Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

Nairit Sur

CPPM - CNRS/IN2P3

on behalf of the ATLAS Liquid Argon Calorimeter Group

The Liquid Argon Calorimeter:

A crucial component of the **ATLAS** detector

- ~160 fb⁻¹ p-p collision data reconstructed with high quality and precision
- Designed to measure the time, position, and energy deposited by electrons and photons, and in addition, **hadrons** in the end-cap region
- ~180K readout channels Lead, copper, and tungsten as absorbers, cryogenically cooled liquid argon as active material

Energy from Optimal-Filter (OF)

$$E(t) = \sum_{i=t}^{t+n} a_i \cdot s_i$$
 Pulse Samples

Pre-set coefficients (fit of the peak)

Ar hadrd end-cap (HEC)

LAr electromagnetic

barrel

LAr electromagnetic

LAr forward (FCal) 47 cm

end-cap (EMEC)

Towards HL-LHC

The high luminosity phase of the LHC (**HL-LHC**) will produce **140-200** simultaneous p-p interactions (pile-up), compared to the current value **~40**

Legacy algorithms cannot compensate for past events affecting the present

Energy deposits **continuously** sampled and digitized at 40 MHz:

⇒ requires peak finder/trigger (to select the correct BCIDs)

Real-time energies for triggers:

⇒ requires compact algorithms on high-end FPGAs

Upgrade of readout electronic chain for AI algorithms

New off-detector electronics on the backend board:

LAr Signal Processor (LASP)

- Two Intel Stratix 10 FPGAs
- ~Tb/s(~500 channels)
- ~200 boards

Ereconstruct ed

CNN: pulse tagging

CNN for pulse tagging:

Trained to detect energy deposits 3σ above noise (240 MeV) using pulse samples for 8 bunch crossings

240 MeV

CNN: Energy inference

Recurrent Neural Networks

Designed for handling sequential data, RNNs consist of internal neural networks that process new input combined with the past processed state

Two RNN internal architectures explored:

- Optimised for smaller number of parameters
- Long Short-Term Memory (LSTM) 10 internal dimensions
- Vanilla-RNN 8 internal dimensions

Higher complexity, bigger size on hardware

RNN applications: two methods

Single Cell Method:

- ✓ Long range correction, full signal is processed in a stream
- ✗ Significant amount of complexity needed to process data in time (LSTM only)

Sliding window Method (5 BC):

- ✓ Robust against long-lived effects due to unforeseen behaviour of the detector, simpler training
- ✗ Short range correction only (1 BC in the past)

Performance:

HL-LHC condition with pileup of 140

Comparisons on single LAr cell simulations (*AREUS* software)

LSTM (single cell): 5 BC in the peak, ∞ in the past

Vanilla (sliding window): 4 BC in the peak, 1 in the past

Nairit Sur, Learning to Discover

- Legacy algorithm
 exhibits big
 distribution tails
 especially at low gap
- The tails are reduced significantly with all of the new NN methods

Performance: HL-LHC condition with pileup of 140

FPGA Implementations

- Set of weights optimised by training
- architecture(layers, dimensions, ...)
- Mathematical operations
- ALM: adaptive logic modules
- DSP: digital signal processors
- Fixed-point arithmetic, LUT for non-linear functions

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = A \begin{pmatrix} \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Activation function for non-linear element operations

FPGA Implementations: CNNs

The CNNs are transformed into VHDL code with the help of a custom-made VHDL converter:

- Configured directly by Keras model
- Optimised for low latency:
 - CNN architecture mapped to DSP chains
 - Pipelined inputs

In software:

$$E(t-1) = x(t-1) * w_1 + x(t-2) * w_0$$
$$E(t) = x(t) * w_1 + x(t-1) * w_0$$

Input pipeline: reuse hardware as soon as available to deal with continuous data flow

FPGA Implementations: RNNs

RNNs implemented in Intel HLS:

- automated generation of hardware description language from a C++-like algorithmic description of the network
- flexible design automatically optimised to a given hardware target

FPGA Implementations: Results

Compare Intel Stratix 10 simulation (Quartus 20.4 and Questa Sim 10.7c) to Keras Tensorflow:

Pulse samples from AREUS LArcell data

Good compatibility firmware/software (RMS 0.6% to 2.2%)

Optimized fixed point and LUT representations:

- minimize resources VS compatibility software/firmware
- 18 bits total (Stratix 10 ⇒ 18x19 DSP) :
 - 10 decimal for CNNs
 - 13 decimal for RNNs

⇒ Acceptable quantisation noise when using 18 bits (lower than the expected input noise).

FPGA Implementations: Resource usage

Single LAr cell resource usage estimated from Intel Stratix 10 simulation (Quartus 21.1 and Questa Sim 10.7c)

Network	Frequency	Latency	Resource usage	
	F _{max} [MHz]	clock(core) cycles	#ALMs	#DSPs
VanillaRNN (sliding)	640	120	5782 (0.6%)	152(2.6%)
3-Conv CNN	344	81	14235(1.5%)	46(0.8%)
4-Conv CNN	334	62	15627(1.7%)	42(0.7%)

- Many readout channels treated by one FPGA ⇒ time-domain multiplexing
- Maximum achievable frequency: 480-600 MHz ⇒ upto 15x multiplexing of 40 MHz input data
- Assuming all available FPGA resources being dedicated to ANN algorithms, 3-Conv CNN and VanillaRNN can reach a value above 384 channels ⇒ can receive data from three FEBs
- Further VHDL and HLS optimisations ongoing to reach even smaller resource usage, shorter latency, and higher clocking frequency

Conclusion

- HL-LHC will require improving ATLAS LAr energy measurements
 - Two novel methods CNN and RNN based
- For both CNN/RNN several algorithms are developed:
 - Focused on recovering energy resolution in high pileup environments by using information from past events
 - All methods outperform legacy algorithms in HL-LHC conditions
- FPGA implementation for fast processing:
 - CNN: dedicated VHDL
 - RNN: flexible HLS
 - Good reproduction of Keras results with firmware simulation
 - Optimizations ongoing to reduce resource usage and latency to stay within ATLAS limitations
- CNN/RNN implementation in LAr readout for phase II is challenging, but the preliminary results indicate that it has great potential to improve the energy reconstruction

Ref. "Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters" Aad, G., Berthold, AS., Calvet, T. et al., *Comput Softw Big Sci 5, 19 (2021).*

Backup

Energy inference with Convoluted Neural Networks

1-Dimensional CNN designed with a succession of filters to perform two tasks:

- pulse tagging
- energy reconstruction

