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We derive a well-defined renormalized version of mutual information that allows us to estimate the
dependence between continuous random variables in the important case when one is deterministically
dependent on the other. This is the situation relevant for feature extraction, where the goal is to produce a
low-dimensional effective description of a high-dimensional system. Our approach enables the discovery of
collective variables in physical systems, thus adding to the toolbox of artificial scientific discovery, while
also aiding the analysis of information flow in artificial neural networks.
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Introduction.—One of the most useful general concepts
in the analysis of physical systems is the notion of
collective coordinates. In many cases, ranging from stat-
istical physics to hydrodynamics, the description of a
complex many-particle system can be dramatically sim-
plified by considering only a few collective variables like
the center of mass, an order parameter, a flow field, or
vortex positions. However, in new situations, it is not clear
a priori which low-dimensional “feature” y ¼ fðxÞ is best
suited as a compact description of the high-dimensional
data x. This is the domain of unsupervised feature extrac-
tion in computer science, where large datasets like images
or time series are to be analyzed [1]. Future frameworks of
artificial scientific discovery [2–5] will have to rely on
general approaches like this, adding to the rapidly devel-
oping toolbox of machine learning for physics [6–8].
The simplest and most known algorithm to obtain such

features is the principal component analysis (PCA) [9]. The
idea is to project the input into the directions of largest
variance. However, its power is limited, since it can only
extract linear features. A general approach to estimate the
quality of a proposed feature is given by mutual information
[10,11]. In general, the mutual information Iðx; yÞ answers
the following question: if two random variables y and x are
dependent on one another, and we are provided with the
value of y, how much do we learn about x? Technically, it is
defined via Iðx; yÞ ¼ Iðy; xÞ ¼ HðyÞ −HðyjxÞ, where
HðyjxÞ is the conditional entropy of y given x [11]. Here
and in what follows, we use HðyÞ to indicate the entropy
associated to the probability density of the random variable y.

Maximization of mutual information can be used to extract
“optimal” features [12], as sketched in Fig. 1.
There exists, however, a well-known important problem in

evaluating the mutual information for continuous variables
with a deterministic dependence [13,14], which is exactly
the case relevant for feature extraction. In this case, Iðx; yÞ
diverges, and it is not clear how to properly cure this
divergence without losing important properties of I.
Specifically, reparametrization invariance turns out to be
crucial: applying a bijective function to obtain y0 ¼ gðyÞ
does not change the information content, and thus
Iðx; y0Þ ¼ Iðx; yÞ.
In this work, we introduce a properly renormalized

version of mutual information for the important case of
feature extraction with continuous variables

Ĩðx; yÞ ¼ HðyÞ −
Z

dxPxðxÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det∇fðxÞ · ∇fðxÞ;p

ð1Þ

where x ∈ RN , y ¼ fðxÞ ∈ RK; we use ∇fðxÞ · ∇fðxÞ as a
short-hand notation for

P
i ∂ifμ∂ifν, with 1 ≤ i ≤ N and

1 ≤ μ; ν ≤ K, i.e., the K × K matrix resulting from
the product of the (K × N) Jacobian matrix ∇fðxÞ and
its transpose. The quantity Ĩ is well defined and finite.

FIG. 1. Feature extraction, where a high-dimensional “micro-
scopic” description x (such as the configuration of a many-particle
system) is mapped to a low-dimensional feature y ¼ fðxÞ. This is
the case where the renormalized mutual information presented in
this Letter is needed for feature optimization.
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In addition, it preserves fundamental properties of mutual
information—among which the invariance under repara-
metrization of the features:

Ĩ(x; gðyÞ) ¼ Ĩðx; yÞ; ð2Þ

for a bijective function g∶RK → RK . We will derive and
discuss below the meaning and usefulness of the renor-
malized quantity Ĩ.
Mutual information is used in many cutting edge

machine learning applications, helping to improve the
intermediate layers of a neural network [15,16], to increase
the interpretability of generative adversarial networks [17],
to analyze the behavior of neural networks during training
[18,19] through the information bottleneck method [20,21],
and for feature extraction via mutual information optimi-
zation [22]. It can be also used to characterize the variables
in a renormalization group procedure [23]. Its practical
estimation is not trivial [24], but recently derived bounds
[25] permit its evaluation even in high-dimensional spaces,
with the help of neural networks [26].
However, there is a problem with deterministically de-

pendent continuous features: the conditional entropyHðyjxÞ
formally diverges as− log δð0Þwhenever y is a deterministic
function of x. To understand why, it is enough to take its
definition, HðyjxÞ ¼ −

R
dxdyPxðxÞPðyjxÞ lnPðyjxÞ, and

plug inPðyjxÞ ¼ δ(y − fðxÞ). This is specific to continuous
variables: with discrete variables, conditional entropy would
be zero and mutual information would coincide with the
entropy of one of the variables. It is clear that, to deal with a
deterministic continuous dependence, it is necessary to
somehow redefine mutual information. Past remedies
involved adding noise to the feature y or (equivalently) to
simply consider the nondiverging term HðyÞ [22,27], as
briefly suggested in the InfoMax seminal paper [12].
However, they all lead to a very undesirable property: they
break the fundamental reparametrization invariance of
mutual information. In this scheme, any two features can
be made to have the same entropyHðyÞ simply by rescaling.
Thus, in the context of feature optimization, they would be
considered equally favorable, even if they represent very
different information about x. The reason is that such a
scheme completely ignores the diverging quantityHðyjxÞ. In
contrast, we show that HðyjxÞ contains a nontrivial finite
dependence on the feature fðxÞ, which must be taken into
account to obtain consistent results.
Renormalized mutual information.—In any physical

system, there are small preexisting measurement uncer-
tainties associated with extracting the microscopic observ-
ables x. Thus, loosely speaking, when trying to deduce
information about x given the value of y, we have to be
content with resolving x up to some spread ε. Motivated by
this, we first consider a finite regularized quantity Iεðx; yÞ.
It is defined as the mutual information between the
observable x and the feature function applied to a noisy

version of the observable: y ¼ fðxþ ελÞ, where ε ∈ R is
the noise strength and λ ∈ RN is a random multidimen-
sional Gaussian of zero mean and unit covariance matrix. In
the limit ε → 0 we recover the original definition of mutual
information, which diverges logarithmically. Even in that
limit, the nature of the adopted noise distribution (e.g.,
isotropy, independence of x) still matters, and corresponds
to imposing some hypotheses about the observed quantities
x (e.g., same measurement uncertainty in all variables). We
discuss these generalizations at the end of this work.
Consider

PðyjxÞ ¼
Z

dλPλðλÞδ(y − fðxþ ελÞ): ð3Þ

When ε ≪ 1, we can expand fðxþελÞ≃fðxÞþελ ·∇fðxÞ.
By explicit calculation, it can be easily found that PðyjxÞ is
a Gaussian distribution of zero mean and covariance matrix
ε2∇fðxÞ ·∇fðxÞ ¼ ε2

P
i ∂ifμ∂ifν. We can calculate the

conditional entropy and get

HðyjxÞ ¼
Z

dxPxðxÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det∇fðxÞ ·∇fðxÞ

p
þ KHε; ð4Þ

where Hε is the entropy of a one-dimensional Gaussian
with variance ε2. The first term only depends on the
features, and the second only on the noise. Only this term
diverges when ε → 0. Therefore,

Ĩεðx; yÞ ¼ Iεðx; yÞ þ KHε ð5Þ

has a well-defined limit ε → 0 and still contains all the
dependence on fðxÞ. By performing the limit we obtain our
main result, Eq. (1).
We can easily show that Eq. (1) is invariant under

feature reparametrization. Consider an invertible function
z ¼ gðyÞ∶RK → RK . We can rewrite the entropy of z as the
entropy of y plus an extra term, which cancels with that
obtained by differentiating ln det∇g(fðxÞ), leading to
Eq. (2). We emphasize the importance of this property:
after an invertible transformation on the variable y, no
information should be lost, and the new variable should
have the same mutual information with x as the old one. In
contrast, by adding Gaussian noise η to the feature y instead
of to x, i.e., y ¼ fðxÞ þ εη, the final result would depend on
the feature only via HðyÞ. Reparametrization invariance
would not hold anymore under this alternative regulariza-
tion: we have Iεðx; gðfðxÞ þ εηÞÞ ¼ Iεðx; fðxÞ þ εηÞ but
not Iεðx; gðfðxÞÞ þ εηÞ ¼ Iεðx; fðxÞ þ εηÞ as Eq. (2)
would require.
The price for a finite mutual information between two

deterministically dependent variables is that when there is
no dependence, e.g., y ¼ const, we get −∞ instead of 0.
In addition, given the different roles that x and y play,
renormalized mutual information is no longer symmetric in
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its arguments. From a different perspective [28], Eq. (1) can
be expressed as a particular kind of information
loss [32,33].
Mutual information obeys inequalities like I(x; ðy1; y2Þ) ≥

Iðx; y1Þ, which translate to the regularized version Iε.
However, naively taking ε → 0 results in an empty inequality
Ĩ(x; ðy1; y2Þ)þ∞ ≥ Ĩðx; y1Þ. By contrast, starting from
I(x; ðy1; y2Þ) ≥ Iðx; y1Þ þ Iðx; y2Þ − Iðy1; y2Þ, we can take
the same limit and obtain a useful finite result:

Ĩ(x; ðy1; y2Þ) ≥ Ĩðx; y1Þ þ Ĩðx; y2Þ − Iðy1; y2Þ: ð6Þ

In the special case where the dimensions of y1 and y2
add up to the dimension of x, and the mapping
x ↦ ðy1; y2Þ is bijective, reparametrization invariance
produces Ĩ(x; ðy1; y2Þ) ¼ Ĩðx; xÞ ¼ HðxÞ, and so

HðxÞ ≥ Ĩðx; y1Þ þ Ĩðx; y2Þ − Iðy1; y2Þ: ð7Þ

If one constructs y2 to be independent of y1, the third term on
the right-hand side vanishes. However, it would be imper-
missible to drop Ĩðx; y2Þ, since it can have any sign.
Feature comparison.—The renormalized mutual infor-

mation can be used to find out how useful any given
“macroscopic” quantity [i.e., a feature y ¼ fðxÞ] would be
in characterizing the system. The result depends on the
statistical distribution of x. It might be the Boltzmann
distribution in equilibrium or a distribution of “snapshots”
of the system configuration during some arbitrary time
evolution. When control parameters such as temperature or
external fields change the distribution of x, the optimal
feature can change. Intuitively, observing a feature with
higher Ĩ is more effective in narrowing down the set of
underlying configurations x compatible with the observed
value, thus yielding more information about the system.
We show proof-of-concept examples in the most common

domains of physics that deal with many degrees of freedom:
fluctuating fields and many-particle systems. One important
goal is to discover, without prior knowledge, that a given
fluctuating field is dominated by certain localized excitations
(like solitons and vortices) and to robustly estimate their
properties (position, shape, velocity, etc.). The simplest
example is a 1D field on a lattice with a wave packet of
fixed shape at a random position [Figs. 2(a,b)] [28]. For now,
we evaluate Ĩ for a variety of handcrafted features, turning to
feature optimization further below. Because of reparametri-
zation invariance [Eq. (2)], the scaling of any of them is
irrelevant, as is any bijective nonlinear transformation. For
comparison, we also consider PCA [9], which in our context
corresponds to a feature fðxÞ ¼ P

j xjuj, where u is the
eigenvector associated to the largest eigenvalue of the
covariance matrix hxixji − hxiihxji, and the bottleneck of
a contractive autoencoder [34].
In a many-particle system (molecule, star cluster,

plasma, etc.), the goal is to discover the most meaningful

collective coordinates. A simple prototypical example is a
liquid drop of fluctuating shape and orientation, made of
atoms with known force fields [Figs. 2(c,d)].
Feature optimization.—Instead of comparing different

plausible features, we can consider a class of parametrized
features and optimize Ĩ over the parameters. We opted for a
multilayer neural network [35], where fðxÞ ¼ fθðxÞ with θ
representing the parameters of the network. Intuitively,
meaningful features are those that provide the largest
information without overengineering. While handcrafted
features, like in the previous section, are unarguably
simple, the optimization of an excessively powerful feature
function could lead to encode additional (nonrelevant)
information by means of very nonlinear transformations.
The tradeoff between the simplicity of the feature and the

FIG. 2. Comparing renormalized mutual information Ĩ for
several features in two representative physical scenarios. (a) Fluc-
tuating 1D field on a lattice, with a randomly placed “wave
packet” (we depict one single sample). (b) Ĩ as a function of the
size of the field fluctuations σξ for several features. Let
Aj ¼ 1=N

P
N
j¼1 Aj. We consider the average field fðxÞ ¼ xj,

the position j weighted by the field amplitude, jxj, or weighted

by the field intensity, jx2j , as well as the “normalized” feature

jx2j=x
2
i (similar to an expectation value in quantum mechanics)

and the first PCA component. (c) Two-dimensional “drops” with
elliptical shapes of fixed area but with fluctuating deformation
amplitude δr and orientation θ (we depict three samples). (d) Ĩ vs
max. deformation spread for the 2D feature given by PCA and for
two nonlinear features sensitive to shape deformations,

fVar ¼ ½ðxð1Þj Þ2; ðxð2Þj Þ2� and fCorr ¼ ½ðxð1Þj Þ2; xð1Þj xð2Þj �, where

xð1Þj ; xð2Þj are the coordinates of particle j. In both (b) and
(d) AE represents the bottleneck of a contractive autoencoder
trained to reconstruct the input and NN corresponds to the feature
given by a neural network optimized to maximize Ĩ. In the insets,
we show the entropy H(fðxÞ). This quantity is not reparamet-
rization invariant.
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amount of preserved information can be adjusted both by
the choice of network architecture and by adding a small
additional regularization penalty (in practice, this can be
achieved by punishing features with large gradients). The
optimization of Ĩ(x; fθðxÞ) can be implemented easily with
gradient ascent algorithms [35]. The first term in Eq. (1)
can be estimated with a histogram; for the second term, one
can immediately obtain the required ∇f, since neural
networks are differentiable functions, and rely on statistical
sampling of x. Note that also the extra degree of freedom of
feature space due to reparametrization invariance [Eq. (2)]
can be exploited to enforce additional constraints [28].
In Fig. 3(a) we show the optimization of a nonlinear 1D

feature for a 2D non-Gaussian distribution. Such a low-
dimensional setting allows to visualize the shape of the
feature and to compare it with PCA. We apply the same
technique also to the physical examples [see “NN” in
Figs. 2(b,d)].
One way to assess the quality of features is by suitable

visualization [see Figs. 3(b,c)]. The optimized NN feature
is clearly able, better than (or at least as good as) other
features, to identify the relevant properties of the system. A
more quantitative, well-known approach is to perform
supervised training for a regression task with the feature

as input and analyze the resulting performance [28]. In the
physics examples shown here, one is naturally interested in
predicting underlying parameters, like the wave packet
location. Figures 4(b,c) illustrate superior or very good
performance of the network.
In our illustrative examples we only considered 1D or to

2D features. For higher-dimensional features, the numerical
estimation of Eq. (1) is more challenging, but in principle
still feasible [28]—for example, through adversarial tech-
niques [36].
Also, all the components xj had the same physical

meaning (e.g., particle coordinates). For components with
different dimensions (e.g., positions and momenta), one
needs to decide how to compare fluctuations along different
components. A slight change in the regularization pro-
cedure is required. Most generally, we can consider the
noise distribution PðλjxÞ to have an arbitrary covariance
matrix ΣðxÞ, even allowing for a location-dependent
“resolution.” We find that it is necessary to replace the
matrix ∇fðxÞ · ∇fðxÞ in Eq. (1) with ∇fðxÞΣðxÞ∇fðxÞ,
thus effectively introducing a metric on x space [28]. This
changes the inequality mentioned above [Eq. (7)].
Outlook.—Renormalized mutual information can be

useful in many areas of statistical analysis, machine
learning, and physics.
It can be directly applied in diverse physical scenarios,

with many interesting variations and extensions. In statistical
physics, one expects that different phases of matter yield
different optimal features. Moreover, one could optimize for
feature fields (order parameter fields) by using convolutional
layers in the neural network. The locations of defects like
domain walls and vortices could be discovered as rele-
vant features. In general, an optimized low-dimensional
description of a high-dimensional system can be used to
make partial predictions for the time evolution.
In dynamical systems the renormalized mutual informa-
tion could help to discover the underlying regularities
of the system. Even in the presence of chaos, the evolu-
tion of collective variables can be predictable (and still

FIG. 3. Feature optimization and visual assessment of quality.
(a) 2D non-Gaussian distribution. The obtained 1D feature
y ¼ fðx1; x2Þ, shown as contour lines atop the distribution
PxðxÞ, is parametrized with a neural network. Inset: PCA feature.
(b) Wave packets as in Fig. 2(a), one by row, ordered by
increasing value of the feature. The NN feature is clearly very
powerful to sort the samples. (c) Liquid drops as in Fig. 2(c). We
show how different 2D features map the deformation and the
orientation of the drop. The NN builds up a representation very
similar to our best handcrafted feature fCorr.

FIG. 4. Comparing the performance of a supervised regression
task for different features as input. (a) For each batch of samples x
we calculate the feature y ¼ fðxÞ and train a supervised neural
network to predict the provided label z�. (b) Predicting the center
of the wave packet [example from Fig. 2(a)]. (c) Predicting the
orientation and deformation of the drop [example from Fig. 2(c)].
The optimizedNN feature achieves the best performance in (b) and
a performance very close to that of our best handcrafted feature (c).
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nontrivial) [37]. Quantum-mechanical systems could be
analyzed as well, e.g., by sampling configurations x accord-
ing to a many-body state, or sampling parameters in the
Hamiltonian and looking at the expectation values x of
a set of commuting observables in the corresponding
ground state.
Renormalized mutual information can be used to analyze

deterministic representations of a dataset. Here we illus-
trated the approach only in settings with at most two-
dimensional features, but it should be feasible to efficiently
evaluate Ĩ also with high-dimensional feature spaces. This
approach could be used to study the behavior of a neural
network from an information-theoretic perspective, for
example, by analyzing the renormalized mutual informa-
tion between the input and an intermediate layer of a neural
network. This could be helpful for concepts like the
“information bottleneck” [20,38], which is known to be
affected by the problems we discussed. Moreover, the
important challenge of representation learning for high-
dimensional datasets (like images) can benefit: our opti-
mized features are purely defined by their information
content and not by the capability to accomplish selected
tasks. Thus, they could be useful in transfer learning
scenarios, in which many classifiers are built from the
same representation. We emphasize that the method advo-
cated here should be especially useful when the dimension-
ality is so drastically reduced that autoencoders [34,39,40]
would not plausibly work very well, since it would be
impossible for a decoder to produce an approximation of the
input from so few latent variables [see Fig. 3(c)]. This is
precisely the situation important for collective variables and
similar strongly reduced descriptions.

The code of this paper is publicly available [41].

We thank Andreas Maier for discussions.
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