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Detector Simulations: the ATLAS Example 2

SIM-2019-001

Facts

1. Full detector simulations (FullSim - full Geant4 tracking) are accurate but the 

largest CPU consumer


2. FullSim usage is unavoidable (CP calibrations, FastSim training, etc.)


3. EM calorimeters dominate the simulation load: 


a. low-energy photons from electron scattering


b. highly-segmented geometry


4. ~90% of photon simulation steps are transportation processes 
i.e. moving through detector geometry without interaction

Transportation

Photoelectric

Compton

C
ERN

-LH
CC

-2020-015

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/


Methodology



Photon Reduction 4

Range Cuts in Geant4

• Particle production energy threshold: 

If a secondary particle is going to have energy below the 
threshold, the particle is not generated and the energy is 
deposited along the path of the primary.


• Increased range cuts can reduce the number of photons, 
thus reduce the transportation steps and increase 
computational performance.


• Range cuts can be applied globally or to specific 
material


• Side-effect: “High” range cuts can degrade the 
accuracy of the simulation.

multi-layer calorimeter, absorber (effected volume) size 10mm
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Post Hoc Correction 5

ML-based correction

to correct range cut’ed full simulation


Classification NN to learn multi-dimensional correction weights


by considering all cell energy deposits


Benefit: Heterogeneous computing exploitation 
“Heterogeneous accelerated systems dominate high-performance computing today”


Geant4 simulations produced using CPU resources


ML-corrections is applied using GPU resources in a high-parallel fashion



Re-Weighting With Machine Learning 6

Re-weight the alternative simulation to the nominal one

learn multi-dimensional weights by considering all cell energy deposits

Map between two models (pdfs) with density ratio:

r( x ) =
p( x |θp)

q( x |θq)
θ be the range cut, x the energy deposits

Considering

and r( ⃗x ) =
𝒫(y = 1 | ⃗x )

1 − 𝒫(y = 1 | ⃗x )

Reference: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

P is the probability of a point x̅ belonging to the 
class 0 (e.g. nominal sim) or 1 (e.g. range-cut’ed sim)
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https://arxiv.org/abs/1506.02169


Experiments



International Large Detector 8

Case study: Demonstrate the method in a realistic HEP calorimeter

Detector proposal for the International Linear Collider

Calorimeter Material:

• Absorber: Tungsten

• Sensitive: Silicon

Calorimeter Structure:

• Layers: 30 (30 x 30 modules/layer)

• Cell dimensions: 5x5mm2

• Thickness: 0.3mm - 0.6mm

Reference: International Large Detector: Interim Design Report

https://arxiv.org/abs/2003.01116


Electron Showers 9

Geant4 simulation setup: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

Datasets generation

• Particle: Electrons (beam)

• Energy: 10 GeV

• Direction: perpendicular 

incident angle to ECal barrel 
(x=0, y=1, z=0)


• Position: at the start of ECal 
(x=0, y=1805, z=0)


• Global range cut: 

• Nominal: 0.1mm

• Alternative: 10 mm

Calorimeter cells are projected to a 30 x 30 x30 cube 

https://arxiv.org/abs/2005.05334


Cell-Level Observables 10

Subtle calorimeter image differences the ML should use to discriminate 
(nominal - alternative)



Global Observables 11

Event energy deposit Image sparsity Energy-weighted depth Energy-weighted 
transverse spread



Input: Calo image 
(30x30x30)

Classification Neural Network 12

3D Convolutional Neural Network

• The calorimeter cell energy deposits are projected into a 30x30x30 image


• Employ computer vision approach to discriminate nominal from alternative 
images


• Different normalizations are tried: 
maximum per image, global maximum, log-scale


• Structure:

1. 1x Convolution block: Conv3d (kernel=3x3x3) + MaxPool3d 

• Channels: 1 → 6


2. Flattening Layer

3. 4x Dense Layers

• Features: conv_out → 512 → 512 → 1


• Activations: LeakyReLU + Sigmoid (output)


• Dropout: after Conv block and each Dense


• Network configuration only minimally optimized

Developed in

arXiv:1804.08831Related work: DCTRGAN: Improving the Precision of Generative Models with Reweighting

Code repo: torch-reweighter

https://arxiv.org/abs/1804.08831
https://arxiv.org/abs/2009.03796
https://github.com/ekourlit/torch-reweighter


Evaluation / Weights Prediction 13

Evaluate the trained discriminator NN → extract weights from classification score

• able to correct global feature: 
event energy deposit  
while training only voxel-level features: 
cell energy deposits

weights calculation

• still not possible 
to successfully 
correct all global 
features shown



Simulation & Inference Timing 14

Timing measurements

How does the ILD Geant4 simulation time changes as 
function of (global) range cut applied?

• Can achieve about 10% (17%) speedup with 1mm 

(10mm) range cut

• Nominal simulation time / event: ~120 ms

• Saving about 12(20) ms per event


What is the ML algorithm inference / correction time?

GPU: RTX 2028 Super - 8Gb
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ATLAS ElectroMagnetic End-Cap Calorimeter 15

Range Cuts Speedup

ATLAS simulation time speedup by 
~15% when increasing range cut by 

factor of 10 (0.1 → 1.0 mm)

How to apply ML 
correction to ATLAS?

Detector considerations


1.Irregular geometry

2.Sparcity


Alternative data representations


1. Graphs

2. Point-clouds


The method shown is transparent to the 
ML algorithm architecture

SIM-2021-009

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2021-009/


Conclusions 16

solution to accelerate Geant4 simulation by applying 
aggressive range cuts and a post-hoc ML-based correction

showcased promising result correcting event energy deposit


Benefit: Heterogeneous computing utilisation


Targeting Geant4 simulation speedup ~15%



Backup



Re-Weighting With Machine Learning 18

Reference: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

Re-weight the alternative simulation to the nominal one

learn multi-dimensional weights by considering all cell energy deposits

Detailed proof: CARL - Theory

Map r to NN binary cross-entropy loss (L)

r( ⃗x ) =
𝒫(y = 1 | ⃗x )

1 − 𝒫(y = 1 | ⃗x )

where

ℒ(ϕ) = − 𝔼
p(x)

[log Dϕ( ⃗x )] − 𝔼
q(x)

[log (1 − Dϕ( ⃗x ))]

− 𝔼
p(x)

[log σ(log rϕ( ⃗x ))] − 𝔼
q(x)

[log (1 − σ(log rϕ( ⃗x )))]

The classifier is 
minimising the error on 

the rφ — which is an 
estimate of the r

https://arxiv.org/abs/1506.02169
https://sjiggins.web.cern.ch/sjiggins/CARL-Webpage/public/CARLInformation/Theory/Theory/

