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Maschine Learning

Supervised Unsupervised

Dimensionality reduction 
PCA

Clustering

Kmeans

Self-Organizing Maps

Classification

ANN, MLP, BDT, … 
Trained with MC 



Why SOM in Physics?
• Visualization

• Data driven Analysis

• Simulation independent data exploration

• Problem: complex data


• Clustering for feature detection

• Aid in the search for rare processes
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What is SOM?
• Input Layer:

• Size of input vectors 


• Output Layer:

• Layer of neurons organized in a 2  

dimensional lattice

• Prototype vector the size of the input  

for each neuron of output layer

• Topology preservation via ordering  

of neurons in lattice 

• Mapping via distance to Prototype  

vectors
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„Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to  
Build Intelligent Systems“,  Aurelien Geron



Training
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• Orange: Prototype vectors

• Blue: Training data

- Grey: Neighborhood relations

• Goal: 

• Find  best 

prototype vectors

• Preserve Topology 

and distance 
relations


• Method:

• Competitive + 

collaborative

• Neurons compete 

for inputs + update 
neighbors [1]
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Data Sample
ATLAS Open Data1 with s = 13 TeV

• Openly available dataset from ATLAS (meant for educational use)


• We chose electron-muon dilepton final states  (500k events)


• Contributions from , ,  and Higgs


• Remove 77 events with energies of more then 

• Opposite charge for leptons


• , Isolation < 0.1 (applied only after training)

• Quantile transform to pull outliers in

+ Njet ≥ 0

tt̄ Z → ττ̄ WW
13 TeV

mll
T > 70 GeV
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1http://opendata.atlas.cern/release/2020/documentation/index.html



Mapped 
out data

• SOM with 60x90 
neurons


• Training with batches 
of 500 datapoints


• Each pixel represents 
a single neuron


• z-axis shows events 
per neuron

7



Unified Distance Matrix (U-Matrix)
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•  are weight vectors of the 
neurons.


• Clusters of different amounts 
of jets


• 0: No jets


• 1: One jet


• 2: 2 or more jets

uij =
i+1

∑
k=i−1

j+1

∑
m=j−1

|wkm − wij |

wab
2

0

1

1

1
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Single Top Single W Z → ττ

H → WW* tt WW
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Mapped MC data (  cut included)mll
T



Fit result Real data
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Relative amount of H → WW*

Real data

H → WW*
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Relative amount of H → WW*

Real data

H → WW*
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•6099  

events in total

•396  

events in subdataset

•Purity of 0.39

H → WW*

H → WW*

Mll
T = 2 Ell

T Emiss
T (1 − cos(θll,miss))

Isolated 
data



Summary and conclusion
• SOM can create low dimension map of data

• We can find clusters in the data

• SOM can be utilized to perform cuts on the data:


• We can isolate 396 out of 6099  processes with a 
purity of 0.39

H → WW*
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Thank you for listening!
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Sources
1. Kohonen, T. Self-organized formation of topologically correct 

feature maps. Biol. Cybern. 43, 59–69 (1982). https://doi.org/
10.1007/BF00337288


2. Used Code: https://github.com/kai-git-stuff/SOM
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https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://github.com/kai-git-stuff/SOM
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://github.com/kai-git-stuff/SOM


Training algorithm
1. Initalize weight vectors.


2. Select one input vector from 
training sample .


3. Calculate euclidean distance 
to the weight vector 

of each neuron  and choose 
neuron  with lowest distance.


4. Renew weights depending on 
.


5. Repeat steps 2-4 until iteration 
limit is reached.

vj

vj − wi

ni
nbest

nbest
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• Orange: Weight vectors

• Blue: Training data

- Grey: Neighborhood relations
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Training algorithm
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Fit procedure

• Map out MC-data on pre-trained SOM


• Normalize histograms


• Fit normalized real data histogram as weighted sum of normalized MC-
data

Fitresult Real data



Fit Results
• Isolation has to be 

smaller than 0.1 to 
reduce QCD


•  to 
reduce Drell Yan 




• Bad  probably 
due to missing QCD

mll
T > 70 GeV

ττ̄
χ2

Ndf
= 3.39

χ2
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