Super-resolution for calorimetry

F. A. Di Bello, E. Dreyer, S. Ganguly, E. Gross, M. Kado, M. Pitt, L. Santi, J. Shlomi, N. Kakati

Learning to discover 27/04/22

paper

F. A. Di Bello

Intro

• Pflow algorithms exploit the different energy resolution measured in the tracker and calorimeter

The detector model

Pi+/p0 simulated with different energy ranges from 2 to 20 GeV

track pt obtained via smearing:

$$\frac{\sigma(p)}{p} = 5 \times 10^{-4} \times p \ [GeV],$$

F. A. Di Bello

The ML task

Regress the neutral energy for each cell

For CNNs the trick is to cope with images with different sizes, no such problems for graphs

$$L_{event} = \frac{1}{E_{tot}} \sum_{c} E_c (f_t^c - f_d^c)^2$$

F. A. Di Bello

Some of the models

An event display

Topoclusters in white

Compare with traditional Pflow and ML approaches.

Several tried out: CNNs, graph

networks & deep sets (more

suited to cope with cells+track).

Super-resolution

Introduction to super-resolution

• Imaging for camera etc [<u>Ref.</u>, <u>Ref.</u>]

google CNN (2017) for large up-scaling factor

One of the main problem: how to get the HR target?

"Super-resolution usually involves applying prior knowledge about the object and the imaging process [...] in order to produce a single higher-resolution image"

U. and INFN "La Sapienza"

F. A. Di Bello

Application to HEP

• The granularity of the measuring device is identified by the pixel/cells sizes (tracking/calorimetry)

single particle hitting in between

F. A. Di Bello

but how to construct the high-resolution image?

additional features "

Application to HEP

• Profit from MC simulations to build the "super" detector used as the target for training

U. and INFN "La Sapienza"

F. A. Di Bello

Application to HEP

• The granularity of the measuring device is identified by the pixel/cells sizes (tracking/calorimetry)

F. A. Di Bello

Experimental setup

• Going back to 3D in a pi+ and pi0 environment - similar geometry to what presented previously

Low-Resolution

charged + neutral+noise

Low-Resolution - neutral only

second layer: 8x8

High-Resolution - neutral only

second layer: 32x32

F. A. Di Bello

A quiz

• Which one is correct?

F. A. Di Bello

Sapienza"

INFN "La

we minimize each HR cell (s) in a given standard cell (c)

F. A. Di Bello

Results - quiz answer

• Super-resolution at work

F. A. Di Bello

Results 2

- Can we resolve the two photons from the decaying pi0?
- Check by centering the image for each event around the most energetic cell and averaging for all the events
- For a fixed momentum of the p0 (and fiducial cuts to ask the two photons within detector acceptance), a circle representing the secondary photon is expected

truth average image

F. A. Di Bello

 $E_{+}=\frac{m_{\pi}}{2}$

E.

π0

c.o.m.

lab

Fundannan

Ε.

Results 3

U. and INFN "La Sapienza"

F. A. Di Bello

Conclusions

- Simple toy model developed
- Performance evaluated on a simplistic pi0/pi+ overlap
- Results show promising advantages: improving energy and spatial resolution (especially sup-res) of measuring systems
- Could be an Interesting "intermediate" steps toward construction of more complete Pflow algorithms

Results

 $(E_{predicted} - E_{Neutral})/(E_{Neutral})$

Less bias, much improved sigma for all models

F. A. Di Bello

Results 2

• Expect correlation between the radial distance of each standard cell

Learning high-resolution patterns

Asymmetryc tails, the NN tend to smooth a bit the output image

U. and INFN "La Sapienza"

F. A. Di Bello

20

F. A. Di Bello

• For CNN, the same model with minor modifications can be used

• SImilarly for the graphs, even if not shown in an image

F. A. Di Bello

Graph model

F. A. Di Bello

Graph model

https://arxiv.org/pdf/1801.07829.pdf

F. A. Di Bello

Deep sets

https://arxiv.org/pdf/1703.06114.pdf

F. A. Di Bello

$$O\left(\{p_1,\ldots,p_n\}\right)=F\left(\sum_{i=1}^n\Phi\left(p_i\right)\right),$$

26

Results

(2) Position

distance in number of cells for ECAL layer 2

Introduction to Super-resolution

- Lorenzo's master thesis!
- Super-resolution is typically referred to as algorithms used to enhance the resolution of the measuring device
- Outside HEP, it has a large field of application (not a complete list):
 - Super-Resolution microscopy [<u>Ref.</u>] - Molecule -

2014 chemestry nobel: "for the development of superresolved fluorescence microscopy"

• Astronomy [<u>Ref.</u>] - solar granulation -

and industrial application....

U. and INFN "La Sapienza"

F. A. Di Bello

The Geant model

cm

4 cm

Detector	Absorber	Scintillator	Subdetector (Leath)	
FCAL	Lead	Liquid Argon	$= \frac{1}{1} \frac{1}{1} \frac{1}{3} $	
Lent	1.2	4.5	$\begin{array}{c} \text{ECAL1} \left(\begin{array}{c} 5 \ \mathbf{X}_{0} \right) \\ \text{ECAL2} \left(\begin{array}{c} 16 \ \mathbf{X}_{0} \right) \\ \text{ECAL3} \left(\begin{array}{c} 6 \ \mathbf{X}_{0} \right) \end{array} \end{array}$	$\mathbf{X}_0 = 3 \cdot 9$
HCAL	Iron	Plastic organic	HCAL1 (1.5 λ_{int})	
	4.7	1.0	HCAL2 (4.1 λ_{int}) HCAL3 (1.8 λ_{int})	$\lambda_{\rm int} = 17$

Detector Layer	Res. (HG)	Res. (LG)	Noise [MeV] (cf)
ECAL1	64 × 64	32 × 32	13 (4)
ECAL2	32 × 32	8×8	34 (16)
ECAL3	32 × 32	8×8	17 (16)
HCAL1	16×16	8×8	14 (4)
HCAL2	16×16	8×8	8 (4)
HCAL3	8 × 8	8×8	14 (1)

random noise added per cell with gaussian shapes

Pi+/p0 simulated with different energy ranges from 2 to 20 GeV

track pt obtained via smearing:

$$\frac{\sigma(p)}{p} = 5 \times 10^{-4} \times p \ [GeV],$$

F. A. Di Bello

The ML tasks

Regress the neutral energy for each cell

For CNNs the trick is to cope with images with different sizes, no such problems for graphs

$$L_{event} = \frac{1}{E_{tot}} \sum_{c} E_c (f_t^c - f_d^c)^2$$

F. A. Di Bello

30

Atlas Pflow

• Particle flow algorithm (ATLAS like):

• ... what if the two pion energies overlap? Parametric form not really suited to cope with overlapping scenarios

F. A. Di Bello