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Each latent variable is informative, and 
entangled with the others

VARIATIONAL AUTOENCODER
And disentanglement
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VARIATIONAL AUTOENCODER
And one alternative



9

With

Higgins & al. 2013

VARIATIONAL AUTOENCODER
And one alternative



10

Better separation between informative and uninformative components, 
better disentanglement, but at the expense of the reconstruction quality

VARIATIONAL AUTOENCODER
And one alternative
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LIMITATIONS
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ASSUMPTIONS & 
OBJECTIVES

Inferred variances and informative components
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Limit architectural 
complexityAuto adjustment of the latent 

space size depending on the 
data complexity

Adjusting latent space

By restraining the number of 
learnable parameters

No compromise on 
reconstruction

By not adding a weighting term 
that could impact the 
reconstruction quality
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For the proposed modeling
OBJECTIVES



Informative components 
tend to have lower 
learned variances values

Histogram of inferred variance over 200 samples of a 
learned beta-VAE with beta = 150
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informative uninformative

Underlying the current work
ASSUMPTIONS



Through a hierarchical bayesian 
modeling, the learned variances could 
be forced to be either high or small 
depending on information contained 
in the latent variable

Informative components 
tend to have lower 
learned variances values

Histogram of inferred variance over 200 samples of a 
learned beta-VAE with beta = 150
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PROPOSED MODELING
A bayesian hierarchy based on variational autoencoder
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uninformative informative

The Normal-Gamma Variational-Autoencoder 
(NGVAE)

PROPOSED ARCHITECTURE



21

SamplingSampling

The Normal-Gamma Variational-Autoencoder 
(NGVAE)
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To enable the gradient backpropagation
RELAXING ASSUMPTIONS
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Can be computed 
analytically 

Raises difficulties for 
the calculation of the 
gradient

To enable the gradient backpropagation
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● Changing of variables : weak 
correlations with variational 
parameters

To enable the gradient backpropagation
REPARAMETERIZATION TRICK
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To enable the gradient backpropagation

● Changing of variables : weak 
correlations with variational 
parameters

● Applying the score trick 

REPARAMETERIZATION TRICK

Ruiz & al. 2016
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The latent space is clearly separated between informative and uninformative 
components, reconstruction is not impacted

RESULTS
Separation in the latent space
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The corresponding p_k is high

RESULTS
Separation in the latent space
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The corresponding p_k is low

RESULTS
Separation in the latent space
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Comparing to other state of the art 
architectures, the proposed model is 
able to discriminate between 
informative and uninformative 
components

Clear separated latent 
space

Scaled empirical covariance matrices of the latent variables over 
the whole dataset for, from top-left to bottom-right: the NGVAE, 
the beta-VAE with eta=150, the beta$VAE with beta=27 and the 
vanilla-VAE. 

RESULTS
Separation in the latent space



Vanilla Beta-VAE
(27)

Beta-VAE
(150) NGVAE

Entropy (-) 2.6 2.6 2.6 2.3

Decorrelation 
(+) 12.7 7.8 11.9 14.3

Disentanglem
ent  (+) 0.67 0.64 0.62 0.68

Information 15 15 7 7
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RESULTS
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CONCLUSION
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● Automatically defines the number of 
informative components of the latent 
space

● Number  of informative components 
matching the number of generative 
factors

● No needs of adjusting dataset dependent 
hyperparameters

● However, the reparametrization involving 
jacobian is computationally expensive



● Application on state of the art dataset

● Improving disentanglement within the latent 
space

● Extending to flat hierarchical representation 
for uncertainty measurement

FUTURE WORK
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CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, and infographics & images by Freepik. 
Please keep this slide for attribution.

THANKS
Does anyone have any question?

emma.jouffroy@u-bordeaux.fr
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http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
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