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Introduction

• We often care about events occurring in a very restricted regions of phase space, but the MC 
simulations are quite inclusive

• Example: B-jet tagging
• We have events with jets
• Requirement: Events with two b-jets

• Trivial solution: Apply a b-Jet tagger

3

Tagger f(x)Jet (X) B-Tagged/not B-tagged
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• Issue: Low statistics when rejection rate is high

• Alternate solution: Event Weighting Technique



Event Weighting
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Efficiency Parameterization

5

Tagger f(x)Jet (X) Tagged/not tagged
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• X: ~30 variables (mostly track vars)

• Distribution of ‘X’ depends on another set of variables ‘ ’ (jet pt, eta, phi etc.)

• Goal : To know the efficiency,  of the classifier

θ

ϵ(θ)

ϵ(θ) =
N(tagged |θ)

N(θ)



What constitutes  ?θ
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• Typically, ‘ ’ is known only partially

• For b-jet tagging in ATLAS

 and  are the most dominant components of .

• Common Practice: binned efficiency maps ( )

• Fails to capture the complete picture

θ

pT η θ

pT, η

Example efficiency map



Limitations of the binned maps
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• Issues -

•  is known partially

• Dimension of  is large

• Dimension of  is not constant 
(influence of neighboring jet)

• Histogram based maps cannot capture the full 
dependencies of the classifier efficiency

θ

θ

θ

(pT, eta, phi, flav)

(pT, eta, phi, flav)

• The paper proposes an NN based approach to address these issues



The NN approach (background)
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• Density Ratio Estimation

• Two distributions -  and 

•   - Distribution of tagged jets

•   - Distribution of non-tagged jets

• If we train a binary classifier , it converges to -

•  = efficiency

p(θ) q(θ)

p(θ)

q(θ)

g(θ)

g(θ) ≈
p(θ)

p(θ) + q(θ)
= ϵ(θ)

p(θ)
q(θ)

θ = jet pT

p(θ)
p(θ) + q(θ)

= ϵ(θ)

θ = jet pT



The NN approach
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• “  is not fully known “

• We want the network to -

• Infer  during training

• Consider the jet-jet dependency
• Work with variable number of jets in an event
• Be permutation invariant wrt the jets

-> Graph Neural Network (GNN)

θ

θ



Event Representation
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( , flavor, … )pT, η, ϕ

Jet ( , flavor, … )pT, η, ϕ

( , flavor, … )pT, η, ϕ

( , flavor, … )pT, η, ϕ( , flavor, … )pT, η, ϕ

Jet

JetJet

Jet

A node

The graph

• Set of node features = main ingredients of .
• The network will try to construct full , from these inputs (hidden representation)

θ

θ



The NN architecture
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• Construct a high dimensional representation of the jets, which is also aware of the neighborhood ( )
• Pass the jets through a binary classifier  get the efficiencies

• The GNN consists of multiple GNN blocks (MPNNs)

θ

→

Efficiency NetJet2 Eff 2GNN

Jet1 Eff 1

Jet3 Eff 3



A GNN block
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• Efficiency of a jet is conditioned on the near-by jets

Edge Rep
Updated

Edge Rep

Node Rep
Updated

 Node Rep 



Case Study
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• Toy dataset - emulating W/Z+jets sample

• True efficiency of each jet is calculated as-

Correction factor to  
emulate proximity effect

• B-tagging emulation
• Generate a random number,  in [0,1]
• If , jet  is tagged

• In reality we don’t know this true efficiency and the NN 
is supposed to learn this

si
si < ϵi i



Training
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• Targets = 1/0 (jet is tagged/not tagger)

• BCE loss

• Prediction converges to (Density ratio estimation)

   , for jet pred(θ)i =
ptag(θ)i

ptag(θ)i + pnon−tag(θ)i
= efficiency(θ)i i



Result I
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• Event is tagged if the leading jet is b-tagged; event weight = efficiency of leading jet

• We know that dR is also a part of , and the network 
learns it during training

θ



Result II
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• Event is tagged if the leading and sub-leading jet are b-tagged. Event efficiency = ϵ1ϵ2



Generalization
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•  is different for both the samples

• But  is same for both

• Parametrizing the efficiency in theta with sample 1 
should also work in sample 2

p(X)

p(X |θ)



Alternative sample
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• Training sample - emulating W/Z + jets

• Alternative sample - emulating boosted scalar decay with exactly two jets

• The NN is NOT trained with the alternative sample



Result III - Generalisation
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• Evaluating the NN in the alternative sample



Statistical uncertainty estimation
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• Ensemble training to stabilize the model

• Bootstrapping for statistical uncertainty 
estimation

• Computationally expensive!

• In practice (from studies in ATLAS), quite 
small uncertainties, often can be neglected



Current work
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• Results from ATLAS specific studies are very promising

• Significant gain in statistics while maintaining good closure with direct tagging

• Uoto 120x more events!!

• Helps in -

• Signal vs Background discrimination

• Alternative sample studies

• Final fit

• public plots coming soon…



Summary
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• We discussed an NN based approach for efficiency estimation in a multidimensional space

• Advantages -
• Better Efficiency estimation, as it can account for much larger number of parameters than the 

binned maps
• Automatically infers theta during training
• Learns the jet-jet dependency
• Generalize well on sample not used for training

• The approach can be used in other studies with a similar setup - eg. fake electron identification

• Results in ATLAS look very promising (public plots will be available soon)



Thank you for listening…
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Backup
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Uncertainty Estimation

25 N. KakatiWeizmann Institute of Science

• For histogram, we have limited statistics for each bin

• That helps us construct a Confidence Interval around 
the estimated efficiency

• Region with less data -> more uncertainty

• How to estimate the uncertainty of the NN estimator??

-> Bootstrapping

• We would also like to stabilize the model first



Uncertainty Estimation
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• Uncertainty due to limited training data

• Solution

• Bootstrapping

• Repeated training won’t result in the same trained 
model

• Solution 

• Model = Ensemble of NN

• Model prediction = ensemble prediction avg

• Model Uncertainty cannot be decoupled from the stat uncertainty. So we try to reduce its impact 
during bootstrapping by using ensemble training

Training uncertainty Statistical uncertainty



Bootstrapping
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Original train data

Resampled data

Dataset 3

Dataset 2

Dataset 1 NN 1

NN 2

NN 3

NN ensemble

Uncertainty = 
std of the predictions



Comments about uncertainty estimation
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• Quite expensive!

• In practice (from studies in ATLAS), the 
trainings are quite stable

• Quite small, often can be neglected

• Nevertheless, this provides us a well-
defined procedure to obtain them



Case Study - Dataset generation
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• “Training sample” emulates W/Z+jets events 

• number of jets in an event and the jet kinematics ( ) are sampled from a distribution

• The distribution of angular separation among jets ( ) also follows a predefined distribution

pT, η, ϕ

ΔR

Let’s ignore the alternative sample for now
We’ll come to it later



Case Study - Flavor tagging
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• True efficiency each jet is calculated as-

Correction factor to  
emulate proximity effect

• B-tagging emulation

• Generate a random number,  in [0,1]
• If , jet  is tagged

• In reality we don’t know this true efficiency 
and the NN is supposed to learn this

si
si < ϵi i



Training
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• Targets = 1/0 (jet is tagged/not tagger)

• BCE loss

• Prediction converges to (Density ratio estimation)

   , for jet pred(θ)i =
ptag(θ)i

ptag(θ)i + pnon−tag(θ)i
= efficiency(θ)i i



Binned maps (for comparison)
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• Histogram based efficiency maps were constructed 
from the jets

• Binned in  and 

• Goal - to mimic how we would address the issue 
with the “traditional” binned approach

pT η

Example efficiency map

*not from the actual study



Comments about theta
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• Efficiency can be improved by including -

• The pileup info

• For b and c jets, the truth hadron info

• Quark vs gluon light jets


