

Learning to Discover 2022 Orsay, France, 29/4/2022

Introduction

- Likelihood functions parametrise the full information of an LHC analysis; wether it is New Physics (NP) search or an SM measurement.
- Their preservation is a key part of the LHC legacy.

Usage:

- Resampling
- Reinterpretation with different statistical approaches.
- Reinterpretation in the context of different NP models.

• ...

Challenges:

- LHC likelihoods are often high-dimensional complex distributions.
- We want precise descriptions that can be efficiently reinterpreted.

Current steps forward:

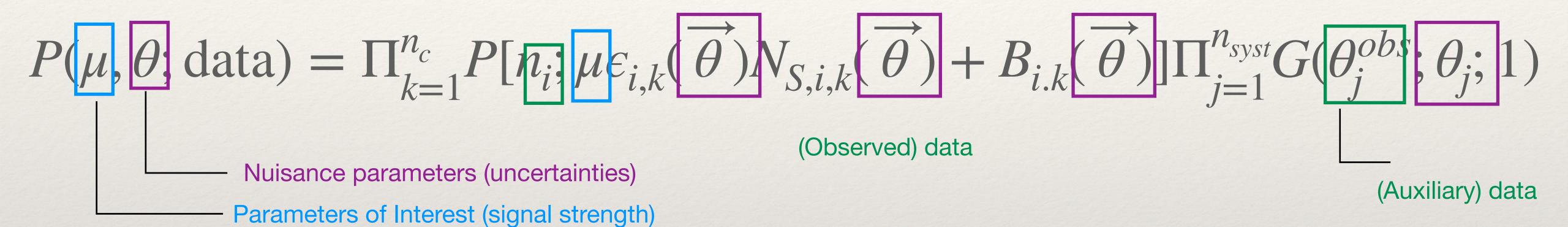
- ATLAS started publishing full likelihoods of NP searches ATL-PHYS-PUB-2019-029.
- Release of the pyhf package to construct statistical models 10.21105/joss.02823, L Heinrich, M Feickert, G Stark
- Theorists have started profiting from this arXiv:2009.01809, arXiv:2012.08192, SModelS collaboration
- Supervised learning with DNN likelihood arxiv:1911.03305 A Coccaro, M. Perini, L Silvestrini, R Torre

Our approach: Unsupervised Learning with Normalizing Flows

LHC likelihoods in a nutshell

really, see Nicholas Berger's talk 21/4/22

Full Statistical model:



Test Statistic:

$$t(\mu) = -2\log\frac{L(\mu; \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})} \xrightarrow{\text{Probability of data given a certain } \mu \text{ Conditional best-fit } \theta(\mu)}$$

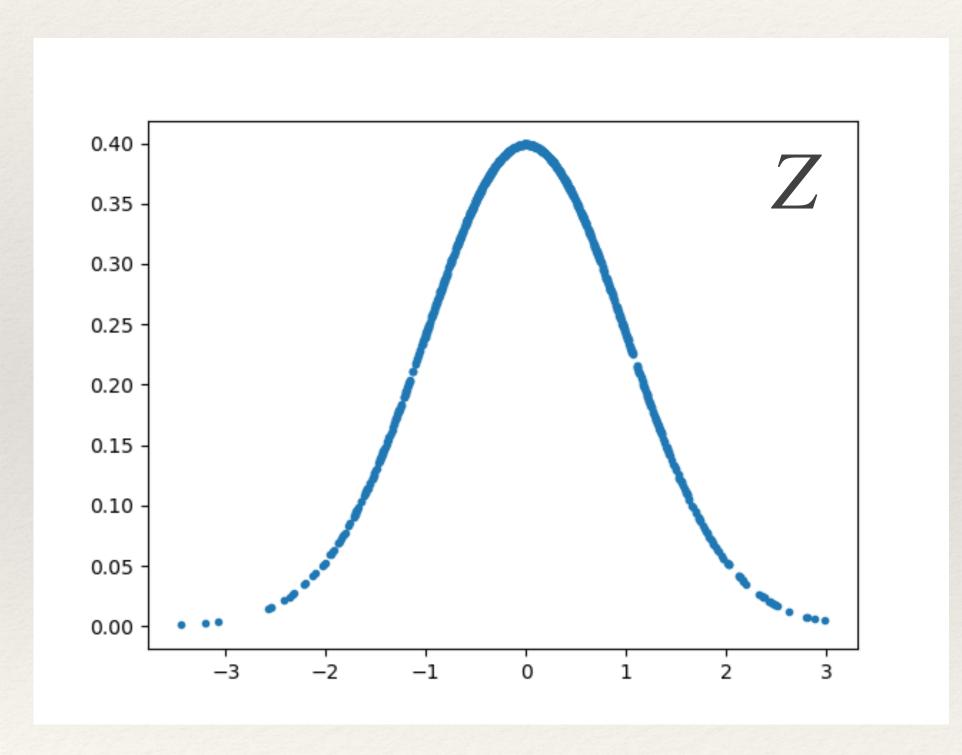
$$+ L(\hat{\mu}, \hat{\theta}) \xrightarrow{\text{Dest-fit } \theta} \text{Probability of data given } \hat{\mu} \text{ (MLE)}$$

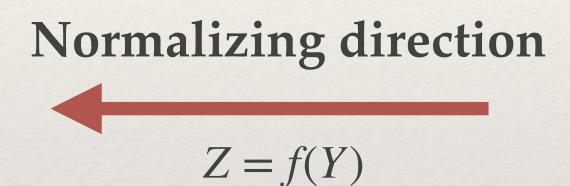
$$+ \frac{L(\hat{\mu}, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})} \xrightarrow{\text{Dest-fit } \theta} \text{Dest-fit } \theta(\mu)$$

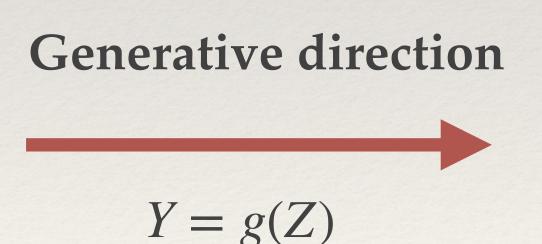
Introducing Normalizing Flows.

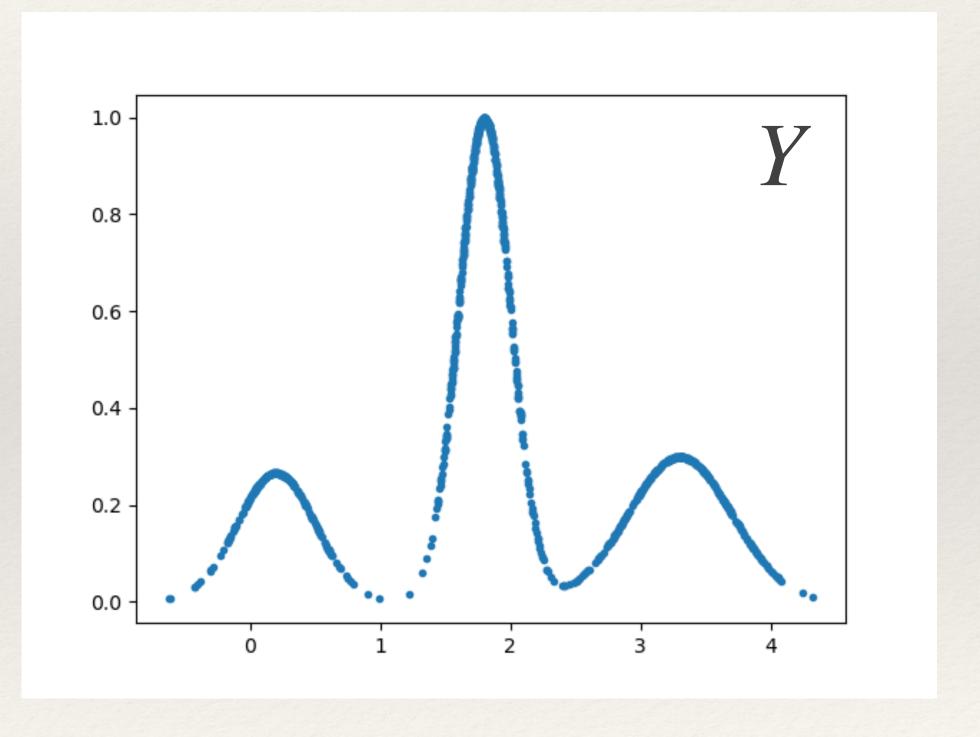
BASIC PRINCIPLE:

Following the change of variables formula, perform a series of **bijective**, **continuous**, **invertible** transformations on a *simple* probability density function (pdf) to obtain a *complex* one.









$$p_Y(y) = p_Z(f(y)) |\det(Df(y))| = p_Z(f(y)) |\det(Dg(f(y))|^{-1}$$

Choosing the transformations

THE OBJECTIVE:

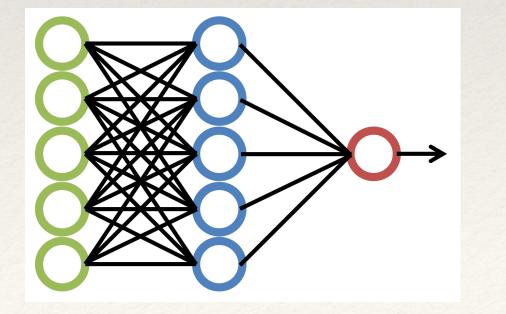
To perform the right transformations to accurately estimate the complex underlying distribution of some observed data.

THE RULES OF THE GAME:

- The transformations must be invertible
- They should be sufficiently expressive
- And computationally efficient (including Jacobian)

THE STRATEGY

Let Neural Networks learn the parameters of Autoregressive Normalizing Flows.

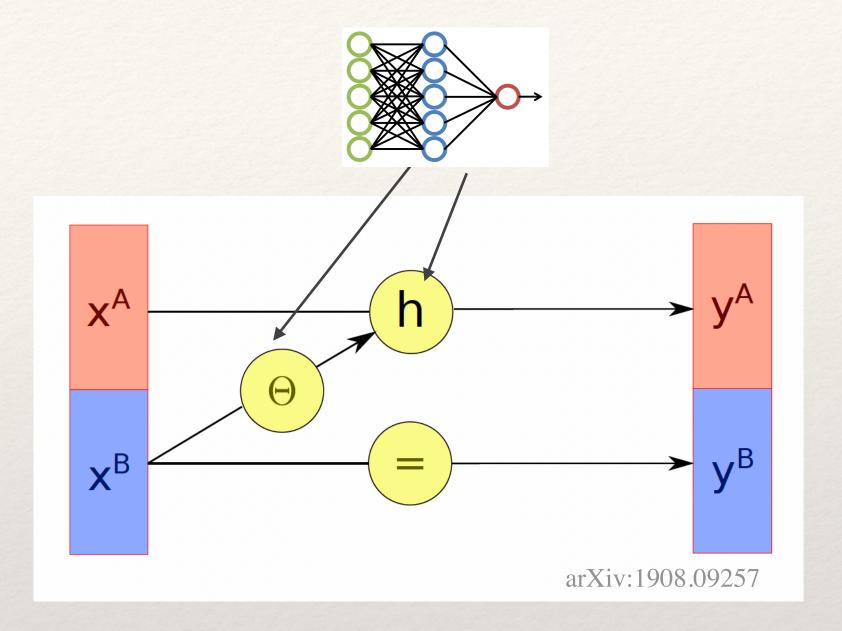


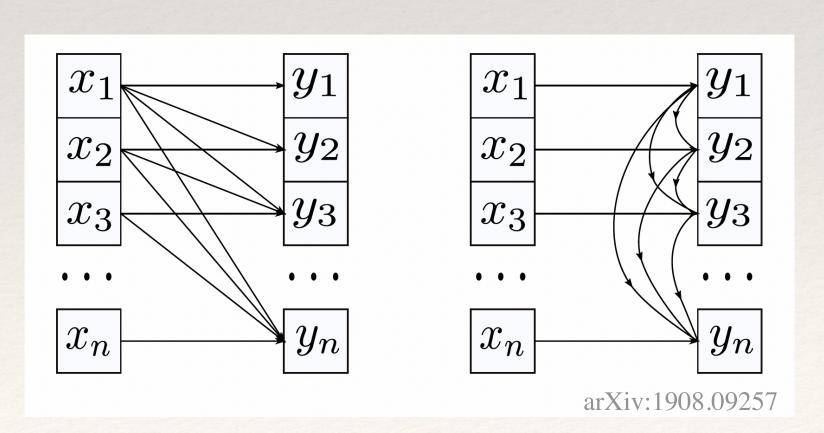
Autoregressive Flows

- Dimension x^i is transformed with bijectors trained with $y_{1:i-1}$
- Bijector parameters are trained with Autoregressive NNs.
- The Jacobian J is also triangular thus...
- Jacobian is easily computed!
- Direct sampling OR density estimation.
- More expressive.

The loss function:

 $-\log(p_{AF}(real_{dist}))$





Autoregressive Flows

MAF A-NSF

Masked Autoregressive Flow

Neural Spline Flows

arXiv:1705.07057

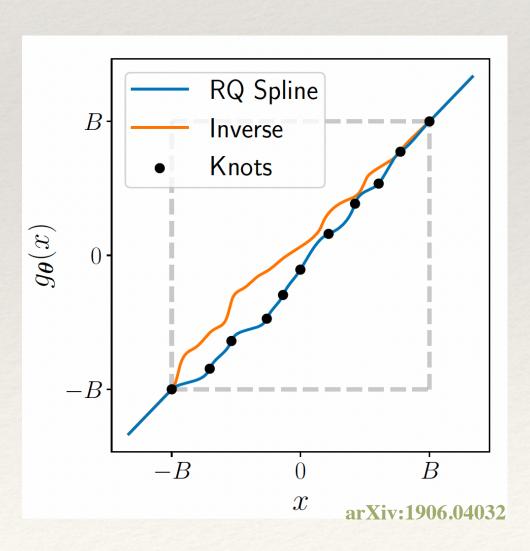
arXiv:1906.04032

Affine

BIJECTORS

Rational Quadratic Spline

$$y(x; \mu, b) = \mu \cdot x + b$$



Measuring the flows accuracy

Non-parametric metrics

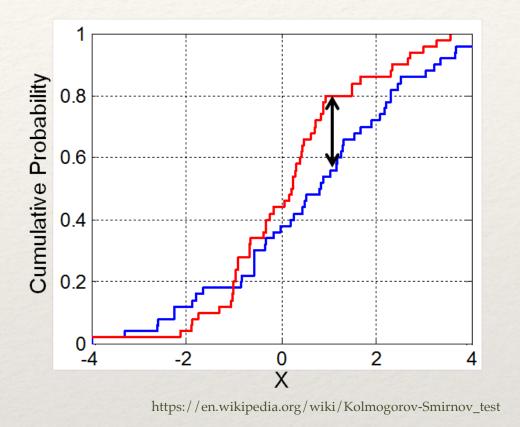
- Two-sample 1D Kolgomonov - Smirnov test (ks test):

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)|$$

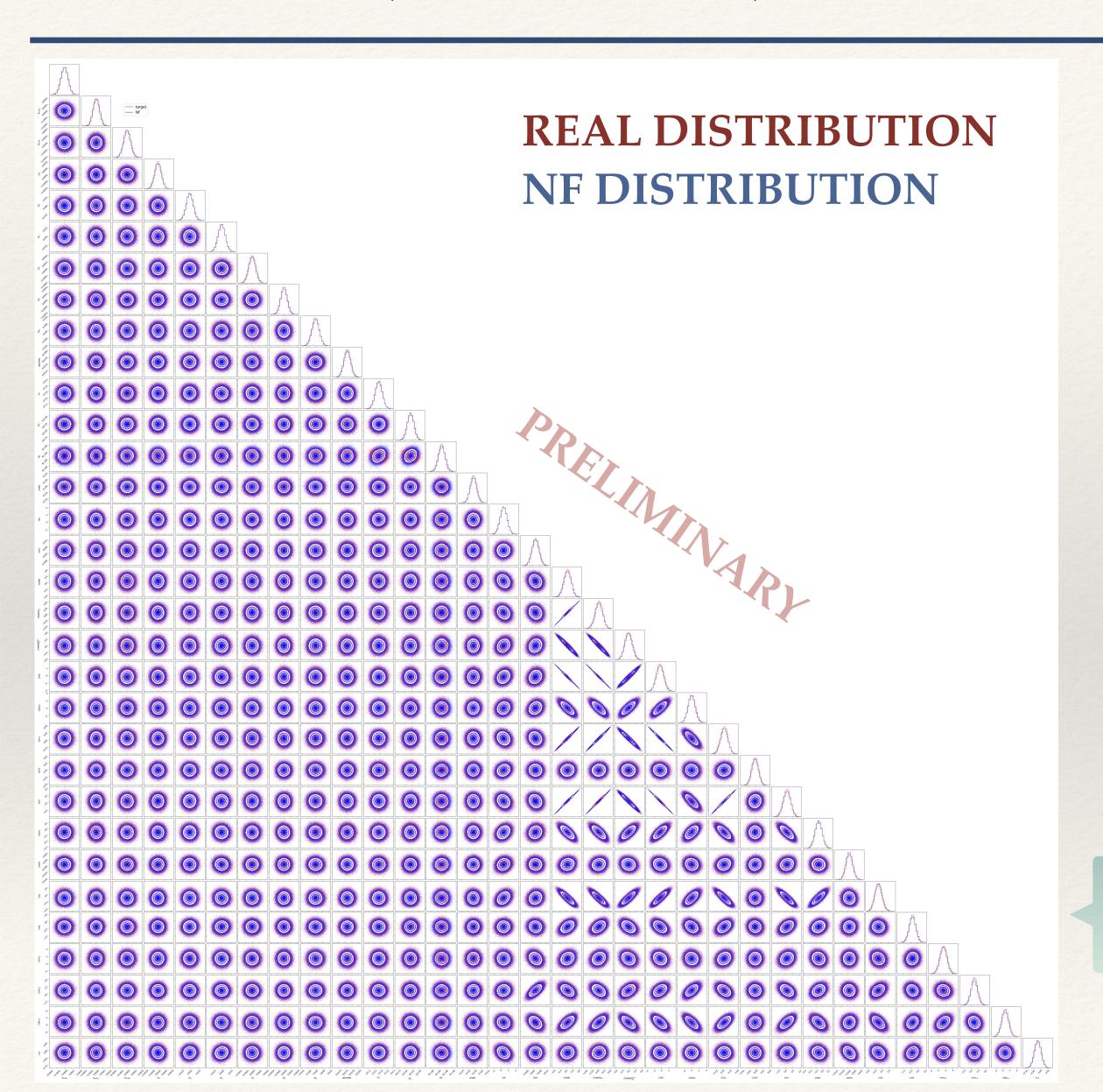
- -Computes the p-value for two sets of 1D samples coming from the same unknown distribution.
- -We average over ks test estimations and compute the median over dimensions.
- -Optimal value 0.5
 - 1D Wasserstein distance (Earth mover's distance)

$$l(f_n, f_m) = \int_{-\infty}^{\infty} |F_n - F_m|$$

- -Computes the minimum *energy* required to transform f_n into f_m
- -We compute the median over dimensions.
- -Optimal value 0.0



EW-fit (32 dims)



Likelihood of global EW-fit at LHC:

18 parameters of interest.

14 nuisance parameters.

Data provided by authors -> arXiv:1710.05402

Weapon of choice:

MAF, 3 Bijectors, 128x3 layers, 650k samples

Metrics:

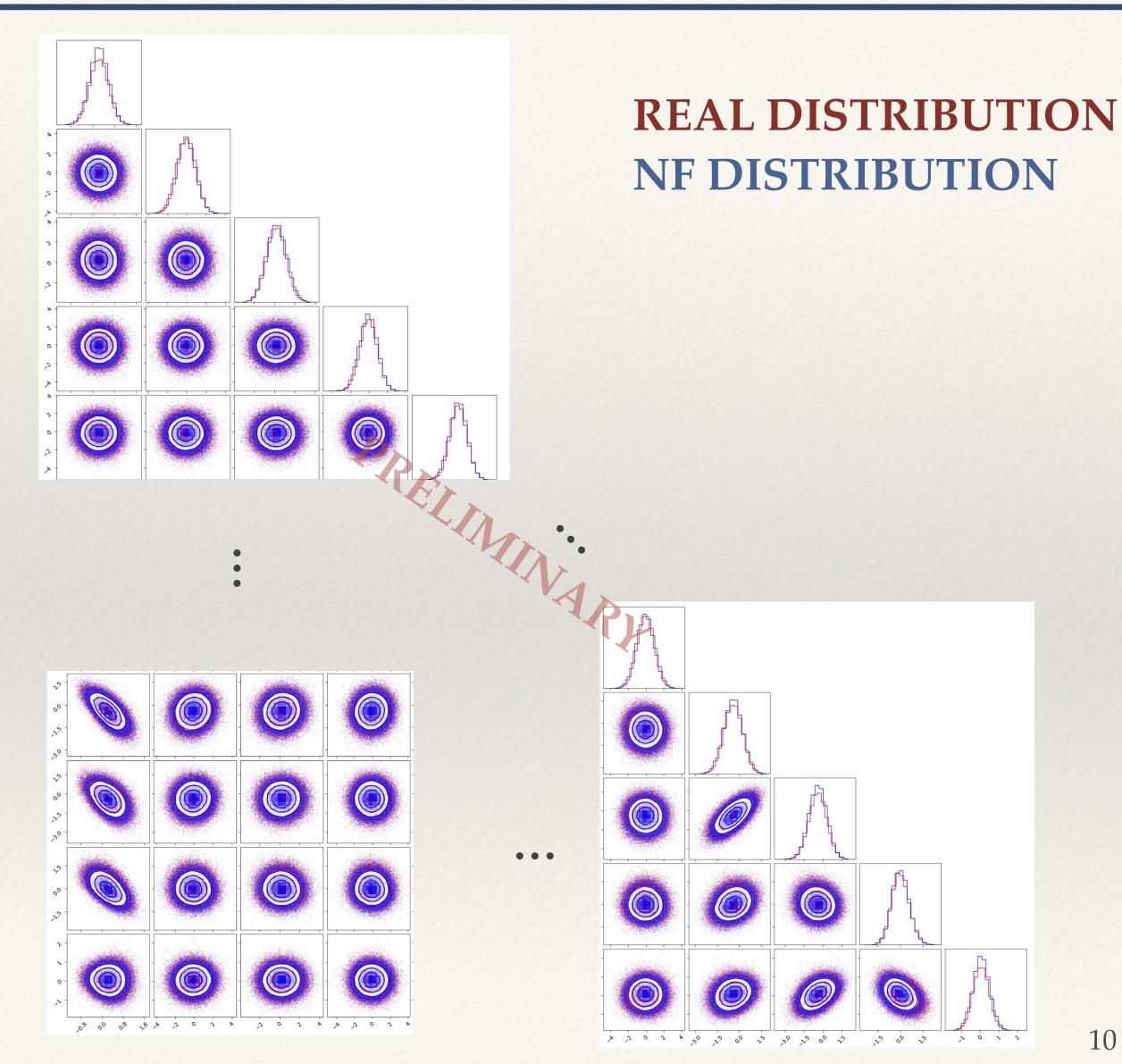
Wasserstein distance: .000315

KS test: 0.484

Training time: 2.8 hrs.

THE RESEMBLANCE IS GREAT!

LHC-like New Physics search (95 dims).



Likelihood of LHC-like New Physics search:

1 parameter of interest.

94 nuisance parameters.

arXiv:1911.03305 arXiv:1809.05548

Weapon of choice:

MAF, 3 Bijectors, 128x3 layers, 500k samples

Metrics:

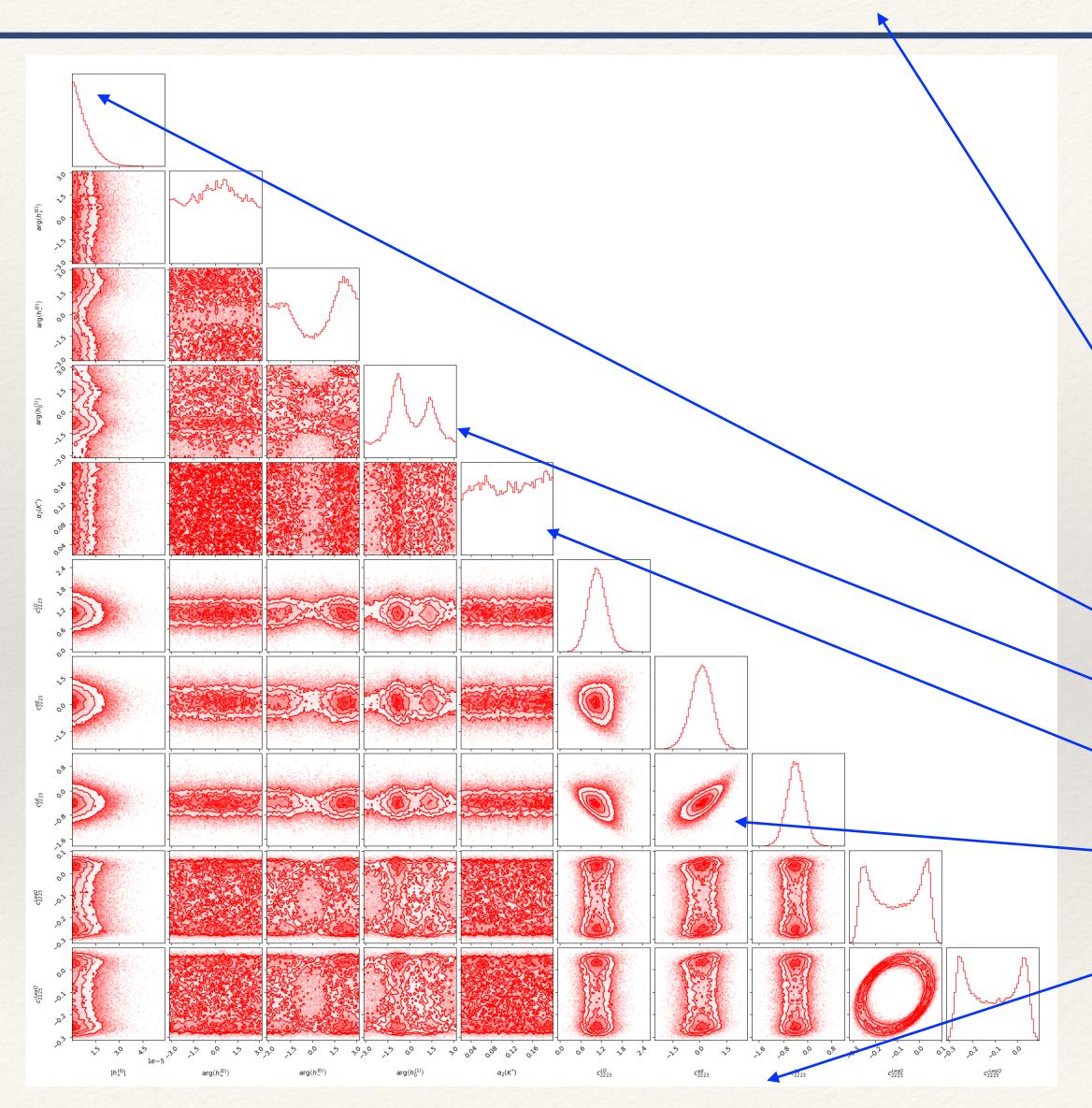
Wasserstein distance: .0067

KS test: 0.507

Training time: 9.3 mins

ANOTHER GREAT RESEMBLANCE!

Flavor Likelihood (83 dims)



Likelihood of global-fit of $b \rightarrow sl^+l^-$ transitions*: 6 parameter of interest.

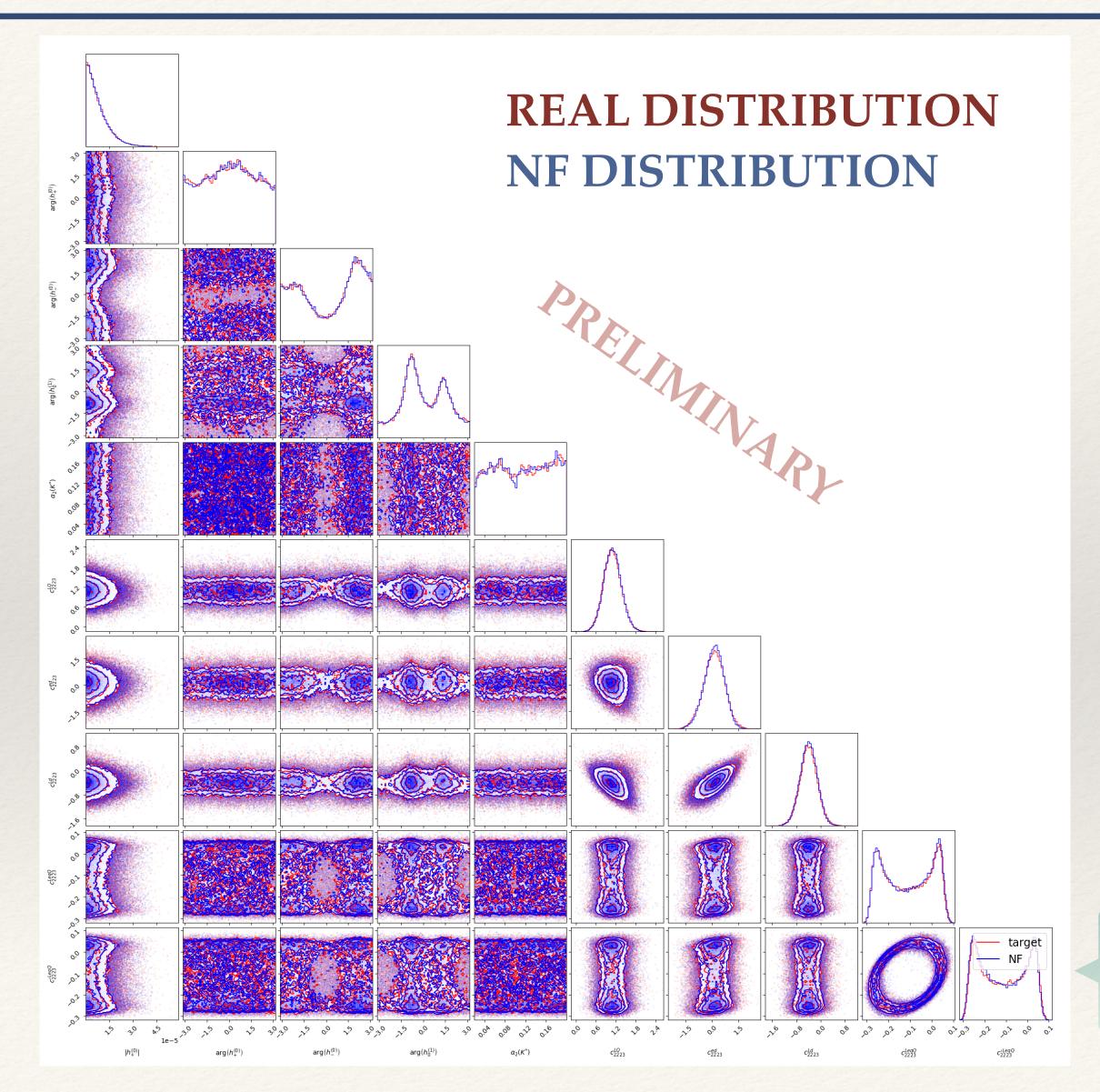
77 nuisance parameters.

Data provided by authors of 10.1140/epjc/s10052-019 -7210-9

CHALLENGES:

- · High-dimensionality
- Truncated distributions
- Multimodal dimensions
- "Noisy" dimensions
- Correlations
- Wide/different ranges

Flavor Likelihood (83 dims)



Weapon of choice:

A-NSF, 16knots

2 Bijectors

1024x3 layers

1.5M samples

Regulariser: 11, epsilon 1e-4

Metrics:

Wasserstein distance: .00027

KS test: 0.497

Training time: ~ 1.5 days

ALSO VERY GOOD

Conclusions

- The preservation of LHC likelihoods is of uttermost importance (for theorists also).
- Introduced unsupervised learning of full likelihoods with Normalizing Flows.
- Including high-dimensional very complex functions.

Outlook

- Push the accuracy a bit more.
- Release all results and codes (write the actual paper)
- Integrate into the DNN Likelihood framework; sample, build models, analize, plot ...
- Systematic learning of LHC likelihoods.
- Interface with reinterpretation tools, e.g. SModelS.
- General study of Autoregressive Flows performance at high dimensions and how to measure it.

