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Motivation
Removing detector effects enables comparison between experiments and theory

• Known as unfolding in HEP

Usually done with binned histograms, in 1 or 2 dimensions
• Loss of information
• Does not capture correlations between variables

Motivates the development of high-dimensional and continuous methods

SimXlator
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Histogram Approach

Usually in HEP: solve discrete linear inverse problem: 𝑏=𝑅𝑎

𝑦~𝑝(𝑦) = observed distribution 𝑝 𝑦 𝑥 = detector smearing

𝑎𝑅𝑏

𝑥~𝑝(𝑥) = true distribution

𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥
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Maximum marginal likelihood

argmax
!
𝑝(𝑦) = ∫ 𝑝 𝑦 𝑥 𝑝! 𝑥 𝑑𝑥

Likelihood function (usually not known) Target distribution

Multidimensional integral
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1) Source distribution
Need to model the source distribution with a parametric model 𝑝! 𝑥 ∈ 𝒬

Aim: find 𝜃∗ that best explain the data

The distribution family 𝒬 should be flexible enough to model the target distribution
• We use Neural Networks (Deep Generative Models)

– Efficient at sampling (more on that later)

Random noise Density 𝑝! 𝑥 defined by the model

Generative 
model
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2) Likelihood function

Usually in HEP, the likelihood function 𝑝 𝑦 𝑥 is unknown

But we can simulate this process
• Mechanistic understanding of interactions, put into code

We use the simulator to learn a proxy of the likelihood function
1. Generate a dataset of pairs of parameters and observations 𝑥#, 𝑦# #$%&

2. Fit a density estimator to the generated data (we use normalizing flows)

O(10) particles O(100) particles O(108) detector elements
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3) Approximate integral with Monte Carlo Integration

Monte Carlo approximation of integrals

Efficient
• Sampling from learned source 𝑝!(𝑥) is cheap 
• Evaluating learned 𝑝 𝑦 𝑥 is cheap
• 𝑝!(𝑥) and 𝑝 𝑦 𝑥 are Neural Networks → computations can be parallelized on GPUs
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Unfolding Jet Variables in Z+jet Events at the LHC
Source data have been generated with Herwig simulator and then corrupted 
with Delphes simulator

We use Neural Empirical Bayes (NEB) to retrieve “Truth” jet propreties given 
corrupted samples “Data” 

Jet: stream of  particles 
produced by high energy 
quarks and gluons
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Unfolding Jet Variables in Z+jet Events at the LHC

Blue  = true
Black = learned

NEB learns the multidimentional distribution

NEB enables efficient sampling from the learned distribution 

With specific Neural Network architectures, the learned 
density can be evaluated and differentiated (more on than in the paper)
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Posterior Estimation in Z+Jets
Once learned, 𝑝!(𝑥) enables reconstruction with estimate 
of uncertainty

Which value 𝑥 has generated a new observation 𝑦'()?

Posterior: 𝑝(𝑥|𝑦'()) ∝ 𝑝 𝑦'() 𝑥 𝑝!(𝑥)
• Distribution of true values given observation

Method
1. Observation 𝑦'()
2. Sample 𝑥 ∼ 𝑝!(𝑥)
3. Rejection sampling: keep 𝑥 w/ prob. ∝ 𝑝(𝑦|𝑥)

Blue / Black = learned posterior
Red = true value
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Conclusion
NEB enables to unfold continuous and multidimensional distributions

After training, the learned model can be heavily sampled from, which is useful for reconstruction

When combined with specific Neural Network architectures, NEB enables density evaluation

Inductive bias helps mitigate the ill-posed nature of problems, and is easily introduced in the models
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