

ML-Based Correction To Accelerate Geant4 Calorimeter Simulations

Evangelos Kourlitis, Walter Hopkins

Learning to Discover 2022 - April 29th 2022

Detector Simulations: the ATLAS Example

Facts

- 1. Full detector simulations (FullSim full Geant4 tracking) are accurate but the largest CPU consumer
- 2. FullSim usage is unavoidable (CP calibrations, FastSim training, etc.)
- 3. **EM calorimeters** dominate the simulation load:
 - a. low-energy photons from electron scattering
 - b. highly-segmented geometry
- 4. ~90% of photon simulation steps are transportation processes i.e. moving through detector geometry without interaction

Transportation
Photoelectric
Compton

Methodology

Photon Reduction

Range Cuts in Geant4

- Particle production energy threshold:
 If a secondary particle is going to have energy below the threshold, the particle is not generated and the energy is deposited along the path of the primary.
- Increased range cuts can reduce the number of photons, thus reduce the transportation steps and increase computational performance.
- Range cuts can be applied globally or to specific material
- Side-effect: "High" range cuts can degrade the accuracy of the simulation.

multi-layer calorimeter, absorber (effected volume) size 10mm

Post Hoc Correction

ML-based correction

to correct range cut'ed full simulation

Classification NN to learn multi-dimensional correction weights

by considering all cell energy deposits

Benefit: Heterogeneous computing exploitation

"Heterogeneous accelerated systems dominate high-performance computing today"

Geant4 simulations produced using CPU resources

ML-corrections is applied using GPU resources in a high-parallel fashion

Re-Weighting With Machine Learning

Re-weight the alternative simulation to the nominal one

learn multi-dimensional weights by considering all cell energy deposits

Map between two models (pdfs) with density ratio:

$$r(\overrightarrow{x}) = \frac{p(\overrightarrow{x} \mid \theta_p)}{q(\overrightarrow{x} \mid \theta_q)}$$

 θ be the range cut, x the energy deposits

Considering

$$p(ec{x}|ec{ heta}_p)=\mathcal{P}(ec{x}|ec{ heta}_p,y=0)$$

$$q(ec{x}|ec{ heta}_q)=\mathcal{P}(ec{x}|ec{ heta}_q,y=1)$$

Bayes' theorem

and
$$\mathcal{P}(\vec{x}|y) = \frac{\mathcal{P}(y|\vec{x})\mathcal{P}(\vec{x})}{\mathcal{P}(y)}$$
 \longrightarrow $r(\vec{x}) = \frac{\mathcal{P}(y=1|\vec{x})}{1-\mathcal{P}(y=1|\vec{x})}$

P is the probability of a point \bar{x} belonging to the class 0 (e.g. nominal sim) or 1 (e.g. range-cut'ed sim)

Experiments

International Large Detector

Case study: Demonstrate the method in a realistic HEP calorimeter

Detector proposal for the International Linear Collider

Calorimeter Material:

• **Absorber**: Tungsten

• **Sensitive**: Silicon

Calorimeter Structure:

• **Layers:** 30 (30 x 30 modules/layer)

• Cell dimensions: 5x5mm²

• Thickness: 0.3mm - 0.6mm

Figure 5.8. Mechanical structure of the electromagnetic calorimeter: left: end-cap (top) and barrel (bottom); right: individual barrel module.

Electron Showers

Datasets generation

• Particle: Electrons (beam)

• Energy: 10 GeV

- Direction: perpendicular incident angle to ECal barrel (x=0, y=1, z=0)
- **Position**: at the start of ECal (x=0, y=1805, z=0)
- Global range cut:
 - Nominal: 0.1mm
 - Alternative: 10 mm

Calorimeter cells are projected to a 30 x 30 x30 cube

Cell-Level Observables

Subtle calorimeter image differences the ML should use to discriminate

(nominal - alternative)

Global Observables

Classification Neural Network

3D Convolutional Neural Network

- The calorimeter cell energy deposits are projected into a 30x30x30 image
- Employ computer vision approach to discriminate *nominal* from *alternative* images
- Different normalizations are tried: maximum per image, global maximum, log-scale
- Structure:
 - 1. 1x Convolution block: Conv3d (kernel=3x3x3) + MaxPool3d
 - Channels: $1 \rightarrow 6$
 - 2. Flattening Layer
 - 3. 4x Dense Layers
 - Features: $conv_out \rightarrow 512 \rightarrow 512 \rightarrow 1$
- Activations: LeakyReLU + Sigmoid (output)
- Dropout: after Conv block and each Dense
- Network configuration only minimally optimized

Developed in

Code repo: torch-reweighter

(30x30x30)

Evaluation / Weights Prediction

Evaluate the trained discriminator $NN \rightarrow extract$ weights from classification score

- able to correct global feature:
 event energy deposit
 while training only voxel-level features:
 cell energy deposits
- still not possible to successfully correct all global features shown

Simulation & Inference Timing

Timing measurements

How does the ILD Geant4 simulation time changes as function of (global) range cut applied?

- Can achieve about 10% (17%) speedup with 1mm (10mm) range cut
- Nominal simulation time / event: ~120 ms
- Saving about 12(20) ms per event

What is the ML algorithm inference / correction time?

GPU: RTX 2028 Super - 8Gb

ATLAS ElectroMagnetic End-Cap Calorimeter

Range Cuts Speedup

ATLAS simulation time speedup by $\sim 15\%$ when increasing range cut by factor of $10 (0.1 \rightarrow 1.0 \text{ mm})$

How to apply ML correction to ATLAS?

Detector considerations

- 1. Irregular geometry
- 2. Sparcity

Alternative data representations

- 1. Graphs
- 2. Point-clouds

The method shown is transparent to the ML algorithm architecture

Conclusions

solution to accelerate Geant4 simulation by applying aggressive range cuts and a post-hoc ML-based correction showcased promising result correcting event energy deposit

Benefit: Heterogeneous computing utilisation

Targeting Geant4 simulation speedup ~15%

Backup

Re-Weighting With Machine Learning

Re-weight the alternative simulation to the nominal one

learn multi-dimensional weights by considering all cell energy deposits

Map r to NN binary cross-entropy loss (L)

$$r(\overrightarrow{x}) = \frac{\mathscr{P}(y = 1 \mid \overrightarrow{x})}{1 - \mathscr{P}(y = 1 \mid \overrightarrow{x})} \qquad \mathscr{L}(\phi) = - \underset{p(x)}{\mathbb{E}} [\log D_{\phi}(\overrightarrow{x})] - \underset{q(x)}{\mathbb{E}} [\log (1 - D_{\phi}(\overrightarrow{x}))]$$

$$D_{\phi}(ec{m{x}}) = \mathcal{P}(y=1|ec{m{x}}) = \sigma(\log r(ec{m{x}}))$$
 where $\sigma^{-1}(
ho) = rac{
ho}{1-
ho}$

$$- \mathop{\mathbb{E}}_{p(x)} [\log \sigma(\log r_{\phi}(\overrightarrow{x}))] - \mathop{\mathbb{E}}_{q(x)} [\log (1 - \sigma(\log r_{\phi}(\overrightarrow{x})))]$$

The classifier is minimising the error on the r_{φ} – which is an estimate of the r

