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Motivation
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* The application of deep learning in the HEP field is growing.
* Focusing on a single task (Event classification, PID, ...)
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* Most of problems consist of multiple small tasks.
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Motivation

* The application of deep learning in the HEP field is growing.
* Focusing on a single task (Event classification, PID, ...)

* Most of problems consist of multiple small tasks.

Large single DL model: Huge training data/compute resources, blackbox
Raw data ’ 1 Result
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Multi-step deep learning model
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Multi-step deep learning model

Downstream task
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Training with additional label for intermediate output means
more injection of our knowledge.

* We train the multi-step DL model via weighted sum of each task’s loss
L = WlLl + W2L2
* |ssues
1. Limited representation power due to the shape of the intermediate output and loss function

2. Necessary to tune loss coefficients (wq, w,) for each task as hyperparameters



SOIUtion ° Issues

1. Limited representation power due to the shape of the intermediate output and loss function

2. Necessary to tune loss coefficients (w;, w,) for each task as hyperparameters
Due to the small size of intermediate output
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SOIUtion ° Issues

1. Limited representation power due to the shape of the intermediate output and loss function

2. Necessary to tune loss coefficients (w;, w,) for each task as hyperparameters

Expansion resolves the bottleneck
Downstream tas
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We cannot use the upstream task’s loss function

due to a mismatch of intermediate output and label.
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1. Limited representation power due to the shape of the intermediate output and loss function
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SOIUtion ° Issues

1. Limited representation power due to the shape of the intermediate output and loss function

2. Necessary to tune loss coefficients (w;, w,) for each task as hyperparameters

Expansion resolves the bottleneck
Downstream tas
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This formulation enables to apply

techniques in a multitask learning.

» Applied to multi-step tasks: “Tau identification” and “Classification of H — 17 / Zg—> (e



Application in HEP: Classificationof H > 17 /Z — 17

7 Upstream task: Tau ID (classification of t-jet / light-jet ) N
............. Input: momentum vector of jet constituents (max. 50 constituents)
Output: Probability that a jet’s origin is a tau particle
2 \- J
Hadron calorimeter
. /- Downstream task: Event classification (classification of H / Z) —\

Input: Jets (max. 8) features in events * four-vector
Tracks

.
|
.
.
.
-

e output of the upstream task

Output: Probability that the event contains Higgs boson

\_ J

— Dataset

* Simulated data (Pythia8 + Delphes)

* (u)=50
* Only hadronically decaying tau (tau-jet)

e 100k eventsforH — 171, Z = 1T
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Deep learning model o
jett  HEE— Q.

jet2  HEE—— N O—
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* DeepSets are used for both tasks o -
[0
* DeepSets can handle a variable length of inputs _ — x2

 Adam (Ir =0.001) with early stopping (max patients = 10) DeepSets

* Use cross-entropy loss for both tasks

Task 1 D Used in loss
e N g [ Features
: et :

(O pLmodel

DeepSets

A S —— Downstream task classifies H /Z

Upstream task evaluates tau probability for each jet
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Dependency of intermediate output size
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(b) Training with additional NN

(a) Direct connection
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Bottleneck of information due to a direct use of

upstream output as the input of downstream task

Adequate size of intermediate output is important
for the downstream task’s performance.
e Learning something useful other than tau prob
e Simultaneous training of multiple models

contributes to improve the performance
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Adaptive optimization of loss coefficient

Downstream task
Upstream task

Input Intermediate

» »oii i Input»

Outputlabel
» E B
\

< w’
A

¥

wi| O [ 1abel

Ll( ’ )
e Possible to regard it as a kind of multitask learning

* Intermediate output is regarded as shared features

Error Backpropagat‘f@nﬁz (y pred, ytrue)

Multitask learning

Output]

Shared ]

Input Output?
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Output3

* There are some methods proposed to efficiently learn loss of L = w; L; + w, L, in the context of multitask learning

* Uncertainty weighting

* Target function: L = }}; (#Li + log al-> (o; is a trainable parameter, not NN outputs)
i

* Loss coefficients are tuned depending on each loss absolute value.
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https://arxiv.org/abs/1705.07115

Adaptive optimization of loss coefficient

Coefficients are
automatically tuned

3.5

o w
wn [=]

Loss weight
N

. . 1
Loss coefficient w; (= ;)
i

L —_ W1L1 + W2L2

Upstream task(tau ID)

0 Nl

20

30 40

Training step (epoch)

50

(wy,w,) = (0.1,1.0) 0.9689 0.7993
(wy,wy) = (1.0,1.0) 0.9748 0.8013
(wy,wy) = (10,1.0) 0.9753 0.8005
Uncertainty weighting 0.9753 0.8015

60

w; is fixed in training.
Necessary to tune HPs depending on L;

p—

—> (Good performance without tuning of w;
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Adaptive optimization of loss coefficient L=w,L;+W,L,

Loss coefficient w; (— i) Loss coefficient w; (= %)
'\ 20 Upstream task: Cross-entropy b ’
3.5 “A"
/\/3 Nlo 2 A
w0 Downstream task: Cross-entropy o0
25 Upstream task(tau ID) N Upstream task(tau ID)

Loss weight

I Different scaled loss function

(Occurs when using both classification and regression)
Downstream task(Event classification)

Downstream task(Event classification)

Upstream task: Mean squared error

0 10 20 30 40 50 60 (I) llO 2IO 3I0 4IO 5I0 6I0 7I0

Training step (epoch) Downstream task: Cross-entropy Training step (epoch)
| (Cross-entropy, Cross-entropy) | (Mean squared error, Cross-entropy)
Algorithm | Upstream task AUC Downstream task AUC | Upstream task AUC Downstream task AUC
(wy,wy) = (0.1,1.0) 0.9689 0.7993 0.9618 0.7985
(wy,w,) = (1.0,1.0) 0.9748 0.8013 0.9717 0.8008
(wi,wy) = (10,1.0) 0.9753 0.8005 0.9746 0.8013
Uncertainty weighting 0.9753 0.8015 0.9747 0.8015
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Summary

* The application of DL in HEP is growing, but almost of them are for the single task

 The importance of the overall optimization combining such single task might increase in the future.

* Defects in a training of multitask DL models and the mitigation are presented
* Direct connection of two models causes information bottleneck.
— Addition of new NN increases information capability and enables to use label for upstream task
* Itisrequired to tune loss coefficients in the simultaneously training of multiple DL models

— Application of the methods in multitask learning can tune them automatically.






Adaptive optimization of loss coefficient : Result

Upstream task: Cross entropy, Downstream task: Cross entropy

Task 1 AUC Task 2 AUC o
I 1- | Step-by-step training cannot propagate
No simultaneous  Step-by-step 0.9753 + 0.0002 | 0.7969 + 0.0011 |
training sufficient information for downstream task.
(w1, w2) = (0., 1.0) 0.4717 + 0.2335 | 0.7975 =+ 0.0009
Fived (w1, w2) = (0.1,1.0) 0.9689 + 0.0008 0.7993 + 0.0008 o
(w1, ws) = (1.0, 1.0) 0.9748 + 0.0003  |0.8013 + 0.0008| | Training w/o upstream loss cannot propagate
(w1, w2) = (10.,1.0) ~ 0.9753 &+ 0.0003 | 0.8005 + 0.0011 | | syfficient information for downstream task.

Adaptive Uncertainty Weighting 0.9753 + 0.0003 0.8015 + 0.0011

Fixed-coefficient method needs to tune the
Upstream task: MSE, Downstream task: Cross entropy

values.
Task 1 AUC Task 2 AUC
No simultaneous  Step-by-step 0.9746 + 0.0002  0.7974 + 0.0010
training
(w1, w2) = (0., 1.0) 04514 £ 0.2372 07977 £00009 |\~ 4 verf
(w1,w2) = (0.1,1.0)  0.9618 + 0.0010 [ 0.7985 + 0.0010 neertainty WEIghting has good perrormance
Fixed (w1, w2) = (1.0,1.0) 0.9717 £ 0.0009 0.8008 =+ 0.0008 without parameter tuning and independent
(w1, w2) = (10.,1.0)  0.9746 + 0.0002 [0.8013 + 0.0010
of loss form.

Adaptive  Uncertainty Weighting 0.9747 + 0.0003 0.8015 + 0.0010
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Loss weights (Fixed coefficients)
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Loss weights (uncertainty weighting)

Loss (Total)
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Event Classification Task Model:
DeepSets
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Tau Ildentification Task Model:

DeepSets
$1 ¢
objl N — I o—
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High level [N

¢ = (32,32,32), ReLU
¢, = (32), Linear

¢3 = (32), Linear

¢4 = (24), Linear

¢s = (128,128, 16), ReLU
o6 = (64,32,1), ReLLU




Shared latent space when the shared feature’s size is 2
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