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Lattice Field Theory & Monte Carlo Simulations

Quarks

@ Path integral formulation & imaginary time &
discretization & Monte Carlo simulations i

4 a{

define & solve a field theory non-perturbatively
Lattice QCD: Monte Carlo

Simulations
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@ Monte Carlo simulations:
o Draw samples from %e_s[‘/’] distribution (weight of each path/configuration)
o Methods based on local updating suffer from: critical slowing down,

topological freezing, - - -
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Alternative methods? Normalizing Flows, ...

@ Normalizing Flows for Lattice Field Theory: new ideas (for scalar theories) are
explored first in a series of papers by a group from MIT & Deep Mind:
[arXiv:1904.12072, 2002.02428, & 2003.06413]

Start from a simple stochastic process and transform
it to the one of interest: p[o] = e 5%l /2
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@ Principle of minimum discrimination information: (reverse) Kullback-Leibler
(KL) divergences measure how similar two distributions are:

Dxi(qllp) = /d¢ q[qﬁ](logq[qﬁ] — 10:;/)})}) >0
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Designing Networks for Normalizing Flow
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Designing Networks for Normalizing Flow

@ Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

@ Widely used layers of neural networks

Linear (Dense) Net

o Great for small-size lattice e Economic w.r.t parameters

o Number of parameter x N> o Many layers needed to correlate a big lattice
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Designing Networks for Normalizing Flow

@ Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

@ Widely used layers of neural networks

Linear (Dense) Net

o Great for small-size lattice e Economic w.r.t parameters

o Number of parameter x N> o Many layers needed to correlate a big lattice

@ Other possibilities?

What about constructing layers inspired by effective theories to propagate
correlation in more efficient ways? J
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Effective Action & Power Spectral Density

@ Let us consider a scalar field in n spacetime dimensions with action

J

1 1 . .

St = [ @ [ 30,000+ Jre* + 3 gy
=3

@ We now define the quantum effective action
1 ~ . . o\ ~
L¢] = 3 /d”k o(—k) (k:z +m? — H(k‘ﬂ)gﬁ(kz) + -
The quantum action has the property that the tree-level Feynman diagrams it
generates give the complete scattering amplitude of the original theory.

° (AZ +m? — H(kz)) is the inverse of two-point correlator/Green's function.

° <k‘2 +m? — H(kz)) is the inverse of power spectral density.
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A close look to PSD:
@ The inverse of PSD of a 1-dim double-well potential (from MC simulation)
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@ Looks like a line with respect to k= ZSing, but it is not!

@ 1/PSD can be manipulated using a positive, monotonically increasing
function of k2; ML techniques can be employed to construct such a function.

@ Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales.
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The inverse of PSD for a 2-dim double-well potential (from MC simulation)
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Inspired by mean-field theory

One can build a general function (a neural network) to map the mean
field to a mean field of interest
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For the sake of comparison with [arXiv:2105.12481, Debbio et.al.| we consider this
action

(6] = [ aa* { 5000007 + "ot + X0t}

where k = 3, m? = —43, and A = 0.5, with 3 € [0.5,0.8] in our simulations.

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

@ economic w.r.t. parameters

@ do not require many layers of ConvNet to propagate correlations
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A model with
1 an initial layer to manipulate PSD of white normal noise & general activation

2 followed by two layers of affine coupling implemented with ConvNet &
general activation

The last column shows only accepted configurations (k = 0.6 & L = 32)
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Acceptance rate & critical point & large volume
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o # parameters ~ 3.4K for all cases

@ Trained with transfer learning
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Compare with
[arXiv:2105.12481, Debbio et.al.]
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Magnetization & critical point & (un)broken phase
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Uncertainty in log(q/p) & acceptance rate
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The uncertainty in log(g/p) determines acceptance rate
The uncertainty in log(g/p) scales with v/volume at large volumes
Justification: divide the lattice into n blocks with almost independent fluctuations

Optimization for k = 0.5 for L € {8,16,32,64}:
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Uncertainty in log(q/p) & acceptance rate

@ Toy model: z ~ N(0,0?) and y is the output of the “Metropolis Filter”
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Concluding points & dealing with poor acceptance rate

o We briefly discussed how to use effective theories to design layers that affect
the data at both longé&short scales with limited number of parameters.
@ Still, the acceptance rate drops fast as the lattice volume increases.
@ Suggestion: Divide&Conquer
o Instead of proposing a completely new sample, we can divide the current
sample into blocks & update block by block.
e The block size can be chosen such that the acceptance rate of updating a
blocks gets relatively large (about 1/4 or so).
o We can follow the strategy of hit-till-accepted for each block.
o Needs to be checked: auto-correlation; in progress...
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