

Self-Organizing Maps (SOM) in High Energy Physics 27.04.2022

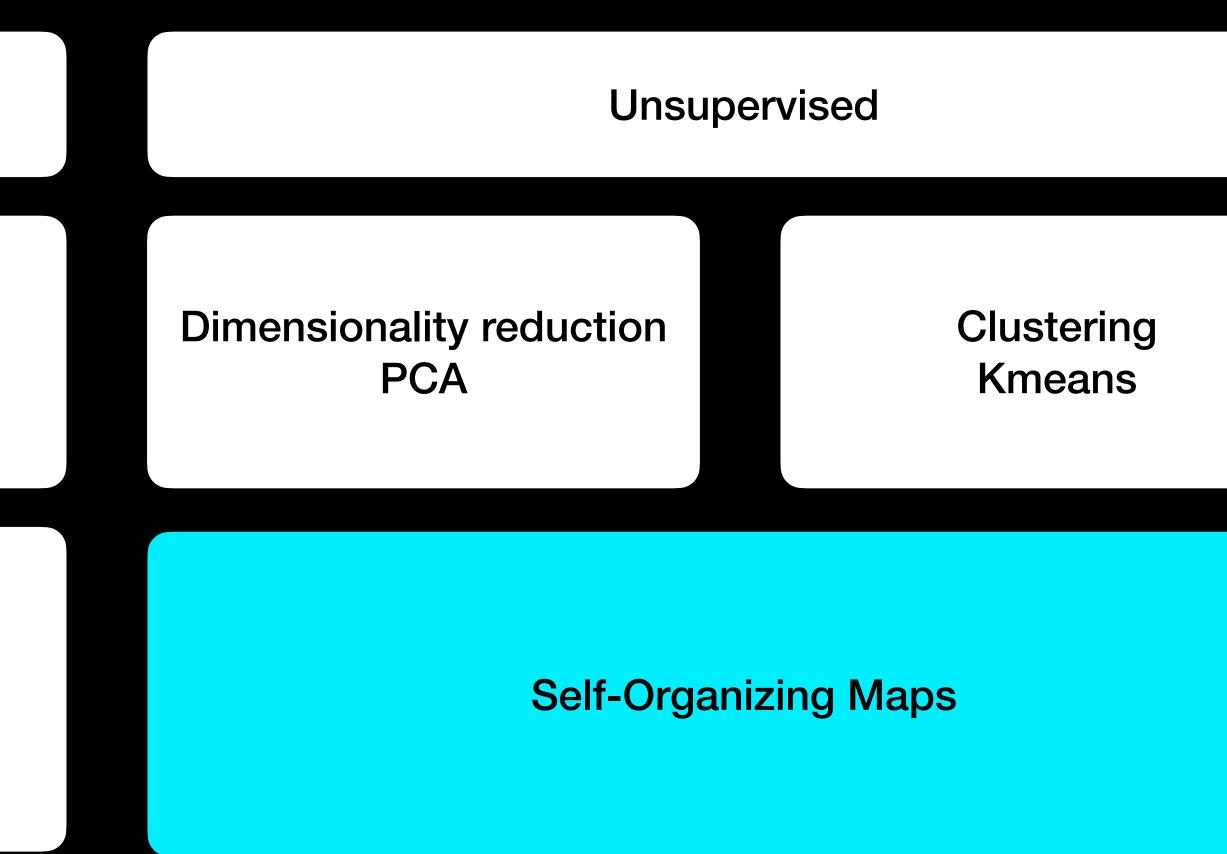
Kai Habermann, Eckhard von Toerne

Supervised

Classification

ANN, MLP, BDT, ... Trained with MC

Maschine Learning

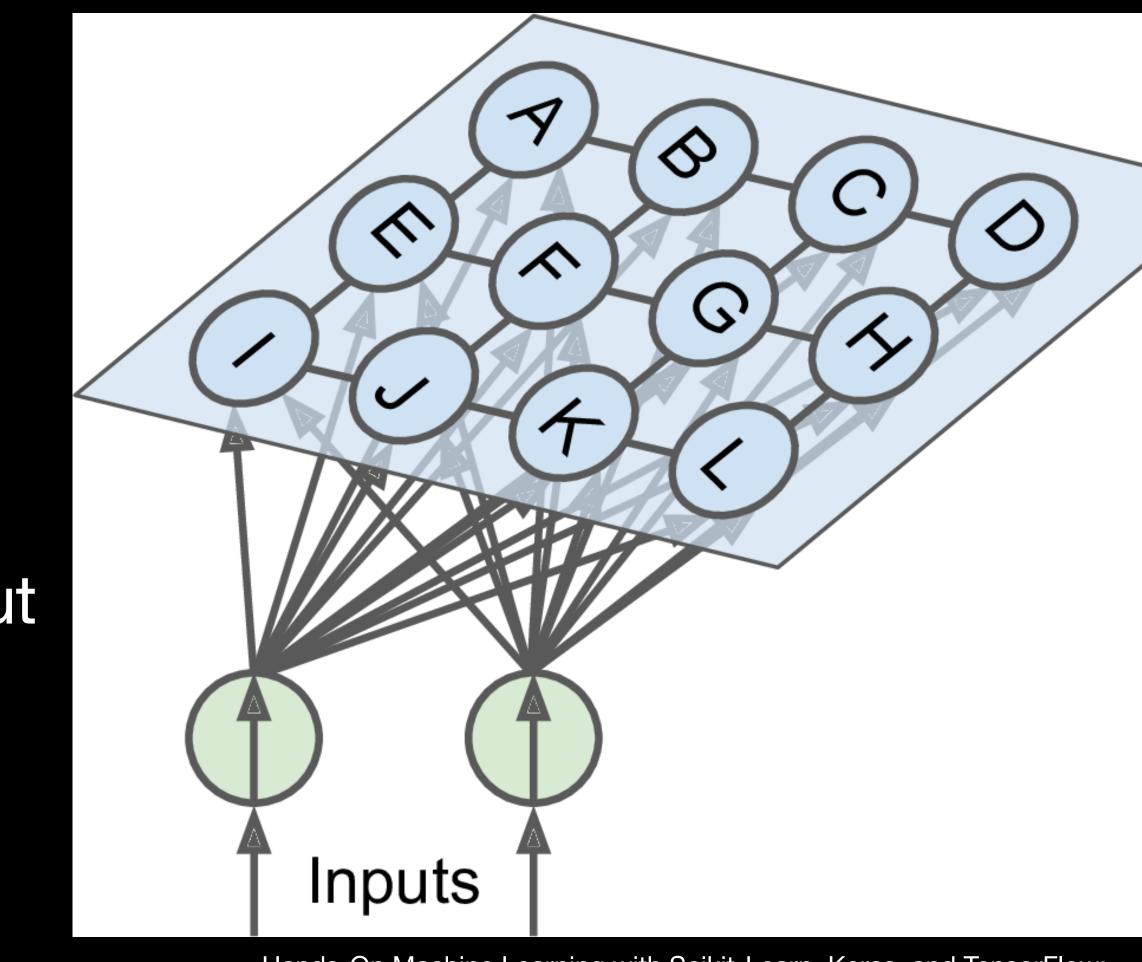


Why SOM in Physics?

- Visualization
- Data driven Analysis
 - Simulation independent data exploration
 - Problem: complex data
- Clustering for feature detection
- Aid in the search for rare processes

What is SOM?

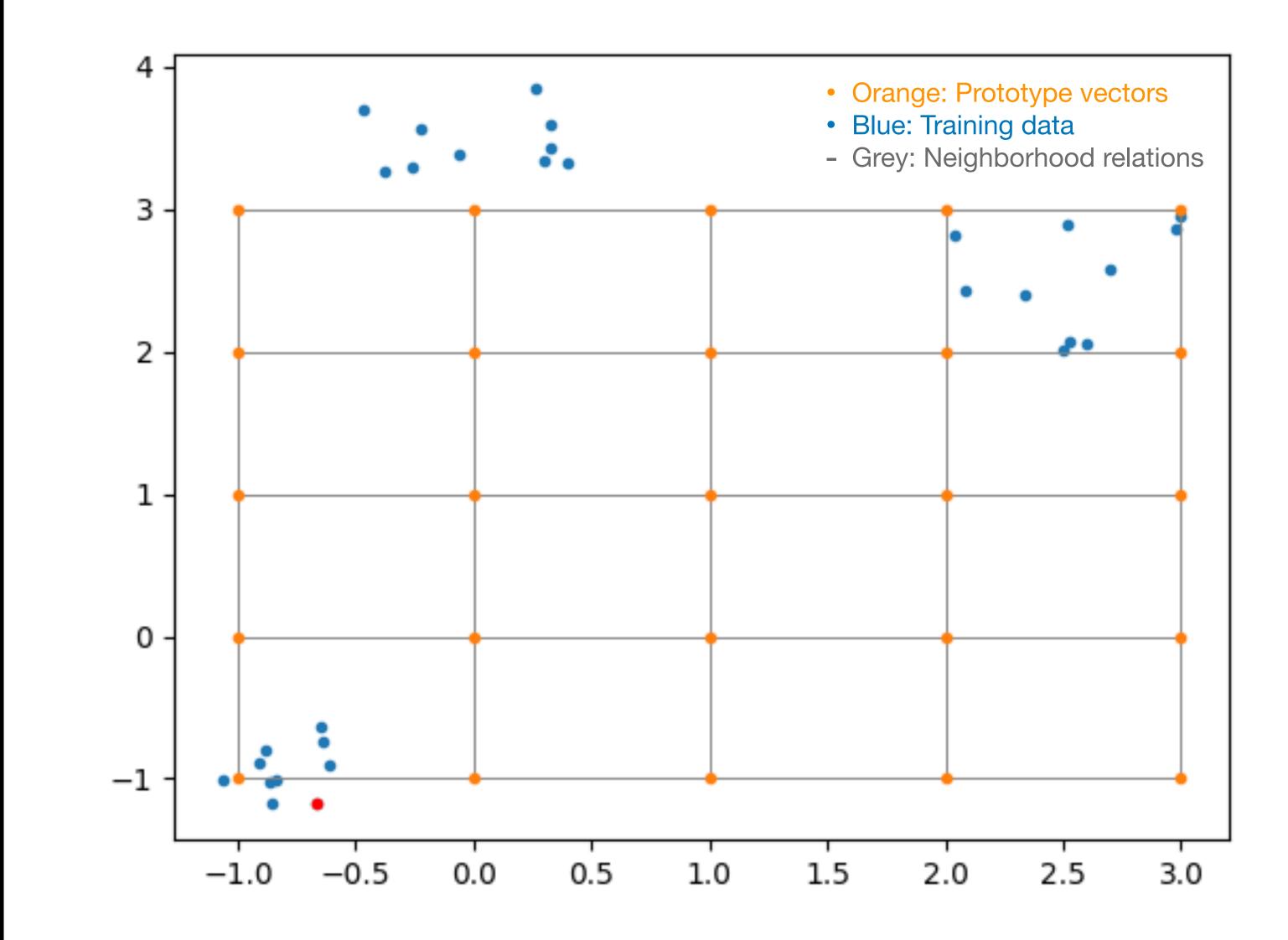
- Input Layer:
 - Size of input vectors
- Output Layer:
 - Layer of neurons organized in a 2 dimensional lattice
- Prototype vector the size of the input for each neuron of output layer
- Topology preservation via ordering of neurons in lattice
- Mapping via distance to Prototype vectors



"Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", Aurelien Geron

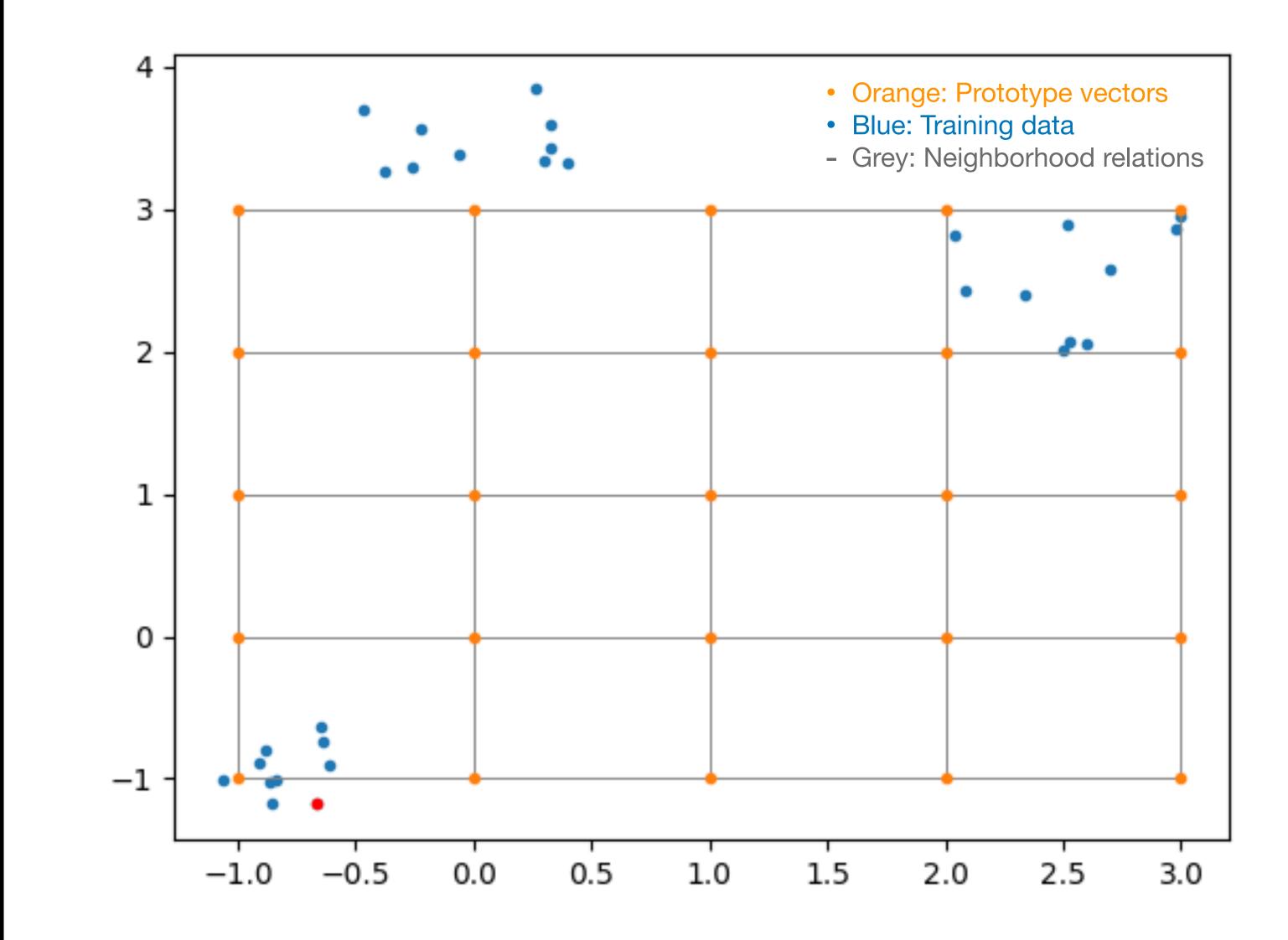
Training

- Goal:
 - Find best prototype vectors
 - Preserve Topology and distance relations
- Method:
 - Competitive + collaborative
 - Neurons compete for inputs + update neighbors [1]



Training

- Goal:
 - Find best prototype vectors
 - Preserve Topology and distance relations
- Method:
 - Competitive + collaborative
 - Neurons compete for inputs + update neighbors [1]



Data Sample **ATLAS Open Data**¹ with $\sqrt{s} = 13 \text{ TeV}$

- Openly available dataset from ATLAS (meant for educational use).
- We chose electron-muon dilepton final states + $N_{iet} \ge 0$ (500k events)
 - Contributions from $t\bar{t}, Z \rightarrow \tau\bar{\tau}, WW$ and Higgs
- Remove 77 events with energies of more then $13 \, \mathrm{TeV}$
- Opposite charge for leptons
- $m_T^{ll} > 70 \,\text{GeV}$, Isolation < 0.1 (applied only after training)
- Quantile transform to pull outliers in

¹http://opendata.atlas.cern/release/2020/documentation/index.html

Mapped out data

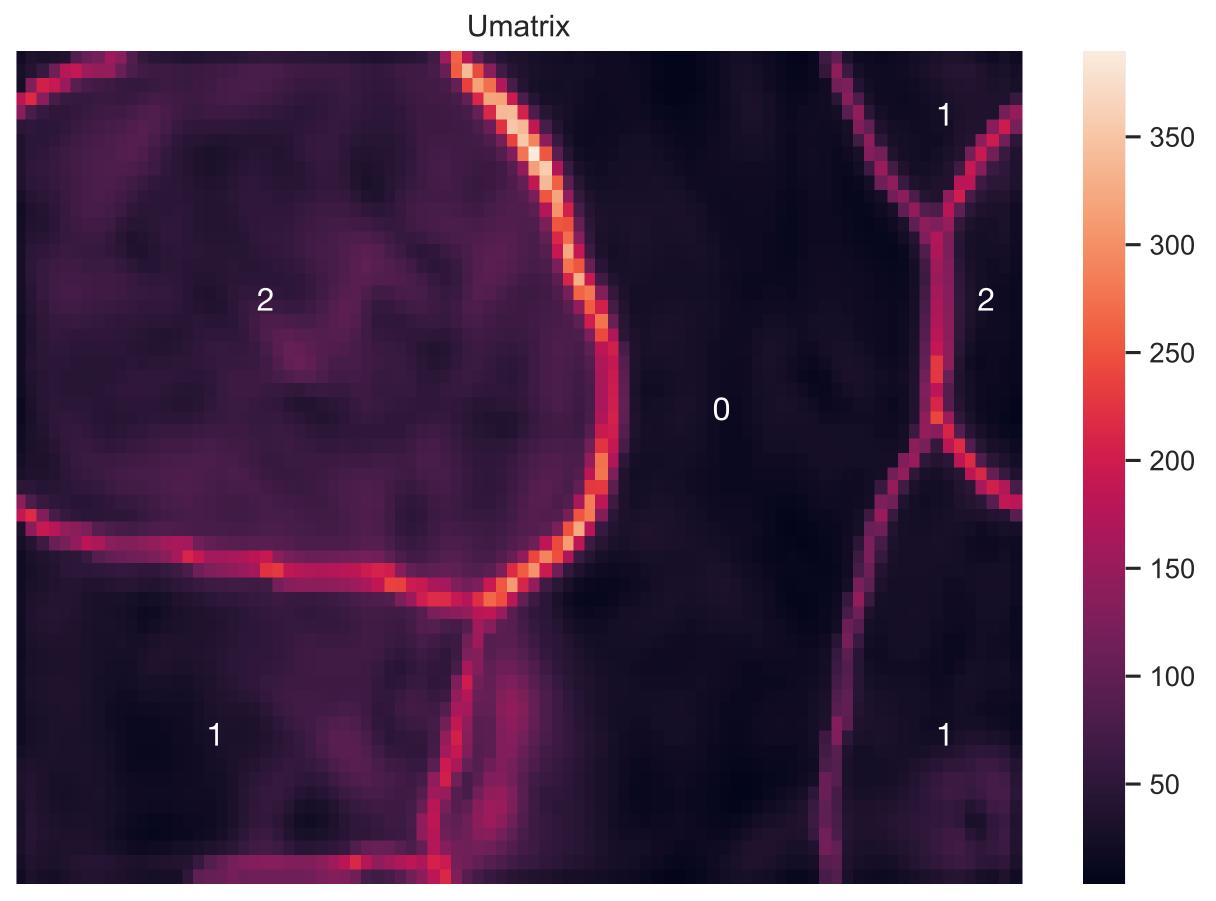
- SOM with 60x90 neurons
- Training with batches of 500 datapoints
- Each pixel represents a single neuron
- z-axis shows events per neuron



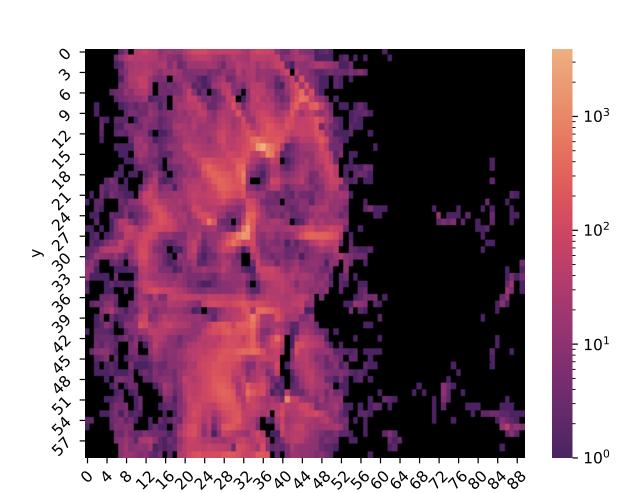
Unified Distance Matrix (U-Matrix)

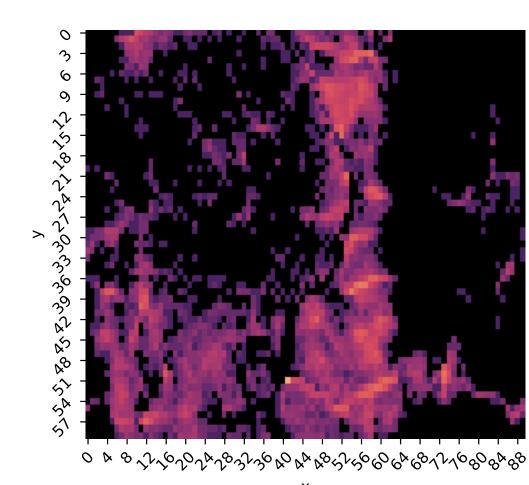
$$u_{ij} = \sum_{k=i-1}^{i+1} \sum_{m=j-1}^{j+1} |w_{km} - w_{ij}|$$

- w_{ab} are weight vectors of the neurons.
- Clusters of different amounts of jets
- 0: No jets
- 1: One jet
- 2:2 or more jets

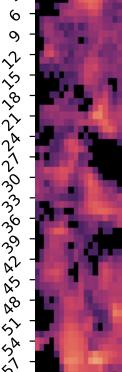


Mapped MC data (m_T^{ll} cut included) Single Top Single W



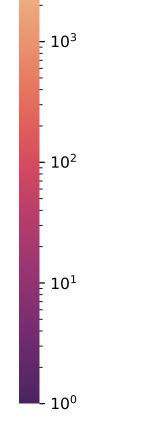


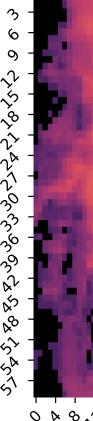
 $H \rightarrow WW^*$

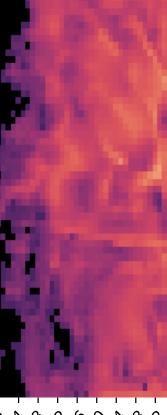


<u>᠈</u> ^ᢘ ^ᢐ ᡪᡝ ᡪᡠ_ᡗ᠔ᢧ</sub>^ᢘᢧᢒ᠈ᡣ᠖ᢘᢘᢘ᠖ᡪᡝᡪ᠖᠖᠖ᢘ᠖ᡐᠬᡝᢈ᠖ᢒᠲᢘᢒ

Х

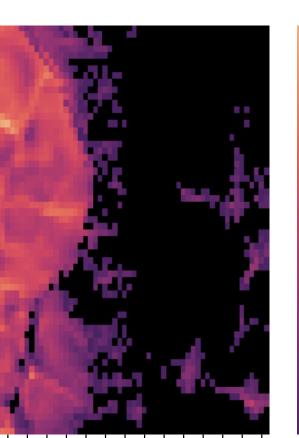


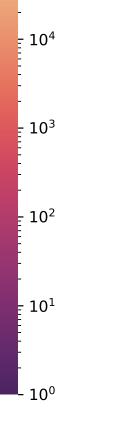


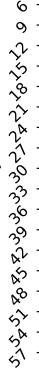


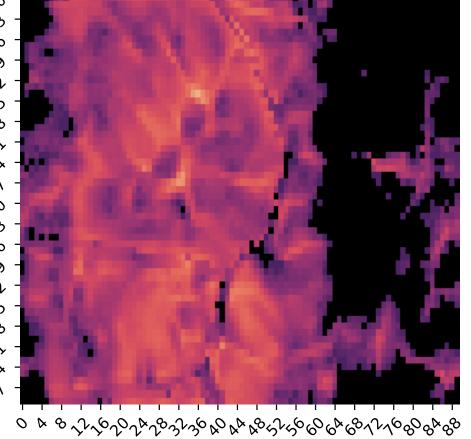
<u>᠈</u> ^ᢘ ᡐ᠊ᠶᡗ᠊ᢌ[©] ᢧ^ᢘᢧᡐ᠋ᡷ᠈ᡷ᠖ᢘᢘᢘᡷ᠋ᢌᡠ᠖᠖ᢘ᠖ᡐᠬᡝᢈ᠖ᢌ᠐ᡖᢘᢐᡷ Х

9







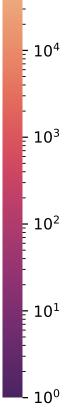


Х

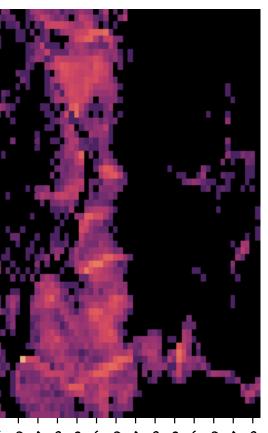
^ᡐ᠂᠋ᠶ᠈᠋ᡐᢧ^ᢕᡗ^ᢘᡗᡐ᠋ᠫᢇ᠉ᡃ᠖ᢘ^ᢘᢘᡐ᠋ᠶᡝᢌᡠ᠖᠖ᢘ᠖ᡐᠬᡝ᠈ᡐ᠋ᢀ᠖ᢘ

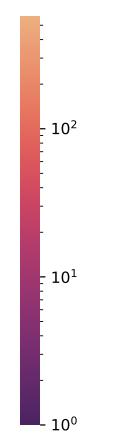
 $W\overline{W}$

 $Z \to \tau \overline{\tau}$



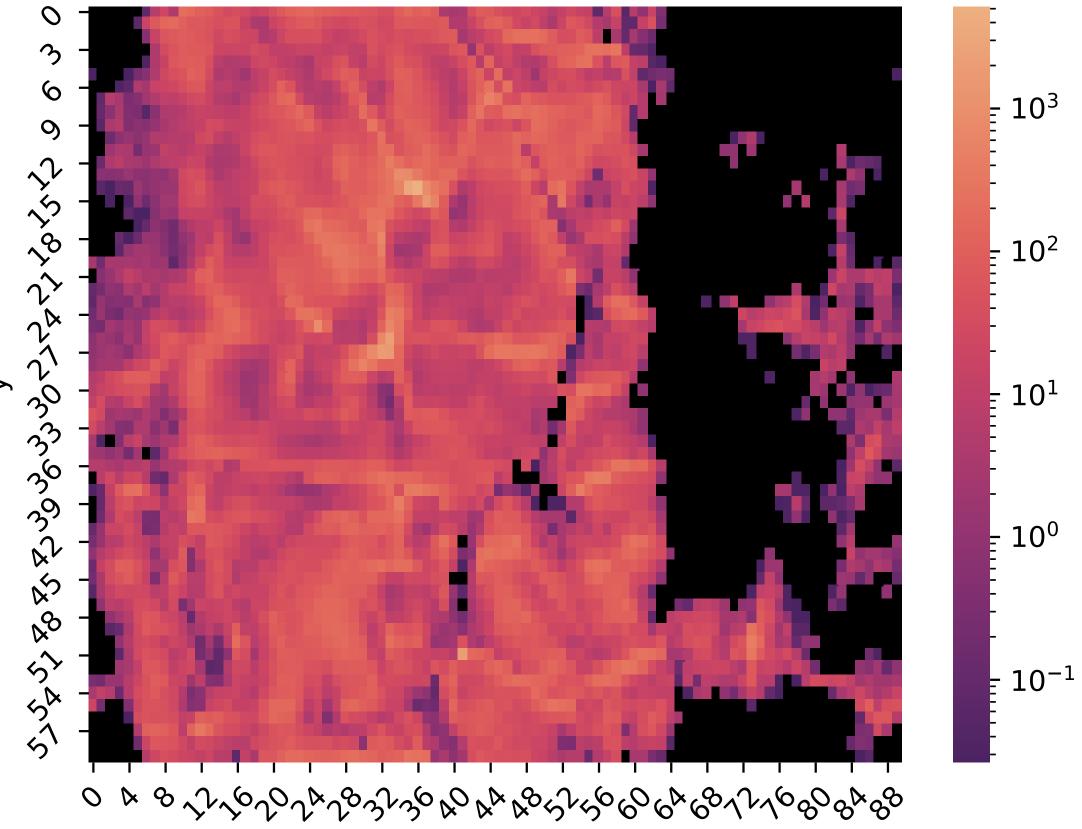
tt





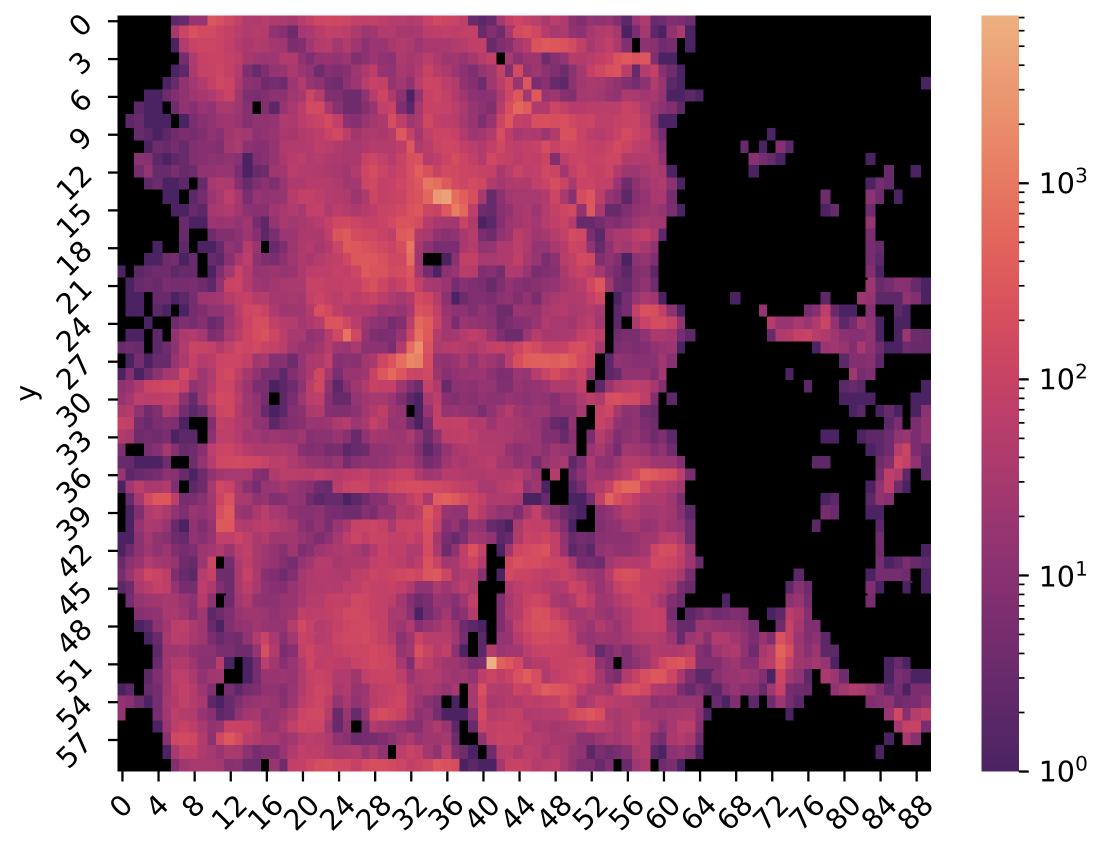
Fit result

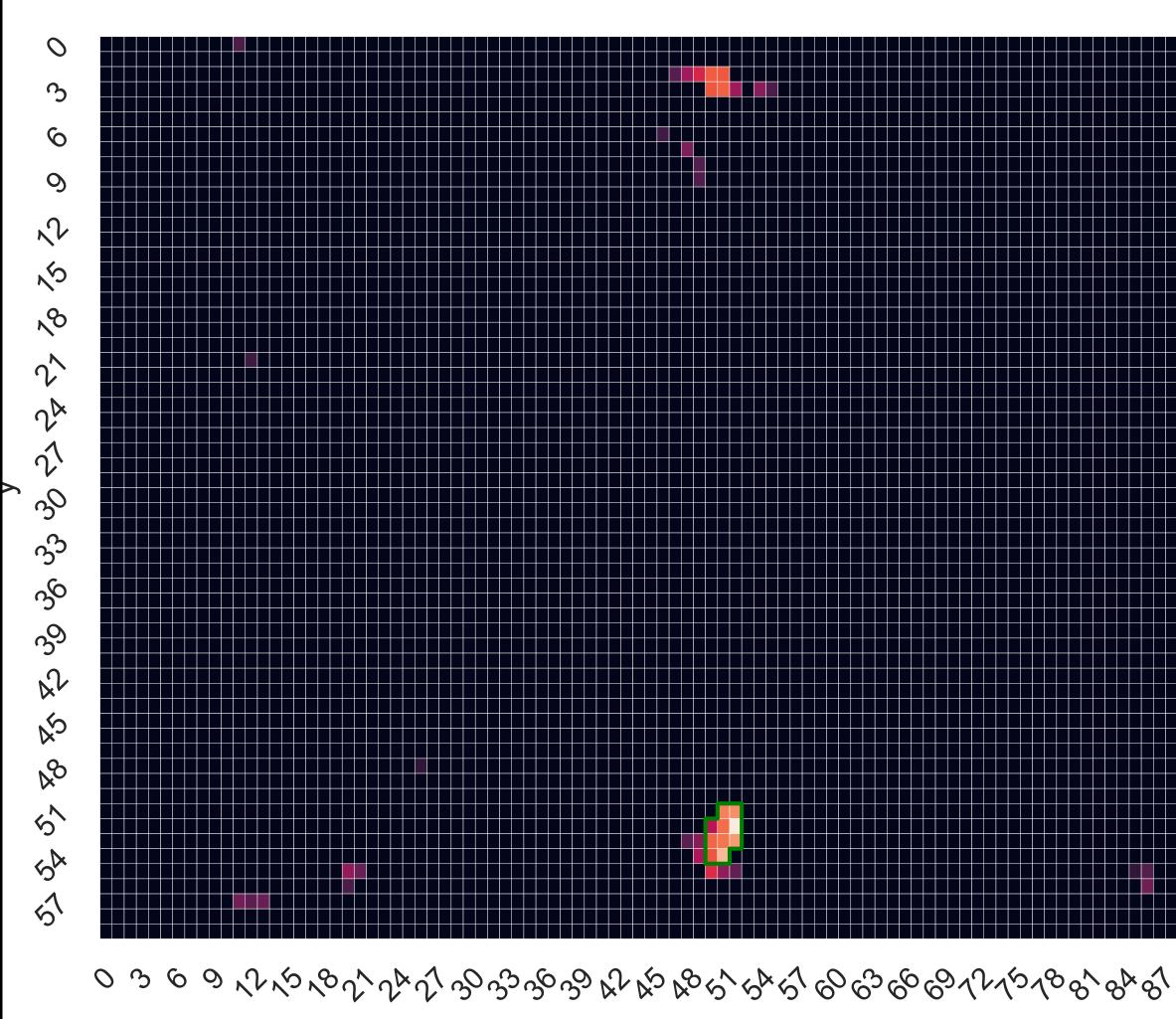
Result for $N_{fit} = N_{data}$ with $\chi^2_{red} = 3.3888$

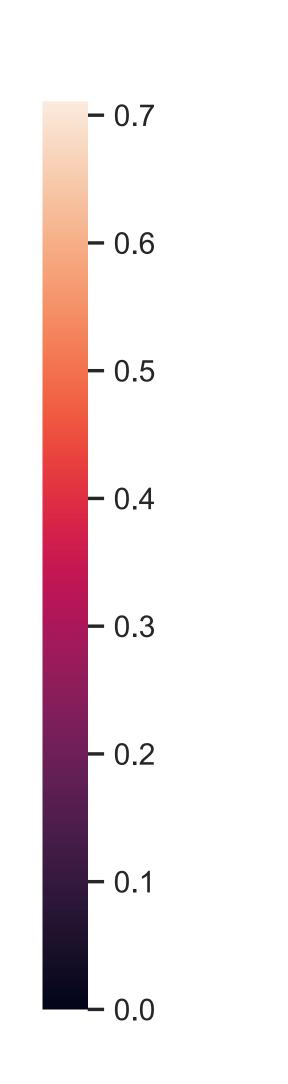


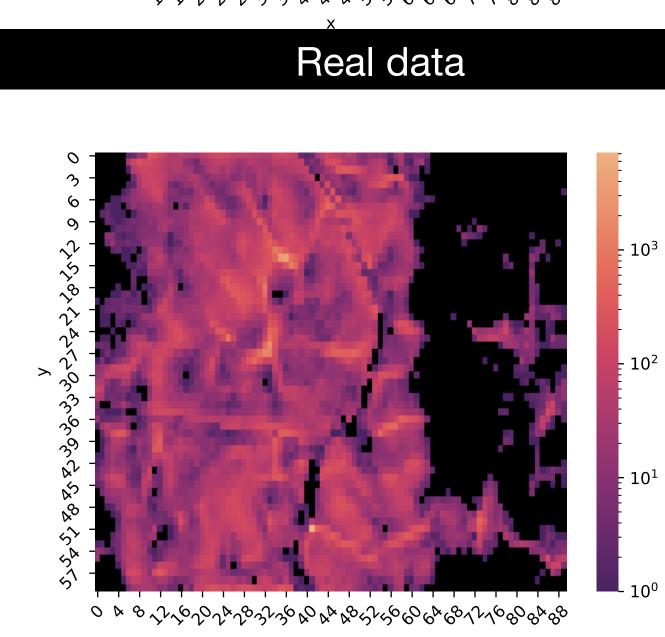
Χ

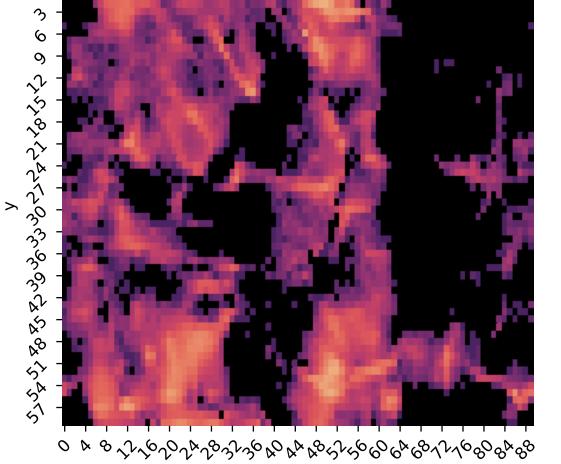
Real data

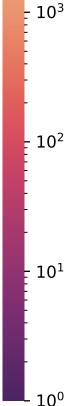




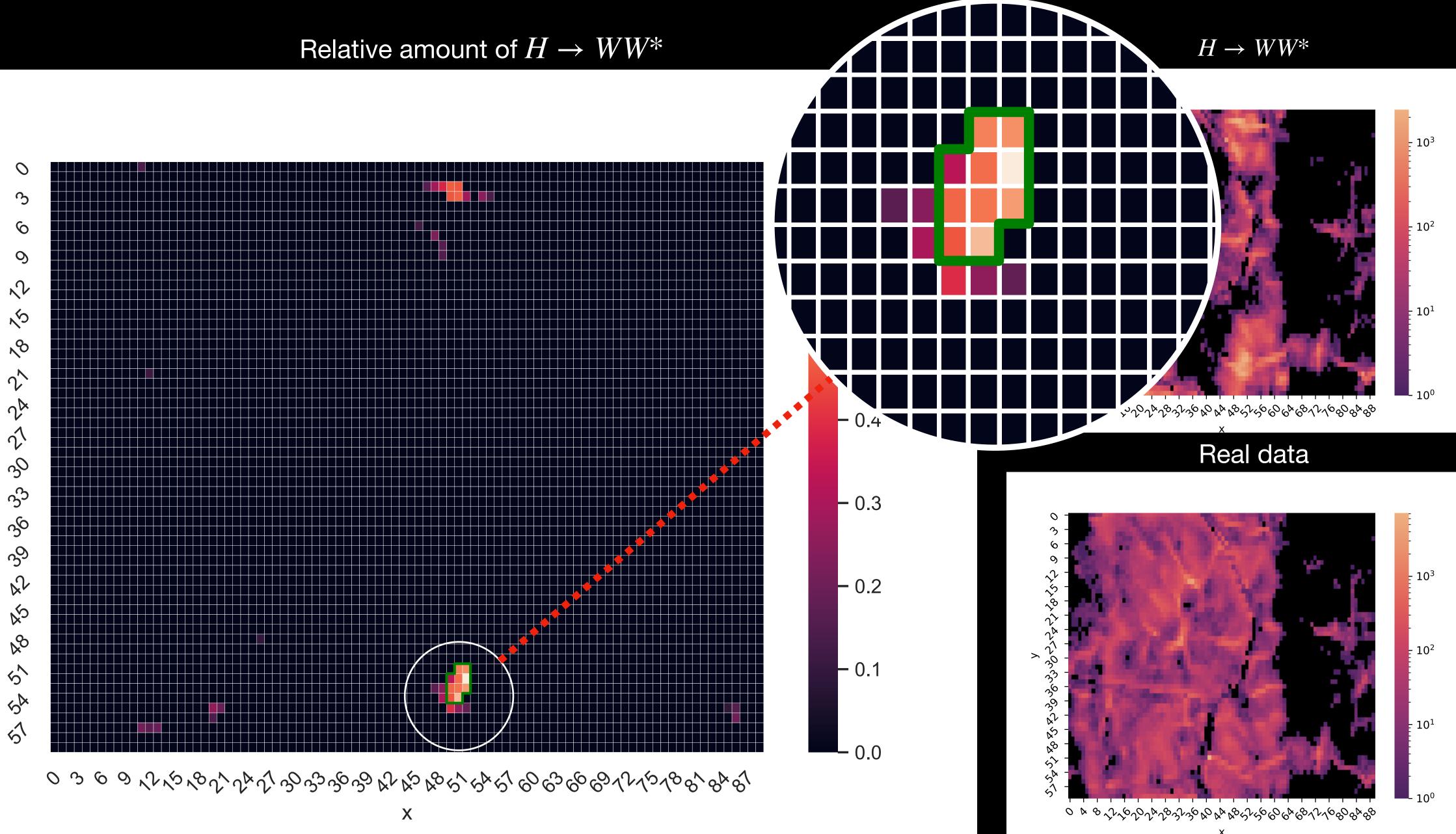








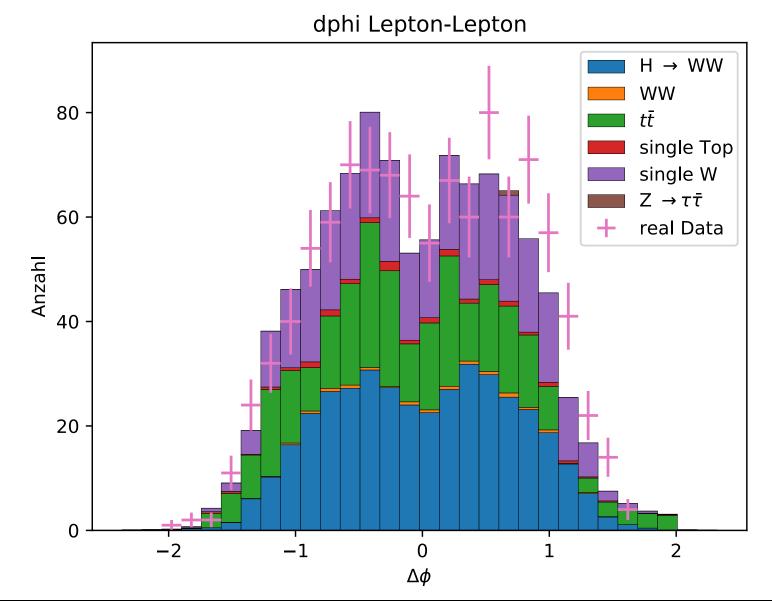
 $H \rightarrow WW^*$

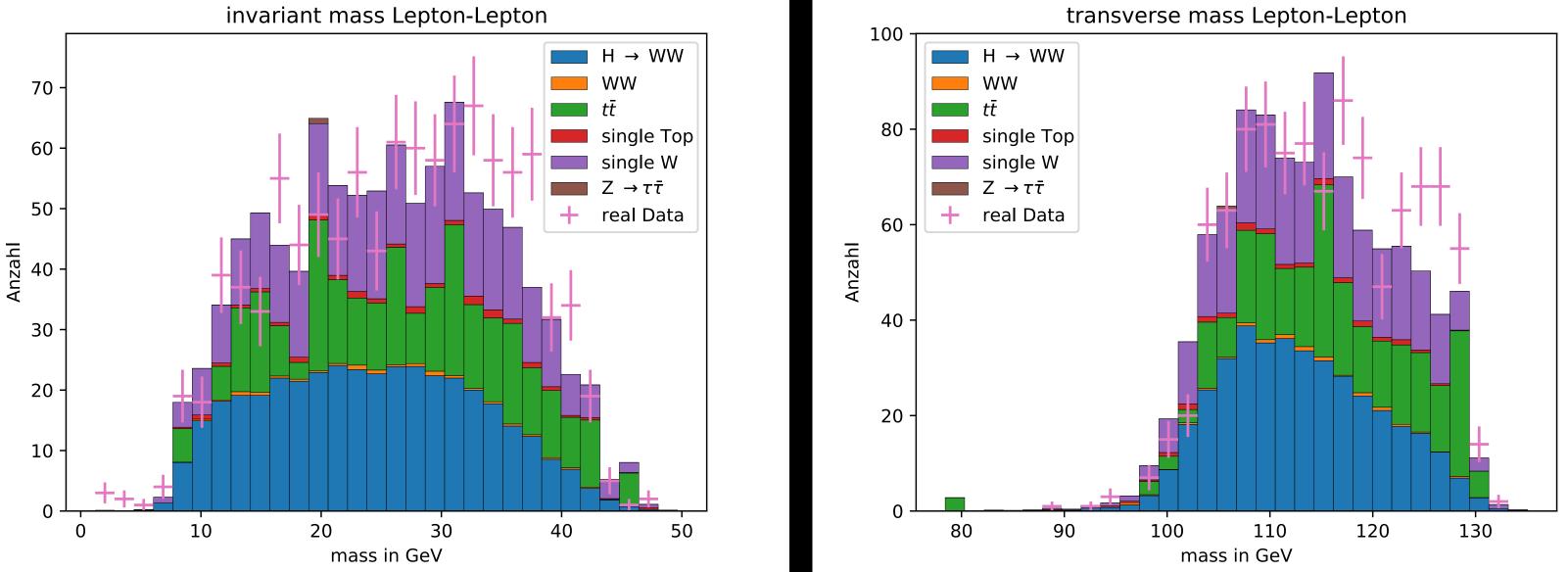


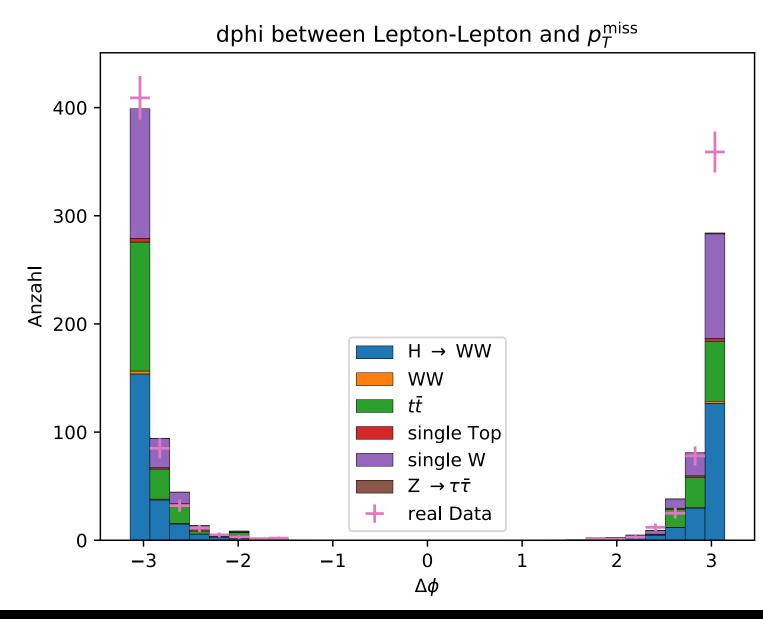
solated data

- 6099 $H \rightarrow WW^*$ events in total
- 396 $H \rightarrow WW^*$ events in subdataset
- Purity of 0.39

$$M_T^{ll} = \sqrt{2 E_T^{ll} E_T^{\text{miss}} (1 - \cos(\theta_{ll,\text{miss}}))}$$







Summary and conclusion

- SOM can create low dimension map of data
- We can find clusters in the data
- SOM can be utilized to perform cuts on the data:
 - We can isolate 396 out of 6099 $H \rightarrow WW^*$ processes with a purity of 0.39

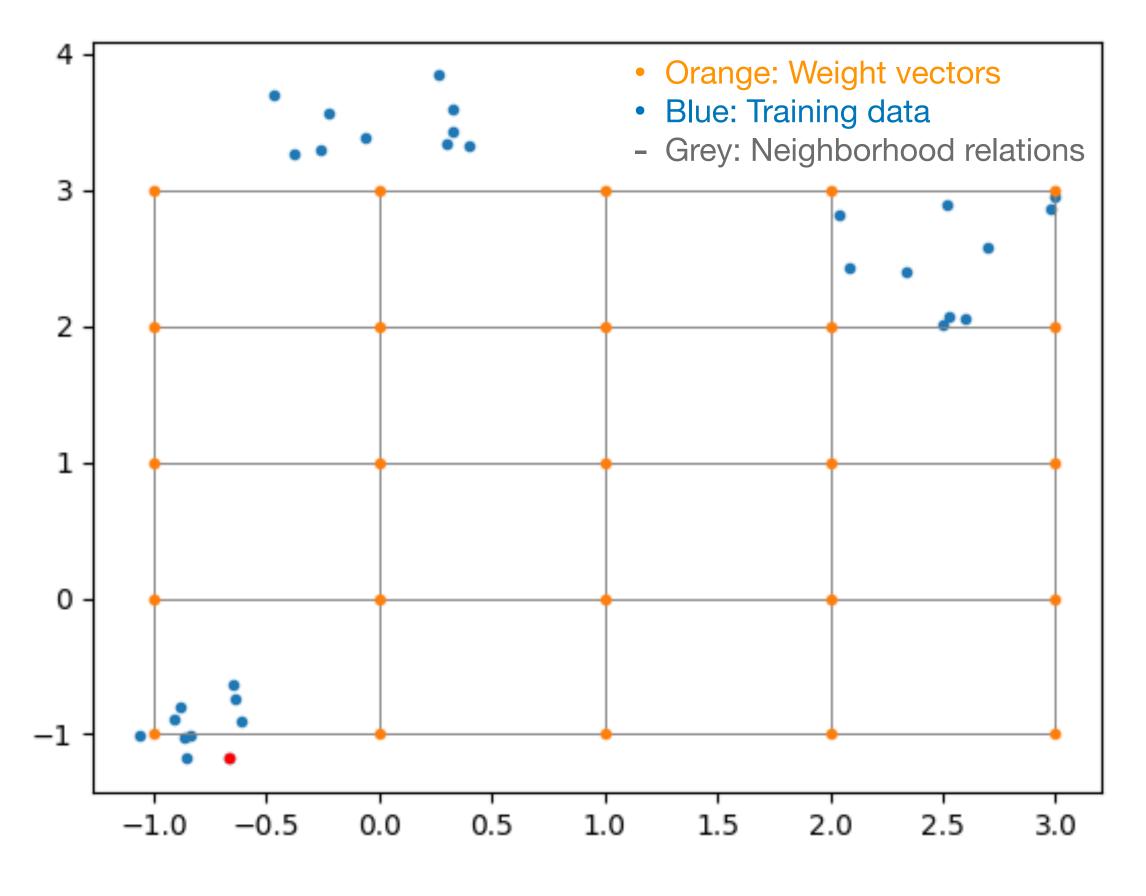
Thank you for listening!

Sources

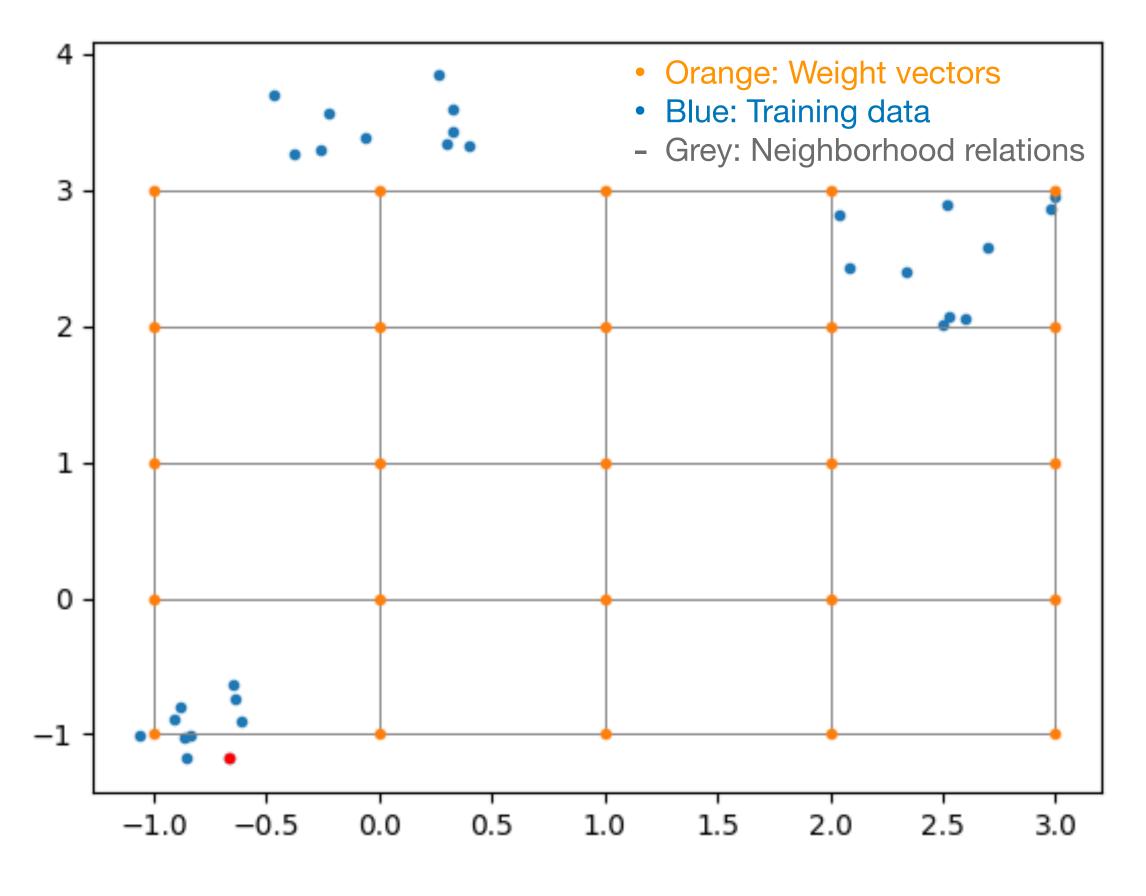
- 1. Kohonen, T. Self-organized formation of topologically correct 10.1007/BF00337288
- 2. Used Code: https://github.com/kai-git-stuff/SOM

feature maps. *Biol. Cybern.* **43,** 59–69 (1982). <u>https://doi.org/</u>

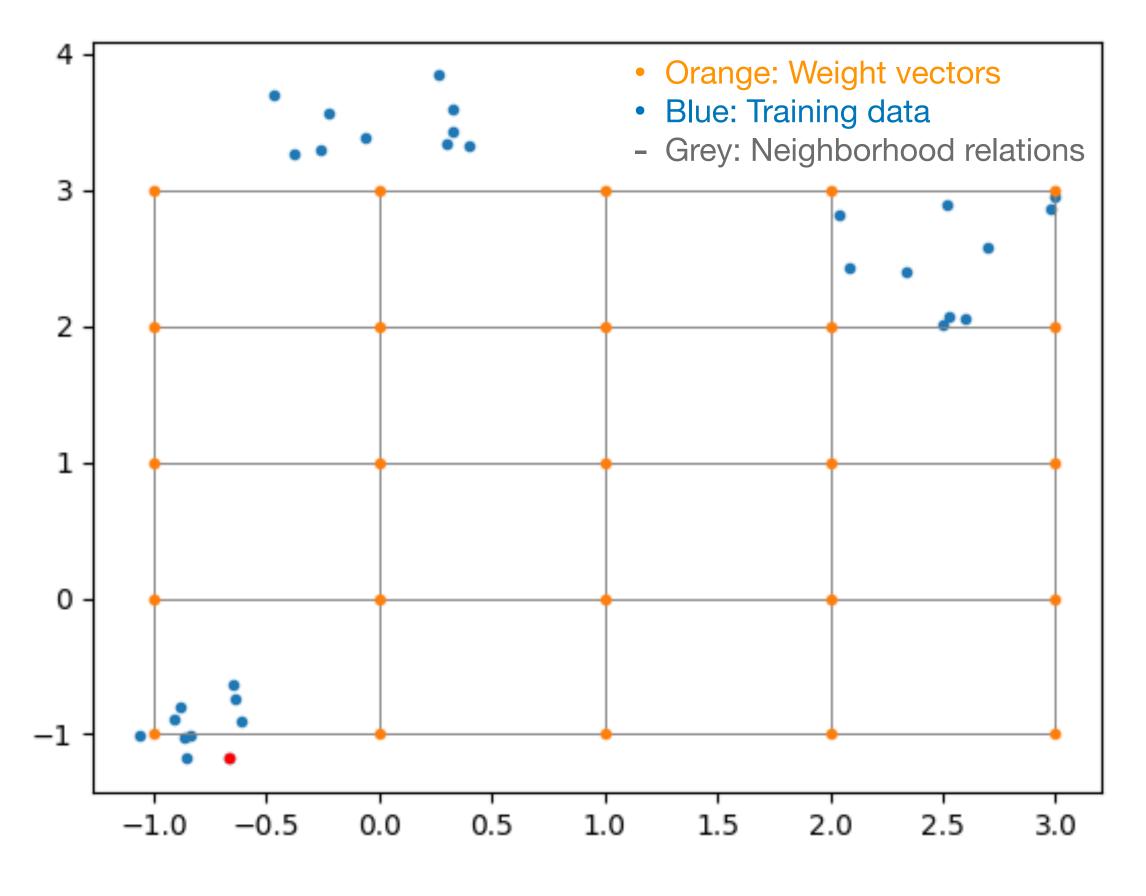
- 1. Initalize weight vectors.
- 2. Select one input vector from training sample v_i .
- 3. Calculate euclidean distance $\|v_j - w_i\|$ to the weight vector of each neuron n_i and choose neuron n_{best} with lowest distance.
- 4. Renew weights depending on n_{best} .
- 5. Repeat steps 2-4 until iteration limit is reached.



- 1. Initalize weight vectors.
- 2. Select one input vector from training sample v_i .
- 3. Calculate euclidean distance $\|v_j - w_i\|$ to the weight vector of each neuron n_i and choose neuron n_{best} with lowest distance.
- 4. Renew weights depending on n_{best} .
- 5. Repeat steps 2-4 until iteration limit is reached.

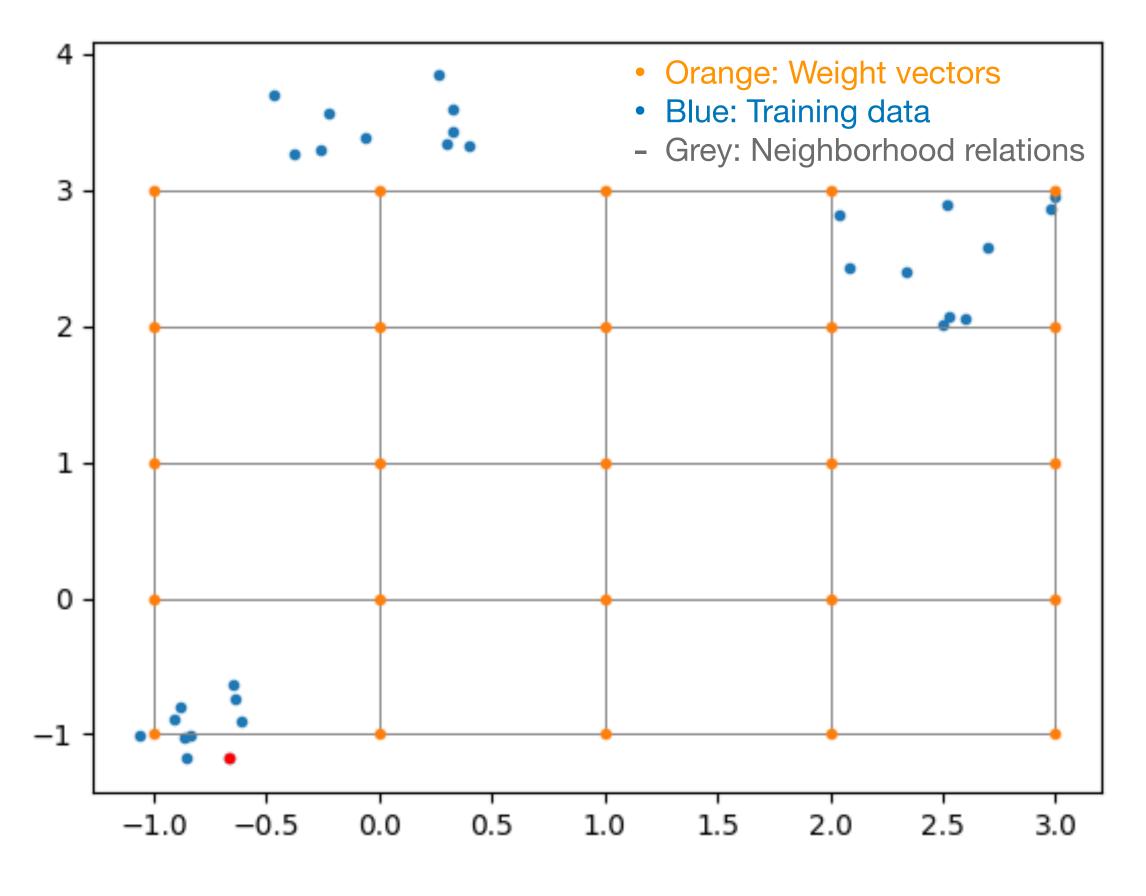


 $w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$



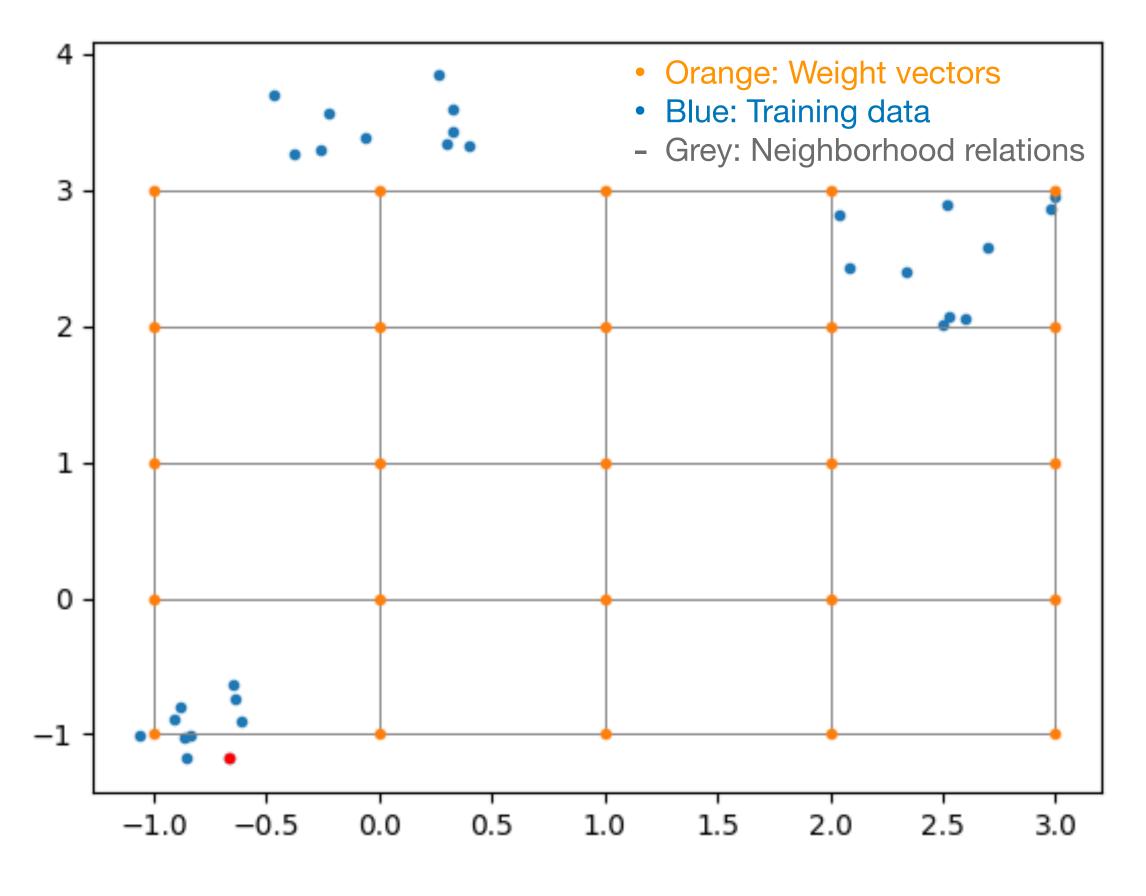
Training algorithm $w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$

• Weights will be moved closer to v_i .



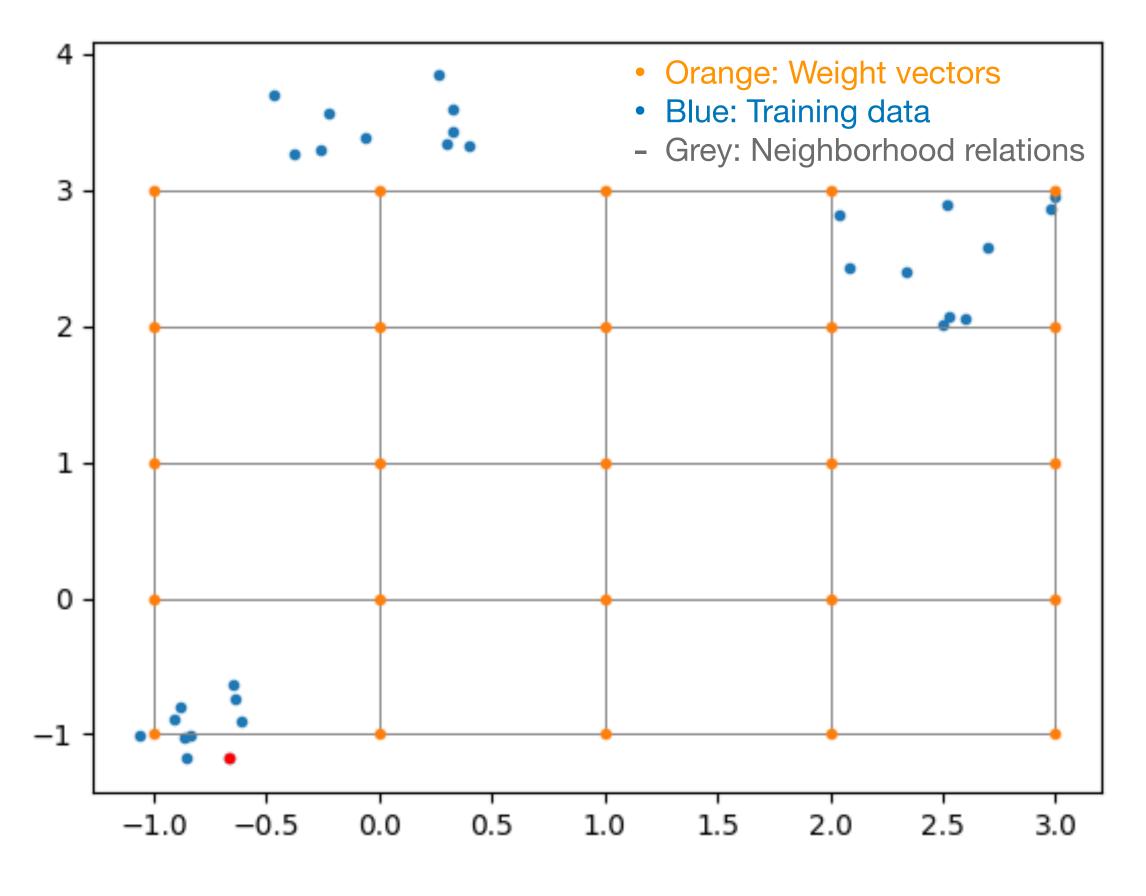
$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.



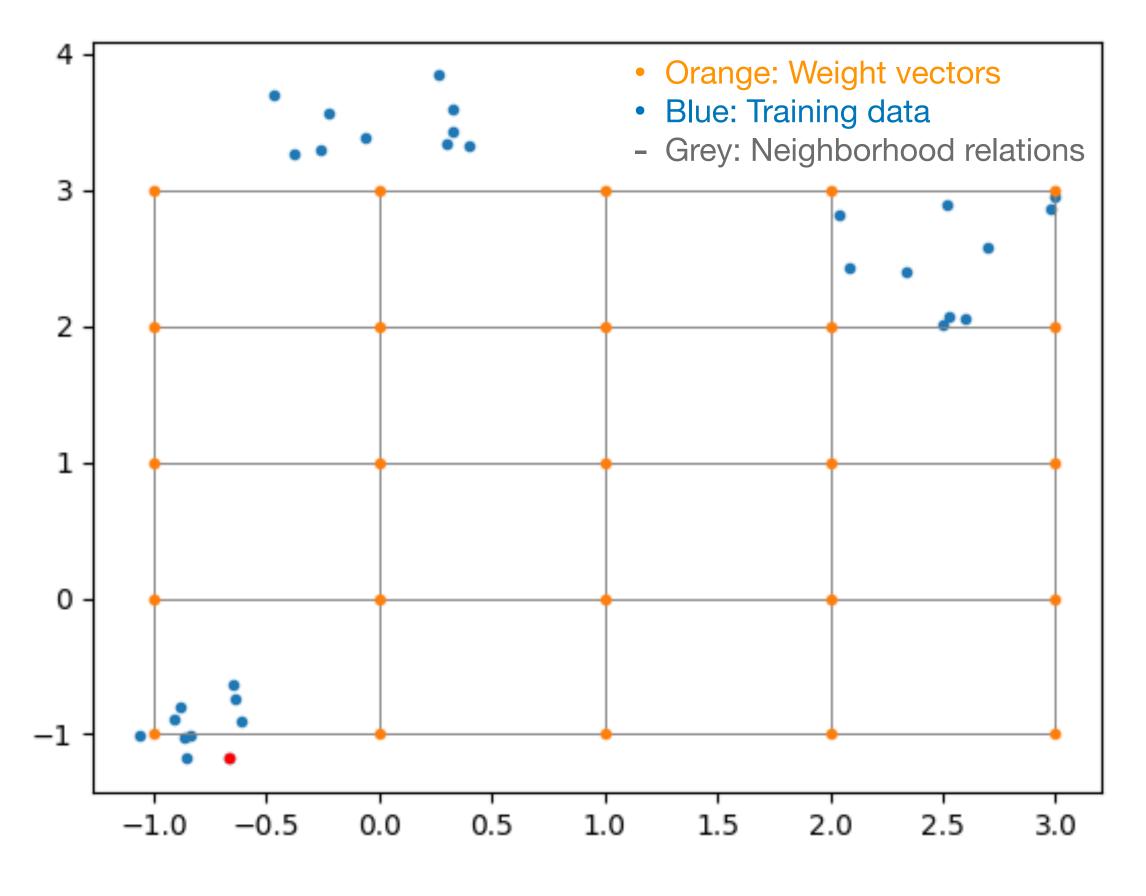
$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.
- Immediate neighbors of $n_{\rm best}$ will be altered the most.



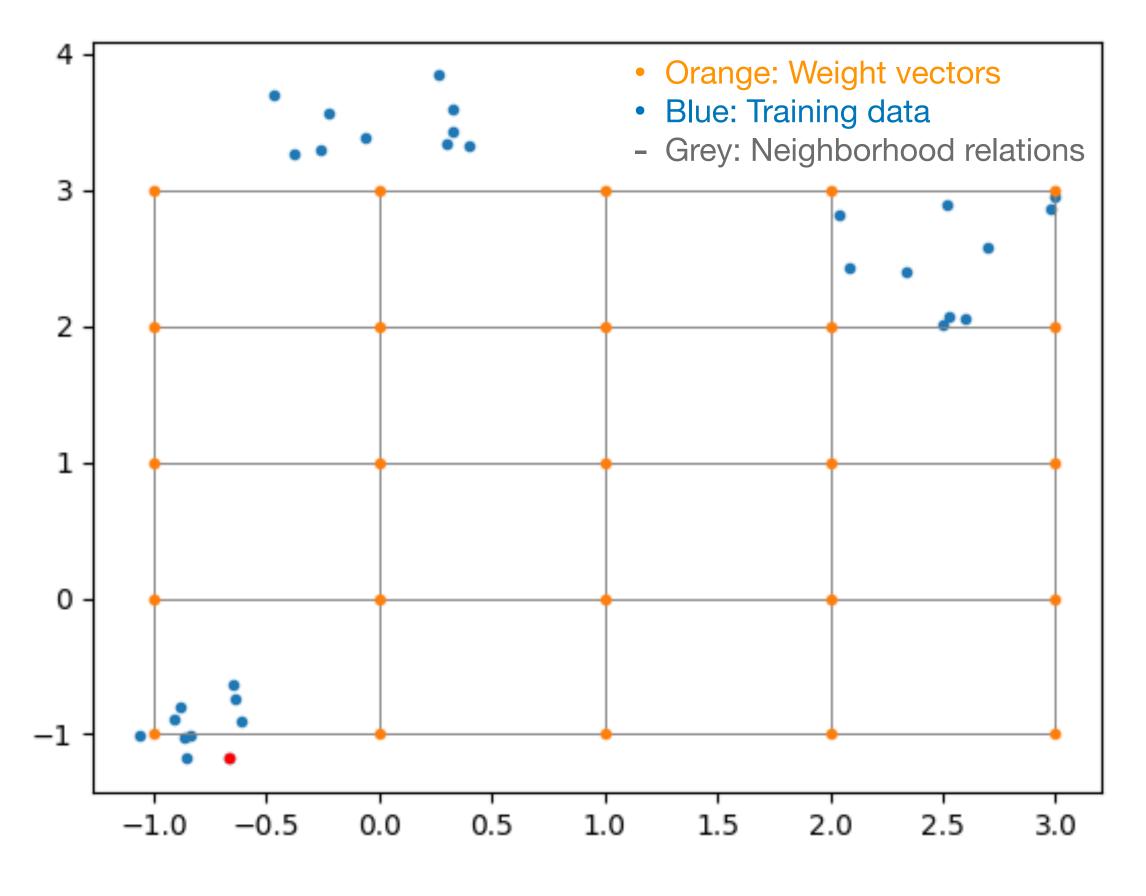
$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.
- Immediate neighbors of n_{best} will be altered the most.
- Distance relations from input space are mostly conserved.



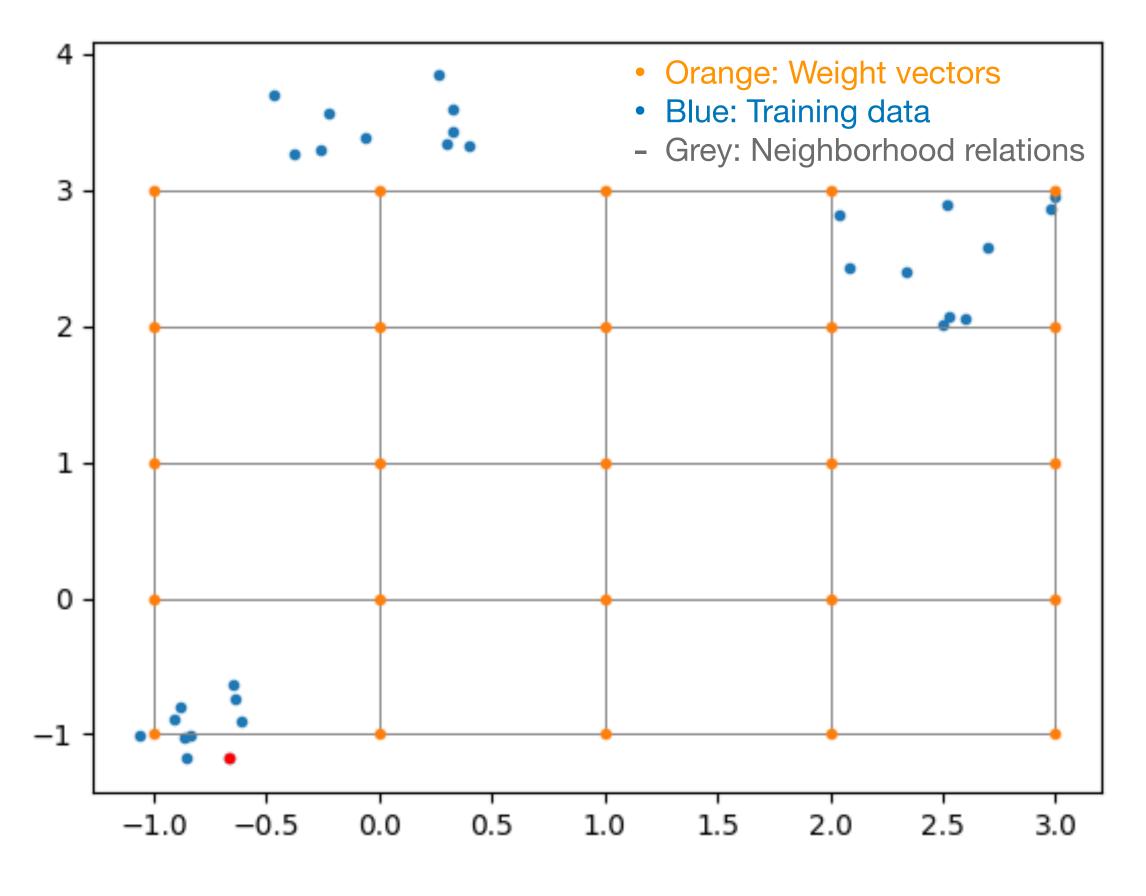
$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.
- Immediate neighbors of n_{best} will be altered the most.
- Distance relations from input space are mostly conserved.
- Clustering is encouraged.



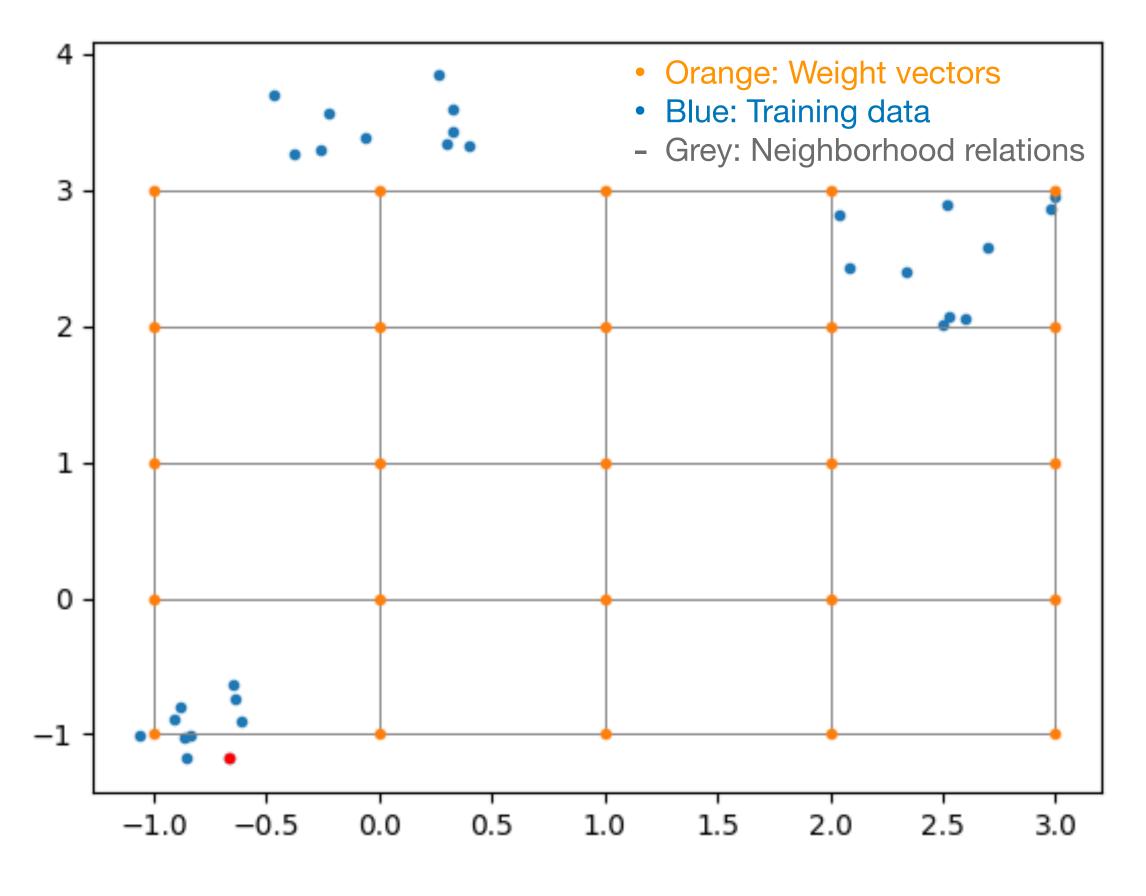
$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.
- Immediate neighbors of $n_{\rm best}$ will be altered the most.
- Distance relations from input space are mostly conserved.
- Clustering is encouraged.
- Convergence through decreasing l and σ .

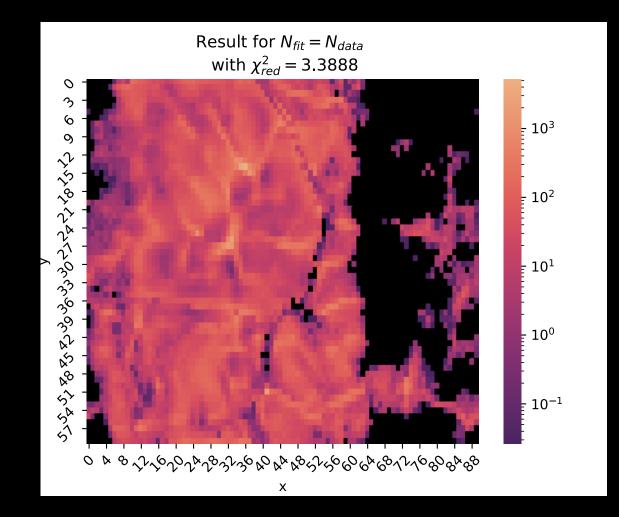


$$w_k^{t+1} = w_k^t + (v_j - w_k^t) \cdot \beta(r_k, \sigma) \cdot l$$

- Weights will be moved closer to v_i .
- $\beta(r, \sigma) = F_{gauss}(r, \sigma)$, *r* distance to n_{best} in the output space.
- Immediate neighbors of n_{best} will be altered the most.
- Distance relations from input space are mostly conserved.
- Clustering is encouraged.
- Convergence through decreasing l and σ .

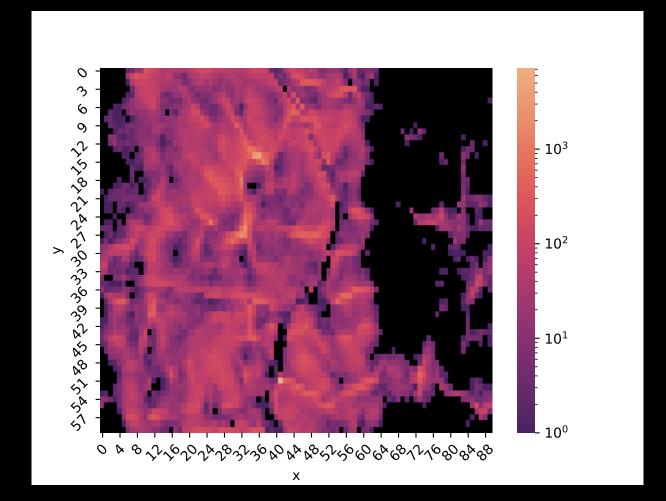


Fit procedure Fitresult



- Map out MC-data on pre-trained SOM
- Normalize histograms
- Fit normalized real data histogram as weighted sum of normalized MC-data

Real data



Fit Results

- Isolation has to be smaller than 0.1 to reduce QCD
- $m_T^{ll} > 70 \,\text{GeV to}$

reduce Drell Yan $auar{ au}$

$$\frac{\lambda}{N_{df}} = 3.39$$

• Bad χ^2 probably due to missing QCD

 $H \to WW^*$ Single top Single W $t\bar{t}$ WW $Z \to \tau \bar{\tau}$

 0.027 ± 0.002 0.039 ± 0.008 0.245 ± 0.003 0.382 ± 0.006 0.189 ± 0.007 0.037 ± 0.002

 0.919 ± 0.027