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HOW CAN WE DESCRIBE A PHYSICAL SYSTEM  
WITH ONLY A FEW QUANTITIES?
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FEATURES

Goal: Given a high-dimensional system , we want to automatically find the 
best low-dimensional features  to describe it.
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References: Haykin, Simon S. Neural Networks: A Comprehensive Foundation. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 1999. 



FEATURE EXTRACTION
Statistical analysis of many observations
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MUTUAL INFORMATION
If two random variables x and y are dependent one another, and we are 
provided with the value of y, how much do we learn on x?

I(x, y) = H(y) − H(y |x) = ∫ dxdyP(x, y)log
P(x, y)

Px(x)Py(y)

• It quantifies the dependence between two random variables


• Always positive, zero iff the variables are independent

Feature Extraction:  choose  such that  is maximizedf(x) I(x, y = f(x))

Entropy

Conditional Entropy

References:  
- Mutual Information - e. g. Papoulis, Athanasios, and S. Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes 
- Bell, Sejnowsky. “InfoMax: An Information-maximisation Approach to Blind Separation and Blind Deconvolution”;  
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PROBLEM:
MUTUAL INFORMATION IS  FOR ANY FEATURE!+∞

H(y = f(x) |x) = − ∫ dxdyPx(x)δ(y − f(x))logδ(y − f(x)) = − log δ(0)

H(y |x) = − ∫ dxdyPx(x)P(y |x)log P(y |x)

A continuous deterministic feature  has .y = f(x) P(y |x) = δ(y − f(x))

it always diverges in this case! −∞
Long-standing problem
but unsatisfying solutions
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We add Gaussian noise  to the  and define a new finite quantityλ x

Iε(x, y) = I (x, y = f(x + ελ))

Ĩ(x, y) = lim
ε→0

Iε(x, y) + H(ελ) = H(y) − ∫ dxPx(x)log |∇f(x) ⋅ ∇f(x) |

• Finite quantity and well-defined


• Invariant under feature reparametrization  
(an invertible transformation  does not change )y′￼ = g(y) Ĩ

We perform the zero-noise limit:

our solution



APPLICATIONS

Feature Selection

x
y1
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y3

Find out how useful a given 
macroscopic quantity is to 
describe the system

Feature Extraction

x y = fθ(x)

Ĩ(x, y)

Optimize over a class of 
functions parametrized by a 
neural network



POSSIBLE APPLICATIONS

• Characterize different phases of matter

• Partial prediction of time evolution

• Discover residual regularities of chaotic 

systems

• Study of intermediate layers of neural 

networks during training

• Unsupervised representation learning

• …

ESA/Hubble

Many-particle systems

Fluctuating fields



EXAMPLE Fluctuating field with wave packet
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EXAMPLE

j

xj

Fluctuating field with wave packet

xj = thermal noise  + wave packet( j − j̄)



EXAMPLE
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j y =
∑ jx2

j

∑ x2
j′￼

y = fNN(x)

# sorted 
samples


(according 
to feature 

value)

position j
Renormalized Mutual 

Information: 0.29 0.93 2.73

Fluctuating field with wave packet

1000

50

100

xj

Reference: in our paper arXiv:2005.01912, we also estimate the quality of the feature representations in a more quantitative way by comparing the 
performance on a supervised regression task 



EXAMPLE Liquid Drop
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EXAMPLE
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i
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i
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EXAMPLE Liquid Drop
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Reference: in our paper arXiv:2005.01912, we also estimate the quality of the feature representations in a more quantitative way by comparing the 
performance on a supervised regression task 
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OUTLOOK

Many possible applications in Physics and Machine Learning

• Characterize different phases of matter

• Partial prediction of time evolution

• Discover residual regularities of chaotic systems

• Study of intermediate layers of neural networks during training

• Unsupervised representation learning

• …

Observable space
high-dimensional

Feature space
low-dimensional

x ∼ Px(x) y ∼ Py(y)

Feature 
function

y = f(x)

Ĩ(x, y) = H(y) − ∫ dxPx(x)log |∇f(x) ⋅ ∇f(x) |

What are the most relevant features of a system?
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