

Study of model construction and the learning for hierarchical models

Learning to Discover: Al and High Energy Physics conference 27 / 04 / 2022

ICEPPA, KEKB, Beyond AIC

Masahiko Saito^{AC}, Tomoe Kishimoto^{BC}, Masahiro Morinaga^{AC}, Sanmay Ganguly^{AC}, Junichi Tanaka^{AC}

Motivation

- The application of deep learning in the HEP field is growing.
 - Focusing on a single task (Event classification, PID, ...)
- Most of problems consist of **multiple small tasks**.

of papers at HEPML-LivingReview

Step from raw data to physics analysis

Physics object reconstruction

CERN-EX-1301009

Particle identification

ATL-PHYS-PUB-2017-003

Eur. Phys. J. C 81 (2021) 178

Motivation

- The application of deep learning in the HEP field is growing.
 - Focusing on a single task (Event classification, PID, ...)
- Most of problems consist of multiple small tasks.

Multi-step deep learning model

Multi-step deep learning model

Training with additional label for intermediate output means more injection of our knowledge.

We train the multi-step DL model via weighted sum of each task's loss

$$\mathcal{L} = w_1 \mathcal{L}_1 + w_2 \mathcal{L}_2$$

- Issues
 - 1. Limited representation power due to the shape of the intermediate output and loss function
 - 2. Necessary to tune loss coefficients (w_1, w_2) for each task as hyperparameters

- Issues
 - 1. Limited representation power due to the shape of the intermediate output and loss function
 - 2. Necessary to tune loss coefficients (w_1 , w_2) for each task as hyperparameters

- Issues
 - 1. Limited representation power due to the shape of the intermediate output and loss function
 - 2. Necessary to tune loss coefficients (w_1, w_2) for each task as hyperparameters

We cannot use the upstream task's loss function

due to a mismatch of intermediate output and label.

- Issues
 - 1. Limited representation power due to the shape of the intermediate output and loss function
 - 2. Necessary to tune loss coefficients (w_1, w_2) for each task as hyperparameters

- Issues
 - 1. Limited representation power due to the shape of the intermediate output and loss function
 - 2. Necessary to tune loss coefficients (w_1, w_2) for each task as hyperparameters

Applied to multi-step tasks: "Tau identification" and "Classification of H $\to \tau\tau$ / $Z_q \to \tau\tau$ "

Application in HEP: Classification of H $\rightarrow \tau\tau$ / Z $\rightarrow \tau\tau$

<u>Upstream task</u>: Tau ID (classification of τ -jet / light-jet)

Input: momentum vector of jet constituents (max. 50 constituents)

Output: Probability that a jet's origin is a tau particle

<u>Downstream task</u>: Event classification (classification of H / Z)

Input: Jets (max. 8) features in events

- four-vector
- output of the upstream task

Output: Probability that the event contains Higgs boson

<u>Dataset</u>

- Simulated data (Pythia8 + Delphes)
- $\langle \mu \rangle = 50$
- Only hadronically decaying tau (tau-jet)
- 100k events for $H \to \tau \tau$, $Z \to \tau \tau$

Deep learning model

- DeepSets are used for both tasks
 - DeepSets can handle a variable length of inputs
- Adam (Ir = 0.001) with early stopping (max patients = 10)
- Use cross-entropy loss for both tasks

Dependency of intermediate output size

- Bottleneck of information due to a direct use of upstream output as the input of downstream task
- Adequate size of intermediate output is important for the downstream task's performance.
 - Learning something useful other than tau prob
 - Simultaneous training of multiple models contributes to improve the performance

Adaptive optimization of loss coefficient

- There are some methods proposed to efficiently learn loss of $\mathcal{L}=w_1\mathcal{L}_1+w_2\mathcal{L}_2$ in the context of multitask learning
- Uncertainty weighting
 - Target function: $\mathcal{L} = \sum_i \left(\frac{1}{2\sigma_i^2} \mathcal{L}_i + \log \sigma_i\right)$ (σ_i is a trainable parameter, not NN outputs)
 - Loss coefficients are tuned depending on each loss absolute value.

Adaptive optimization of loss coefficient

 $\mathcal{L} = w_1 \mathcal{L}_1 + w_2 \mathcal{L}_2$

Loss coefficient $w_i \left(= \frac{1}{2\sigma_i} \right)$

Coefficients are automatically tuned

Algorithm	Upstream task AUC	Downstream task AUC
$(w_1, w_2) = (0.1, 1.0)$	0.9689	0.7993
$(w_1, w_2) = (1.0, 1.0)$	0.9748	0.8013
$(w_1, w_2) = (10, 1.0)$	0.9753	0.8005
Uncertainty weighting	0.9753	0.8015

 w_i is fixed in training. Necessary to tune HPs depending on \mathcal{L}_i

Good performance without tuning of w_i

Adaptive optimization of loss coefficient

$$\mathcal{L} = w_1 \mathcal{L}_1 + w_2 \mathcal{L}_2$$

Upstream task: Cross-entropy

Downstream task: Cross-entropy

Different scaled loss function

(Occurs when using both classification and regression)

Upstream task: Mean squared error

Downstream task: Cross-entropy

	(Cross-entropy, Cross-entropy)		(Mean squared error, Cross-entropy)	
Algorithm	Upstream task AUC	Downstream task AUC	Upstream task AUC	Downstream task AUC
$(w_1, w_2) = (0.1, 1.0)$	0.9689	0.7993	0.9618	0.7985
$(w_1, w_2) = (1.0, 1.0)$	0.9748	0.8013	0.9717	0.8008
$(w_1, w_2) = (10, 1.0)$	0.9753	0.8005	0.9746	0.8013
Uncertainty weighting	0.9753	0.8015	0.9747	0.8015

Summary

- The application of DL in HEP is growing, but almost of them are for the single task
- The importance of the overall optimization combining such single task might increase in the future.
- Defects in a training of multitask DL models and the mitigation are presented
 - Direct connection of two models causes information bottleneck.
 - → Addition of new NN increases information capability and enables to use label for upstream task
 - It is required to tune loss coefficients in the simultaneously training of multiple DL models
 - → Application of the methods in multitask learning can tune them automatically.

Backup

Adaptive optimization of loss coefficient: Result

Upstream task: Cross entropy, Downstream task: Cross entropy

		${\bf Task}\ 1\ {\bf AUC}$	Task 2 AUC
No simultane	ous Step-by-step	$\textbf{0.9753}\pm\textbf{0.0002}$	0.7969 ± 0.0011
training	$(w_1, w_2) = (0., 1.0)$	0.4717 ± 0.2335	0.7975 ± 0.0009
Fixed	$(w_1, w_2) = (0.1, 1.0)$	0.9689 ± 0.0008	0.7993 ± 0.0008
	$(w_1, w_2) = (1.0, 1.0)$	0.9748 ± 0.0003	$\boldsymbol{0.8013\pm0.0008}$
	$(w_1, w_2) = (10., 1.0)$	0.9753 ± 0.0003	0.8005 ± 0.0011
Adaptive	Uncertainty Weighting	0.9753 ± 0.0003	$\boldsymbol{0.8015\pm0.0011}$

Step-by-step training cannot propagate sufficient information for downstream task.

Training w/o upstream loss cannot propagate sufficient information for downstream task.

Upstream task: MSE, Downstream task: Cross entropy

		${\bf Task}\ 1\ {\bf AUC}$	${\it Task}\ 2\ {\it AUC}$
No simultane training	eous Step-by-step	0.9746 ± 0.0002	0.7974 ± 0.0010
Fixed	$(w_1, w_2) = (0., 1.0)$	0.4514 ± 0.2372	0.7977 ± 0.0009
	$(w_1, w_2) = (0.1, 1.0)$	0.9618 ± 0.0010	0.7985 ± 0.0010
	$(w_1, w_2) = (1.0, 1.0)$	0.9717 ± 0.0009	0.8008 ± 0.0008
	$(w_1, w_2) = (10., 1.0)$	0.9746 ± 0.0002	0.8013 ± 0.0010
Adaptive	Uncertainty Weighting	0.9747 ± 0.0003	$\bm{0.8015}\pm0.0010$

Fixed-coefficient method needs to tune the values.

Uncertainty Weighting has good performance without parameter tuning and independent of loss form.

Loss weights (Fixed coefficients)

TaulD: BCE, HiggsID: BCE

Loss weights (uncertainty weighting)

Event Classification Task Model: DeepSets

$$\phi_1 = (32, 32, 32)$$
, ReLU
 $\phi_2 = (32)$, Linear
 $\phi_3 = (32)$, Linear
 $\phi_4 = (64, 32, 1)$, ReLU

Tau Identification Task Model: DeepSets

$$\phi_1 = (32, 32, 32)$$
, ReLU
 $\phi_2 = (32)$, Linear
 $\phi_3 = (32)$, Linear
 $\phi_4 = (24)$, Linear
 $\phi_5 = (128, 128, 16)$, ReLU
 $\phi_6 = (64, 32, 1)$, ReLU

Shared latent space when the shared feature's size is 2

