Efficiency Parameterization with Neural Networks

(nilotpal.kakati@cern.ch)

C. Badiali, F. A. Di Bello, G. Frattari, E. Gross, V. Ippolito, M. Kado, N. Kakati, J. Shlomi

Al and Physics Conference 28 April, 2022

Computing and Software for Big Science (2021) 5:14 https://doi.org/10.1007/s41781-021-00059-x

ORIGINAL ARTICLE

Efficiency Parameterization with Neural Networks

Francesco Armando Di Bello^{1,2} · Jonathan Shlomi³ · Chiara Badiali^{1,2} · Guglielmo Frattari^{1,2} · Eilam Gross³ · Valerio Ippolito² · Marumi Kado^{1,2,4}

Received: 17 May 2020 / Accepted: 28 April 2021 / Published online: 28 May 2021 © The Author(s) 2021

Abstract

Multidimensional efficiency maps are commonly used in high-energy physics experiments to mitigate the limitations in the generation of large samples of simulated events. Binned efficiency maps are however strongly limited by statistics. We propose a neural network approach to learn ratios of local densities to estimate in an optimal fashion efficiencies as a function of a set of parameters. Graph neural network techniques are used to account for the high dimensional correlations between different physics objects in the event. We show in a specific toy model how this method is applicable to produce accurate multidimensional efficiency maps for heavy-flavor tagging classifiers in HEP experiments, including for processes on which it was not trained.

Weizmann Institute of Science

https://arxiv.org/abs/2004.02665v2

Introduction

- \bullet simulations are quite inclusive
- Example: B-jet tagging \bullet
 - We have events with jets
 - Requirement: Events with two b-jets
- Trivial solution: Apply a b-Jet tagger \bullet

- Issue: Low statistics when rejection rate is high \bullet
- Alternate solution: Event Weighting Technique \bullet

Weizmann Institute of Science

We often care about events occurring in a very restricted regions of phase space, but the MC

Tagger f(x) B-Tagged/not B-tagged

Event Weighting

Efficiency Parameterization

- X: ~30 variables (mostly track vars)
- Distribution of 'X' depends on another set of variables ' θ ' (jet pt, eta, phi etc.) lacksquare
- Goal : To know the efficiency, $\epsilon(\theta)$ of the classifier •

$$\epsilon(\theta) = \frac{N(tagged \mid \theta)}{N(\theta)}$$

What constitutes θ ?

- Typically, ' θ ' is known only partially
- For b-jet tagging in ATLAS \bullet

 p_T and η are the most dominant components of θ .

- Common Practice: binned efficiency maps (p_T, η) \bullet
- Fails to capture the complete picture

Example efficiency map

Limitations of the binned maps

The paper proposes an NN based approach to address these issues

- lssues -
 - θ is known partially
 - Dimension of θ is large
 - Dimension of θ is not constant (influence of neighboring jet)
- Histogram based maps cannot capture the full lacksquaredependencies of the classifier efficiency

The NN approach (background)

- Density Ratio Estimation
- Two distributions $p(\theta)$ and $q(\theta)$
 - $p(\theta)$ Distribution of tagged jets
 - $q(\theta)$ Distribution of non-tagged jets
- If we train a binary classifier $g(\theta)$, it converges to -

•
$$g(\theta) \approx \frac{p(\theta)}{p(\theta) + q(\theta)} = \epsilon(\theta) = \text{efficiency}$$

Weizmann Institute of Science

 $\theta = jet p_T$

The NN approach

- " θ is not fully known "
- We want the network to - \bullet
 - Infer θ during training
 - Consider the jet-jet dependency ullet
 - Work with variable number of jets in an event lacksquare
 - Be permutation invariant wrt the jets

-> Graph Neural Network (GNN)

Weizmann Institute of Science

Event Representation

A node

 $(p_T, \eta, \phi, flavor, ...)$

- Set of node features = main ingredients of θ . lacksquare
- The network will try to construct full θ , from these inputs (hidden representation) \bullet

The NN architecture

- lacksquare
- Pass the jets through a binary classifier \rightarrow get the efficiencies \bullet
- The GNN consists of multiple GNN blocks (MPNNs) \bullet

Weizmann Institute of Science

Construct a high dimensional representation of the jets, which is also aware of the neighborhood (θ)

A GNN block

Efficiency of a jet is conditioned on the near-by jets

Case Study

- Toy dataset emulating W/Z+jets sample
- True efficiency of each jet is calculated as-

$$\epsilon_{jet_{i}} = \epsilon_{f_{i}}(p_{T}, \eta) \cdot \prod_{i \in i_{j}} \hat{\epsilon}_{ij} (\Delta R_{ij}, Correction factor)$$

emulate proximity effect

- B-tagging emulation
 - Generate a random number, S_i in [0,1]
 - If $S_i < \epsilon_i$, jet_i is tagged

In reality we don't know this true efficiency and the NN is supposed to learn this

Weizmann Institute of Science

Training

- Targets = 1/0 (jet is tagged/not tagger)
- BCE loss ullet
- Prediction converges to (Density ratio estimation) \bullet

$$pred(\theta)_{i} = \frac{p_{tag}(\theta)_{i}}{p_{tag}(\theta)_{i} + p_{non-tag}(\theta)_{i}} = efficiency(\theta)_{i}$$

 $(\theta)_i$, for jet i

Result I

Event is tagged if the leading jet is b-tagged; event weight = efficiency of leading jet \bullet

We know that dR is also a part of θ , and the network lacksquarelearns it during training

Weizmann Institute of Science

Result II

Event is tagged if the leading and sub-leading jet are b-tagged. Event efficiency = $\epsilon_1 \epsilon_2$ \bullet

Weizmann institute of Science

Generalization

- *p*(*X*) is different for both the samples
- But $p(X|\theta)$ is same for both
- Parametrizing the efficiency in theta with sample 1 should also work in sample 2

Alternative sample

- Training sample emulating W/Z + jets \bullet
- Alternative sample emulating boosted scalar decay with exactly two jets \bullet
- The NN is NOT trained with the alternative sample \bullet

Result III - Generalisation

• Evaluating the NN in the alternative sample

Weizmann Institute of Science

Statistical uncertainty estimation

- Ensemble training to stabilize the model
- Bootstrapping for statistical uncertainty estimation

- Computationally expensive!
- In practice (from studies in ATLAS), quite small uncertainties, often can be neglected

Current work

- Results from ATLAS specific studies are very promising
- Significant gain in statistics while maintaining good closure with direct tagging
- Uoto 120x more events!! \bullet
- Helps in lacksquare
 - Signal vs Background discrimination lacksquare
 - Alternative sample studies \bullet
 - Final fit ullet
 - public plots coming soon...

Summary

- We discussed an NN based approach for efficiency estimation in a multidimensional space \bullet
- Advantages - \bullet
 - \bullet binned maps
 - Automatically infers theta during training
 - Learns the jet-jet dependency \bullet
 - Generalize well on sample not used for training \bullet
- \bullet
- Results in ATLAS look very promising (public plots will be available soon) \bullet

Weizmann Institute of Science

Better Efficiency estimation, as it can account for much larger number of parameters than the

The approach can be used in other studies with a similar setup - eg. fake electron identification

Weizmann Institute of Science

Thank you for listening...

Weizmann Institute of Science

Backup

Uncertainty Estimation

- For histogram, we have limited statistics for each bin
- That helps us construct a Confidence Interval around the estimated efficiency
- Region with less data -> more uncertainty
- How to estimate the uncertainty of the NN estimator??
 -> Bootstrapping
- We would also like to stabilize the model first

Uncertainty Estimation

Training uncertainty

- Repeated training won't result in the same trained model
- Solution
 - Model = Ensemble of NN
 - Model prediction = ensemble prediction avg

during bootstrapping by using ensemble training

Weizmann Institute of Science

Model Uncertainty cannot be decoupled from the stat uncertainty. So we try to reduce its impact

Bootstrapping

Weizmann Institute of Science

Comments about uncertainty estimation

- Quite expensive!
- In practice (from studies in ATLAS), the trainings are quite stable
- Quite small, often can be neglected
- Nevertheless, this provides us a welldefined procedure to obtain them

Case Study - Dataset generation

- "Training sample" emulates W/Z+jets events
- number of jets in an event and the jet kinematics (p_T, η, ϕ) are sampled from a distribution \bullet
- The distribution of angular separation among jets (ΔR) also follows a predefined distribution \bullet

Weizmann Institute of Science

Let's ignore the alternative sample for now We'll come to it later

Case Study - Flavor tagging

• True efficiency each jet is calculated as-

$$\epsilon_{jet_i} = \epsilon_{f_i}(p_T, \eta) \cdot \prod_{ij} \hat{\epsilon}_{ij} (\Delta R_{ij}, Correction factories)$$

- B-tagging emulation
 - Generate a random number, S_i in [0,1]
 - If $S_i < \epsilon_i$, jet_i is tagged

• In reality we don't know this true efficiency and the NN is supposed to learn this

Training

- Targets = 1/0 (jet is tagged/not tagger)
- BCE loss ullet
- Prediction converges to (Density ratio estimation) \bullet

$$pred(\theta)_{i} = \frac{p_{tag}(\theta)_{i}}{p_{tag}(\theta)_{i} + p_{non-tag}(\theta)_{i}} = efficiency(\theta)_{i}$$

 $(\theta)_i$, for jet i

Binned maps (for comparison)

- Histogram based efficiency maps were constructed from the jets
- Binned in pT and η \bullet
- Goal to mimic how we would address the issue with the "traditional" binned approach

Comments about theta

- Efficiency can be improved by including -
 - The pileup info
 - For b and c jets, the truth hadron info
 - Quark vs gluon light jets