

Search for lepton flavor violating decays of Higgs boson into $\mu\tau$ and $e\tau$ final states

Prasanna Kumar Siddireddy

Higgs Hunting 22 Sep. 2021

Introduction

- Higgs interactions with fermions gives rise to their mass: $\mathscr{L} = \frac{g}{\sqrt{2}} (\bar{\ell}_L \ell_R + \bar{\ell}_R \ell_L) \nu + \frac{g}{\sqrt{2}} (\bar{\ell}_L \ell_R + \bar{\ell}_R \ell_L) h$
- If mass and the Yukawa matrices are not simultaneously diagonalizable, then the off-diagonal Yukawa couplings can give rise to lepton flavor violating (LFV) Higgs decays
- LFV decays arise in models with more than one Higgs boson doublet, certain supersymmetric models, composite Higgs models, models with flavor symmetries, etc.
- Neutrino oscillations also suggest that lepton flavor is not conserved, however, no charged LFV has been observed to date

Analysis Overview

- Channels and final states:
 - $H \rightarrow \mu \tau_h$, $H \rightarrow \mu \tau_e$, $H \rightarrow e \tau_h$, and $H \rightarrow e \tau_\mu$
 - H $\rightarrow \mu \tau_{\mu}$ and H $\rightarrow e \tau_{e}$ are not considered because of large Drell-Yan background
- Categories:
 - o jet: targeting $gg \rightarrow H$
 - 1 jet: targeting $gg \rightarrow H$ with Higgs recoiling against a jet (ISR)
 - 2 jets and $m_{ii} < 500/550 \text{ GeV} (e\tau/\mu\tau)$: targeting gg \rightarrow H with additional jets
 - 2 jets and $m_{ii} \ge 500/550 \text{ GeV} (e\tau/\mu\tau)$: targeting $qq \rightarrow H$
- Signal extraction:
 - BDT trained with adaptive boosting in TMVA to discriminate signal from background
 - Maximum likelihood fit of BDT discriminator distributions

(b) hadronic: $H \rightarrow \mu \tau_h$

(c) leptonic: $H \to e\tau_{\mu}$

(d) hadronic: $H \rightarrow e\tau_h$

• Transverse mass:
$$M_T(\ell) = \sqrt{2 |\vec{p}_T^{\ell}| |\vec{p}_T^{miss}|} (1 - 1)$$

transverse plane between the lepton and the MET

from the decay of τ is(are) collinear with it's visible decay products

$$|\overrightarrow{p}_{T}^{\nu}| = \overrightarrow{E}_{T}^{miss} \cdot \overrightarrow{p}_{T}^{\tau_{vis}}$$

$$x_{\tau_{vis}} = \frac{|\overrightarrow{p}_{T}^{\tau_{vis}}|}{|\overrightarrow{p}_{T}^{\tau_{vis}}| + |\overrightarrow{p}_{T}^{\nu}|}$$

$$M_{vis} = \sqrt{2p_T^{e/\mu} p_T^{\tau} (1 - \cos\Delta q)}$$

M

$$_{H} \approx M_{collinear} = rac{M_{vis}}{\sqrt{x_{ au_{vis}}}}$$

Mass Variables

- $cos\Delta\phi_{\ell-p_T^{miss}}$), where $\Delta\phi_{\ell-p_T^{miss}}$ is the angle in the

• Collinear mass: τ produced from Higgs decay is Lorentz boosted, so we assume the neutrino(s) produced

Event Selection

TABLE I. Event selection criteria for the $H \rightarrow \mu \tau$ channels.			TABLE II. Event selection criteria for the $H \rightarrow e\tau$ channels.			
Variable	$\mu \tau_{\rm h}$	μτ	Variable	$e au_{ m h}$		
P	, 11	> 12 C - W	p_{T}^{e}	>27 GeV	>24	
$p_{\mathrm{T}}^{\mathrm{e}}$		>13 Gev	$p_{\mathrm{T}}^{\hat{\mu}}$		>10	
$p_{ m T}^{\mu}$	>26 GeV	>24 GeV	$p_{\rm T}^{\tau_{\rm h}}$	>30 GeV		
$p_{\mathrm{T}}^{ au_{\mathrm{h}}}$	>30 GeV		$ \eta ^e$	<2.1	<	
$ \eta ^e$		<2.5	$ \eta ^{\mu}$		<	
$ \eta ^{\mu}$	<2.1	<2.4	$ \eta ^{ au_{ m h}}$	<2.3		
$ n ^{\tau_{\rm h}}$	<2.3		$I_{\rm rel}^e$	< 0.15	<	
I ^e .		< 0.1	$I_{\rm rel}^{\mu}$		<	
$rel \tau^{\mu}$	<0.15	<0.15		$p_{\rm T}^e > 25 {\rm ~GeV} (2016)$		
I' _{rel}	< 0.15	<0.15	Trigger requirement	$p_{\rm T}^e > 27 \; {\rm GeV} \; (2017)$	$p_{T}^{e} >$	
Trigger requirement	$p_{\rm T}^{\mu} > 24 \text{ GeV} \text{ (all years)}$	$p_{\rm T}^e > 12 { m ~GeV}$		$p_1^e > 32 \text{ GeV}(2018)$	$n^{\mu} >$	
	$p_{\rm T}^{\mu} > 27 { m GeV}(2017)$	$p_{\rm T}^{\tilde{\mu}} > 23 { m ~GeV}$		$p_{\rm T}^{e} > 32 {\rm GeV}$ (2010) $p_{\rm T}^{e} > 24 {\rm GeV}$ and $p_{\rm T}^{\tau_{\rm h}} > 30 {\rm GeV}$ (2017, 2018)	$p_{\rm T}$ >	

TADIE II Example collection oritoric for the U is an abannals

- efficiency and low mis-identification probability
- Events with additional leptons or hadronic taus are vetoed

• "DeepTau" is used to distinguish taus decaying hadronically against jets, electrons, and muons with high

• Events with b-tagged jets ($p_T > 20$ GeV, $|\eta| < 2.4$) identified by the "DeepCSV" discriminator are vetoed

Background Processes

Hadronic Channels

Leptonic Channels

Background Estimation

MC

Ζ→ττ

SM H

200

leptonic channels

- Classification is done using the BDT adaptive boosting technique for discriminating the signal from background
- Training is done with the signal as GluGlu/VBF samples weighted according to their production cross-section
- Background used for training is a representative subset of the background samples

Classification

- Input variables to the BDT are: • Collinear mass
 - Visible mass
 - Transverse mass
 - Missing transverse momentum (MET)
 - Spatial separation between leptons and MET
 - Lepton transverse momentum

BDT Discriminator Distributions

- upper limits on the branching fractions
- Post-fit BDT discriminant distributions of two categories of the H $\rightarrow \mu \tau$ channel are shown above

• Systematic uncertainties are incorporated into a likelihood function which is fit to obtain the best-fit and

$H \rightarrow \mu \tau / e \tau$ Limits on Branching Fraction

Results	B
Previous 2016 analysis	< 0.2
Full Run2 analysis	< 0.2

 $\begin{array}{ll} \mathscr{B}(H \to \mu \tau) & \mathscr{B}(H \to e \tau) \\ 25\% \ (0.25\%) & < 0.61\% \ (0.37\%) \\ .15\% \ (0.15\%) & < 0.22\% \ (0.16\%) \end{array}$

• Decay width of LFV Higgs boson decays is $\Gamma(H \rightarrow$

Branching fraction is related to the decay width: \mathcal{B}

Yukawa Limits

• Observed Yukawa limits

$$\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 0.00111$$

 $\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 0.00135$

- Higgs boson provides one such signal
- BDT classification techniques
- No excess is observed, and the most stringent upper limits on these branching fractions have been set

TABLE VI. correspondin	Summary of observed and expected ng constraints on Yukawa couplings for	upper limits at 95% C.L., best the $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ channel	fit branching fractions and els.
	Observed (expected) upper limits (%)	Best fit branching fractions (%)	Yukawa coupling constraints
$\begin{array}{c} H ightarrow \mu \tau \ H ightarrow e au \end{array}$	<0.15 (0.15) <0.22 (0.16)	$\begin{array}{c} 0.00 \pm 0.07 \\ 0.08 \pm 0.08 \end{array}$	$<1.11(1.10) \times 10^{-3}$ $<1.35(1.14) \times 10^{-3}$

PhysRevD.104.032013

• Search for experimental evidence of physics beyond the SM is of significant interest, and LFV decays of the

• Expected limits obtained are an improvement compared to the previous analysis not just because of the increased statistics but also attributable to the improved object identification, background estimation, and

Background Validation

• <u>Same-Sign control region</u>: Selection is the presence of same sign leptons instead of opposite sign leptons

• <u>W+Jet control region</u>: $M_T(\tau, MET) > 80 \text{ GeV}$ $M_T(\mu, MET) > 60 \text{ GeV}$

• tt control region: At least one b-tagged jet in the event

$H \rightarrow \mu \tau$ BDT Discriminator Distributions

$H \rightarrow e \tau$ BDT Discriminator Distributions

TABLE III. Systematic uncertainties in the expected event yields. All uncertainties are treated as correlated among categories, except those with two values separated by the \oplus sign. In this case, the first value is the correlated uncertainty and the second value is the uncorrelated uncertainty for each category.

Systematic uncertainty

Muon ident. and iso. Electron ident. and iso. Trigger $\tau_{\rm h}$ ident. $\mu \rightarrow \tau_{\rm h}$ misid. $e \rightarrow \tau_{\rm h}$ misid. b tagging efficiency Embedded bkg. $Z \rightarrow \mu\mu$, ee bkg. EW bkg. W + jets bkg.Diboson bkg. tt bkg. Single top quark bkg. Jet $\rightarrow \tau_{\rm h}$ bkg. Jet energy scale $\tau_{\rm h}$ energy scale $e \rightarrow \tau_{\rm h}$ energy scale $\mu \rightarrow \tau_{\rm h}$ energy scale Electron energy scale Muon energy scale Trigger timing inefficiency Integrated luminosity QCD scales (ggH)QCD scales (VBF) $PDF + \alpha_S (ggH)$ $PDF + \alpha_S (VBF)$ QCD acceptance (ggH)QCD acceptance (VBF) $PDF + \alpha_S$ acceptance (ggH) $PDF + \alpha_S$ acceptance (VBF)

Lepton ID/Iso./Trigger uncertainty

Cross-section or normalization uncertainty

Energy scale uncertainty

Theoretical uncertainty

Systematic Uncertainties

$\mu au_{ m h}$	$\mu \tau_e$	$e au_{ m h}$	$e au_{\mu}$		
2%	2%		2%		
	2%	2%	2%		
2%	2%	2%	2%		
$p_{\rm T}$ dep. (2%–3%)		$p_{\rm T}$ dep. (2%–15%)			
10%-70%					
		40%			
<6.5%	<6.5%	<6.5%	<6.5%		
4%	4%	4%	4%		
4% ⊕ 5%	4% ⊕ 5%	4% ⊕ 5%	4% ⊕ 5%		
4% ⊕ 5%	4% ⊕ 5%	4% ⊕ 5%	4% ⊕ 5%		
	10%		10%		
<i>5%</i> ⊕ <i>5%</i>	5% ⊕ 5%	5% ⊕ 5%	$5\% \oplus 5\%$		
6% ⊕ 5%	6% ⊕ 5%	$6\% \oplus 5\%$	$6\% \oplus 5\%$		
<i>5%</i> ⊕ <i>5%</i>	5% ⊕ 5%	<i>5%</i> ⊕ <i>5%</i>	$5\% \oplus 5\%$		
30% ⊕ 10%		30% ⊕ 10%			
3%-20%	3%-20%	3%-20%	3%-20%		
0.7%-1.2%		0.7% - 1.2%			
1%-7%		1%-7%			
1%		1%			
	1%-2.5%	1%-2.5%	1%-2.5%		
0.4%-2.7%	0.4%-2.7%		0.4%-2.7%		
0.2%-1.3%	0.2%-1.3%	0.2%-1.3%	0.2%-1.3%		
1.8%	1.8%	1.8%	1.8%		
	3.9%				
0.5%					
3.2%					
2.1%					
-10.3% to $+5.9%$					
-2.7% to $+2.3%$					
-0.8% to $+2.8%$					
-1.7% to $+2.3%$					

Misidentified Lepton Background Uncertainties

- Shape uncertainty is estimated in the W+Jet CR, where we observed dependence on the variable $d\phi(\mu/e, MET)$
- This is applied in the signal region, which is defined orthogonally to the W+Jet CR

$H \rightarrow \mu \tau$ Impacts

Expected Impacts

- As can be seen most uncertainty pulls are within 1σ
- "norm_Fakes", Shape uncertainty for Fakes are constrained but is expected as we use conservative uncertainties

Observed Impacts

Unconstraine Poisson	ed Gaussian AsymmetricGaussian	CMS Internal			r =	0.0
1	CMS_corr_mutauh_2018_1jet		•••			•••
2	CMS_corr_mutauh_2018_0jet					
	prop_binName3_bin10	⊢				
	CMS_corr_mutauh_2016_1jet	-	—			
	CMS_corr_mutauh_2017_0jet	⊢				
5	prop_binName22_bin10					:
,	prop_binName24_bin11	⊢ ●				
	CMS_corr_mutauh_2017_1jet		← →			
l i i i i i i i i i i i i i i i i i i i	prop_binName1_bin9		• • • • • • • • • • • • • • • • • • •			i
0	prop_binName2_bin10	⊢ ●				
1	CMS_scale_met_hf		→● →			
2	CMS_corr_mutauh_2016_0jet		→→			i
3	prop_binName1_bin8					
4	prop_binName3_bin9					
5	prop_binName4_bin10	• • •				:
6	prop_binName6_bin11		• · · ·			
7	CMS_scale_met_hcal	-				
8	prop_binName2_bin9		•			
9	CMS_pileup					
20	prop_binName6_bin10		—			
1	prop_binName23_bin11_Fakes		-			
22	prop_binName24_bin10					
3	prop_binName4_bin9	⊨ i ⊢				:
24	CMS_corr_mutauh_2016_2jet_gg		••••••			
25	prop_binName10_bin10					
26	CMS_corr_mutauh_2018_2jet_gg	i i ⊷	• · · ·			
27	prop_binName23_bin10	►	•			-
28	prop_binName9_bin9	→				
29	prop_binName17_bin11	-	—			
30	prop_binName5_bin11					
		-2 -1 0	1 2	-0.01	0	0.0
← Pull 🔲 +	10 Impact 🔲 - 10 In	npact	$(\hat{\theta} - \theta_{0})/\Delta \theta$			

$H \rightarrow e\tau$ Impacts

Expected Impacts

- As can be seen most uncertainty pulls are within 1σ
- "norm_Fakes", Shape uncertainty for Fakes are constrained but is expected as we use conservative uncertainties

Observed Impacts

NLL distribution

 $r = 0.081 \begin{array}{c} + 0.080 \\ - 0.077 \end{array}$

 $H \rightarrow e\tau$

 $r = 0.081 + 0.066 \\ - 0.063 (Syst) + 0.045 \\ - 0.045 (Stat)$

0.15

0.1

0.2

0.25

- Best-fit branching fraction can be seen in the distribution of the negative log-likelihood distribution
- Uncertainties are split into systematics and statistical contribution and as can be seen the analysis is systematically limited

Future Projections

Higgs Physics at the HL-LHC - <u>arXiv:1902.00134</u>

• Naively, assuming that both systematics and

22