
Kai Habermann, Eckhard von Toerne

Self-Organizing Maps (SOM) in
High Energy Physics
27.04.2022

1

2

Maschine Learning

Supervised Unsupervised

Dimensionality reduction 
PCA

Clustering

Kmeans

Self-Organizing Maps

Classification

ANN, MLP, BDT, … 
Trained with MC

Why SOM in Physics?
• Visualization

• Data driven Analysis

• Simulation independent data exploration

• Problem: complex data

• Clustering for feature detection

• Aid in the search for rare processes

3

What is SOM?
• Input Layer:

• Size of input vectors

• Output Layer:

• Layer of neurons organized in a 2  

dimensional lattice

• Prototype vector the size of the input  

for each neuron of output layer

• Topology preservation via ordering  

of neurons in lattice

• Mapping via distance to Prototype  

vectors
4

„Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to  
Build Intelligent Systems“, Aurelien Geron

Training

5

• Orange: Prototype vectors

• Blue: Training data

- Grey: Neighborhood relations

• Goal:

• Find best

prototype vectors

• Preserve Topology

and distance
relations

• Method:

• Competitive +

collaborative

• Neurons compete

for inputs + update
neighbors [1]

Training

5

• Orange: Prototype vectors

• Blue: Training data

- Grey: Neighborhood relations

• Goal:

• Find best

prototype vectors

• Preserve Topology

and distance
relations

• Method:

• Competitive +

collaborative

• Neurons compete

for inputs + update
neighbors [1]

Data Sample
ATLAS Open Data1 with s = 13 TeV

• Openly available dataset from ATLAS (meant for educational use)

• We chose electron-muon dilepton final states (500k events)

• Contributions from , , and Higgs

• Remove 77 events with energies of more then

• Opposite charge for leptons

• , Isolation < 0.1 (applied only after training)

• Quantile transform to pull outliers in

+ Njet ≥ 0

tt̄ Z → ττ̄ WW
13 TeV

mll
T > 70 GeV

6

1http://opendata.atlas.cern/release/2020/documentation/index.html

Mapped
out data

• SOM with 60x90
neurons

• Training with batches
of 500 datapoints

• Each pixel represents
a single neuron

• z-axis shows events
per neuron

7

Unified Distance Matrix (U-Matrix)

8

• are weight vectors of the
neurons.

• Clusters of different amounts
of jets

• 0: No jets

• 1: One jet

• 2: 2 or more jets

uij =
i+1

∑
k=i−1

j+1

∑
m=j−1

|wkm − wij |

wab
2

0

1

1

1

2

Single Top Single W Z → ττ

H → WW* tt WW

9

Mapped MC data (cut included)mll
T

Fit result Real data

10

Relative amount of H → WW*

Real data

H → WW*

11

Relative amount of H → WW*

Real data

H → WW*

11

12

•6099

events in total

•396

events in subdataset

•Purity of 0.39

H → WW*

H → WW*

Mll
T = 2 Ell

T Emiss
T (1 − cos(θll,miss))

Isolated
data

Summary and conclusion
• SOM can create low dimension map of data

• We can find clusters in the data

• SOM can be utilized to perform cuts on the data:

• We can isolate 396 out of 6099 processes with a
purity of 0.39

H → WW*

13

Thank you for listening!

14

Sources
1. Kohonen, T. Self-organized formation of topologically correct

feature maps. Biol. Cybern. 43, 59–69 (1982). https://doi.org/
10.1007/BF00337288

2. Used Code: https://github.com/kai-git-stuff/SOM

15

https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://github.com/kai-git-stuff/SOM
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://github.com/kai-git-stuff/SOM

Training algorithm
1. Initalize weight vectors.

2. Select one input vector from
training sample .

3. Calculate euclidean distance
to the weight vector

of each neuron and choose
neuron with lowest distance.

4. Renew weights depending on
.

5. Repeat steps 2-4 until iteration
limit is reached.

vj

vj − wi

ni
nbest

nbest

16

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm
1. Initalize weight vectors.

2. Select one input vector from
training sample .

3. Calculate euclidean distance
to the weight vector

of each neuron and choose
neuron with lowest distance.

4. Renew weights depending on
.

5. Repeat steps 2-4 until iteration
limit is reached.

vj

vj − wi

ni
nbest

nbest

16

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l • Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Immediate neighbors of will be
altered the most.

nbest

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Immediate neighbors of will be
altered the most.

nbest

• Distance relations from input space are
mostly conserved.

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Immediate neighbors of will be
altered the most.

nbest

• Distance relations from input space are
mostly conserved.

• Clustering is encouraged.

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Immediate neighbors of will be
altered the most.

nbest

• Distance relations from input space are
mostly conserved.

• Clustering is encouraged.

• Convergence through decreasing and .l σ

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Training algorithm

16

wt+1
k = wt

k + (vj − wt
k) ⋅ β(rk, σ) ⋅ l

• Weights will be moved closer to .vj

• , distance to
in the output space.
β(r, σ) = Fgauss(r, σ) r nbest

• Immediate neighbors of will be
altered the most.

nbest

• Distance relations from input space are
mostly conserved.

• Clustering is encouraged.

• Convergence through decreasing and .l σ

• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations

Fit procedure

• Map out MC-data on pre-trained SOM

• Normalize histograms

• Fit normalized real data histogram as weighted sum of normalized MC-
data

Fitresult Real data

Fit Results
• Isolation has to be

smaller than 0.1 to
reduce QCD

• to
reduce Drell Yan

• Bad probably
due to missing QCD

mll
T > 70 GeV

ττ̄
χ2

Ndf
= 3.39

χ2

18

