function
 - Background shape extracted and modeled using analytical functions
 - \blacksquare $\mathbf{Z}\gamma$ and $\mathbf{Z}\gamma \mathbf{j}\mathbf{j}$ from MC
 - **Z**+jets from data template

$H \rightarrow Z\gamma \rightarrow ll\gamma$

- Result is dominated by statistical uncertainty
 - o Low BR and high irreducible background
- 2.2 σ significance observed, 1.2 σ expected
- Observed 95% CL upper limit on production xsec $\sigma(pp \to H) \cdot BR(H \to Z\gamma)$: 3.6 × SM (2.6 expected)
- Signal strength:

Phys. Lett. B 809 (2020) 135754

Exotic Higgs decays

$H \rightarrow aa \rightarrow 4b$ (a long-lived)

Event selection

- At least two displaced vertices in inner detector with high mass and track multiplicity
- \circ **Two leptons** from Z decay
- Displaced Vertex (DV) reconstruction
 - Specialized tracking algorithm (LRT) that increases efficiency for particles produced at high radius employed
 - Cutting on two variables to remove background
 - Number of tracks $n_{trk} > 3$ from the DVs
 - Reduced mass $m/\Delta R_{max} > 3 \text{ GeV}$

Adriana Milic

$H \rightarrow aa \rightarrow 4b$ (a long-lived)

- Background estimated from CR with $n_{DV} < 2$
 - Extrapolated to SR using the **probability** P_{DV}
 to fake a DV (depending on jet p_T and b-tagging score)
- No events observed in SR
- \rightarrow Limits set on $BR(H \rightarrow aa \rightarrow bbbb)$

- Large BR from bb, clean signature from $\mu\mu$
- Main backgrounds
 - **ttbar:** obtained from simulation.
 - **Drell-Yan:** estimated from data driven method.

- Train BDTs to separate signal from backgrounds.
- Several input variables go into BDT training.
- Separate BDTs trained for different signals.

• Looking for excess in $m_{\mu\mu}$ distribution.

ATLAS-CONF-2021-009

- Limit significantly improved wrt. 36 fb⁻¹
- → Factor ~2 from increased luminosity
- → Factor ~2 from employing BDTs
- Excess of 3.3σ (1.7 σ) local (global) observed at m_a=52 GeV

$H \rightarrow aa$ summary plots

- Model independent limits on $BR(H\rightarrow aa\rightarrow xx\ yy)$ (from 1312.4992 & 1802.0215) translated into limits on $BR(H\rightarrow aa)$
- For this plot particular **2HDM** + **S** scenario that determines $BR(aa \rightarrow xx yy)$ was assumed.
- $tan\beta$ = ratio of vacuum expectation values of the 2 Higgs-doublet

ATL-PHYS-PUB-2021-008

Summary

- With Run 2 data it is possible to start exploring rare Higgs decays.
 - Low $m_{II}H \rightarrow ll\gamma$ showed first evidence of $H \rightarrow ll\gamma$ decay at 3.2 σ
 - $H \rightarrow Z\gamma \rightarrow ll\gamma$ still very statistically limited
- $H \rightarrow aa, H \rightarrow Za \ decays$
 - Started exploring long-lived decays in this category.
 - H→aa→bb μμ improved limit by factor of 4 (due to higher luminosity and usage of multivariate techniques)
 - No significant excess observed.
- For Run 3 more data will be available to
 - Probe Higgs boson properties more precisely.
 - Search for **BSM couplings**

Backup

- $BR_{SM}(H \rightarrow Z\gamma) = (1.54 \pm 0.09) \times 10^{-3}$
- Probing this coupling can give a hint to possible extensions of the SM, i.e.
 - The Higgs is a neutral scalar of different origin, or a composite state.
 - There are additional colourless charged scalars, leptons or vector bosons that couple to the Higgs, due to their contributions via loop corrections.
- $H \rightarrow ll \gamma$ dominated by the following diagrams.

Phys. Lett. B 819 (2021) 136412

2 HDM + S inspired searches

- Mediator is singlet (pseudo)scalar
- Couplings Yukawa-like; proportional to mass
- \rightarrow Large BRs to b's and τ 's

<u>1312.4992</u>

$H \rightarrow aa \rightarrow 4b$ (a long-lived)

- Background estimated from CR with $n_{DV} < 2$
 - Extrapolated to SR using the probability P_{DV}
 to fake a DV (depending on jet p_T and b-tagging score)
- No events observed in SR
- \rightarrow Limits set on $BR(H \rightarrow aa \rightarrow bbbb)$

Kinematic likelihood (KL) fit

 \circ Used to constrain the m $_{\rm bb}$ to the m $_{\rm \mu\mu}$ mass and improve the resolution of the m $_{\rm \mu\mu bb}$ peak.

- Looking for excess in m_{uu} distribution.
- Main backgrounds
 - **ttbar:** obtained from simulation.
 - Drell-Yan: estimated from data driven method.

ATLAS-CONF-2021-009

Limit significantly improved wrt. 36 fb⁻¹ Factor ~2 from increased luminosity Factor ~2 from employing BDTs

Excess of 3.3σ (1.7σ) local (global) observed at m_a=52 GeV Corresponding to local (global) p₀-value of 0.0005 (0.048)

$H \rightarrow XX/ZX \rightarrow llll$

Analysis divided into three channels:

- High-mass (HM): $H \rightarrow XX \rightarrow 4l$ (15 GeV < m_x < 60 GeV)
- Low-mass (LM): $H \rightarrow XX \rightarrow 4\mu$ (1 GeV < m_X < 15 GeV)
- Single Z boson (ZX): $H \rightarrow ZX \rightarrow 4l$ (15 GeV < m_x < 55 GeV).
- Main background contributions:
 - $\circ H \to ZZ^* \to 41 \ (\sim 72\%)$
 - $\circ ZZ^* \rightarrow 41 \ (\sim 24\%)$
 - Z+jets estimated from data

Combined high-mass + low-mass limits on:

Combined high-mass + low-mass limits on:

$$\sigma(H \to aa \to 4\mu)$$

