Renormalized Mutual Information for Artificial Scientific Discovery

Leopoldo Sarra

Max Planck Institute for the Science of Light Erlangen, Germany

work with Andrea Aiello and Florian Marquardt

Learning to Discover - Al and Physics Conference
Thursday, April 26th 2022

HOW CAN WE DESCRIBE A PHYSICAL SYSTEM WITH ONLY A FEW QUANTITIES?

e. g. Fluid dynamics, Thermodynamics, ...

FEATURES

Goal: Given a high-dimensional system x, we want to automatically find the best low-dimensional features y = f(x) to describe it.

FEATURE EXTRACTION

Statistical analysis of many observations

MUTUAL INFORMATION

If two random variables x and y are dependent one another, and we are provided with the value of y, how much do we learn on x?

Entropy
$$I(x,y) = H(y) - H(y|x) = \int dx dy P(x,y) \log \frac{P(x,y)}{P_x(x)P_y(y)}$$
Conditional Entropy

- It quantifies the dependence between two random variables
- Always positive, zero iff the variables are independent

Feature Extraction: choose f(x) such that I(x, y = f(x)) is maximized

References:

- Mutual Information e. g. Papoulis, Athanasios, and S. Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes
- Bell, Sejnowsky. "InfoMax: An Information-maximisation Approach to Blind Separation and Blind Deconvolution";

PROBLEM:

MUTUAL INFORMATION IS $+\infty$ FOR ANY FEATURE!

$$H(y \mid x) = -\int dx dy P_x(x) P(y \mid x) \log P(y \mid x)$$

A continuous deterministic feature y = f(x) has $P(y | x) = \delta(y - f(x))$.

$$H(y = f(x) \mid x) = -\int dx dy P_x(x) \delta(y - f(x)) \log \delta(y - f(x)) = -\log \delta(0)$$
it always diverges in this case!

Long-standing problem but unsatisfying solutions

References:

- Bell, Sejnowsky. "InfoMax: An Information-maximisation Approach to Blind Separation and Blind Deconvolution";
- Gabrié et al. "Entropy and Mutual Information in Models of Deep Neural Networks." Journal of Statistical Mechanics;
- Saxe et al. "On the Information Bottleneck Theory of Deep Learning"

RENORMALIZED MUTUAL INFORMATION

our solution

We add Gaussian noise λ to the x and define a new finite quantity

$$I_{\varepsilon}(x,y) = I(x,y = f(x + \varepsilon\lambda))$$

We perform the zero-noise limit:

$$\tilde{I}(x,y) = \lim_{\varepsilon \to 0} I_{\varepsilon}(x,y) + H(\varepsilon\lambda) = H(y) - \int dx P_{x}(x) \log \sqrt{|\nabla f(x) \cdot \nabla f(x)|}$$

- Finite quantity and well-defined
- Invariant under feature reparametrization (an invertible transformation y'=g(y) does not change \tilde{I})

L. Sarra, A. Aiello, F. Marquardt

arXiv:2005.01912

APPLICATIONS

Feature Selection

Find out how useful a given macroscopic quantity is to describe the system

Feature Extraction

Optimize over a class of functions parametrized by a neural network

POSSIBLE APPLICATIONS

- Characterize different phases of matter
- Partial prediction of time evolution
- Discover residual regularities of chaotic systems
- Study of intermediate layers of neural networks during training
- Unsupervised representation learning

• ...

Fluctuating fields

Many-particle systems

ESA/Hubble

Fluctuating field with wave packet

Fluctuating field with wave packet

Fluctuating field with wave packet

 x_j

$$y = \sum x_j^2 \qquad \qquad y = \frac{\sum J \lambda_j}{\sum x_j^2} \qquad \qquad y = f_{NN}(x)$$
sorted samples (according to feature value)
50

Renormalized Mutual Information:
$$0.29$$

$$0.93$$

$$2.73$$

Reference: in our paper arXiv:2005.01912, we also estimate the quality of the feature representations in a more quantitative way by comparing the performance on a supervised regression task

Liquid Drop

Each ellipse has a different deformation and orientation

Liquid Drop

Handcrafted Features

Liquid Drop

Handcrafted Feature

Handcrafted Feature

Extracted Feature (neural network)

Renormalized Mutual Information:

1.75

3.04

3.22

Reference: in our paper arXiv:2005.01912, we also estimate the quality of the feature representations in a more quantitative way by comparing the performance on a supervised regression task

What are the most relevant features of a system?

$$\tilde{I}(x,y) = H(y) - \int dx P_x(x) \log \sqrt{|\nabla f(x) \cdot \nabla f(x)|}$$

Many possible applications in Physics and Machine Learning

- Characterize different phases of matter
- Partial prediction of time evolution
- Discover residual regularities of chaotic systems
- Study of intermediate layers of neural networks during training
- Unsupervised representation learning

"Renormalized Mutual Information for Artificial Scientific Discovery", LS, Andrea Aiello, and Florian Marquardt, Phys. Rev. Lett. **126**, 200601