
Generative models for scalar field theories:
how to deal with poor scaling?

Javad Komijani & Marina Marinkovic

Learning to Discover
29 April 2022

JK (ETH) 1 / 15

Lattice Field Theory & Monte Carlo Simulations

Path integral formulation & imaginary time &
discretization & Monte Carlo simulations

⇓
define & solve a field theory non-perturbatively

〈O〉 =
1

Z

∫
Dφ O[φ] e−S[φ]

Monte Carlo simulations:
Draw samples from 1

Z
e−S[φ] distribution (weight of each path/configuration)

Methods based on local updating suffer from: critical slowing down,
topological freezing, · · ·

update

e−S[φ]

switch

Metropolis

delay

ACCEPT/REJECT

φ(x)

on/off

JK (ETH) 2 / 15

Alternative methods? Normalizing Flows, ...

Normalizing Flows for Lattice Field Theory: new ideas (for scalar theories) are
explored first in a series of papers by a group from MIT & Deep Mind:
[arXiv:1904.12072, 2002.02428, & 2003.06413]

Start from a simple stochastic process and transform
it to the one of interest: p[φ] = e−S[φ]/Z

prior transform

action

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

φ(x)

q[φ]

p[φ] log q/p

on/off

Principle of minimum discrimination information: (reverse) Kullback-Leibler
(KL) divergences measure how similar two distributions are:

DKL(q||p) ≡
∫
dφ q[φ]

(
log q[φ]− log p[φ]

)
≥ 0

JK (ETH) 3 / 15

Designing Networks for Normalizing Flow

JK (ETH) 4 / 15

Designing Networks for Normalizing Flow

Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

Widely used layers of neural networks

Linear (Dense) Net

Great for small-size lattice

Number of parameter ∝ N2

Conv Net

Economic w.r.t parameters

Many layers needed to correlate a big lattice

Other possibilities?

What about constructing layers inspired by effective theories to propagate

correlation in more efficient ways?

JK (ETH) 5 / 15

Designing Networks for Normalizing Flow

Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

Widely used layers of neural networks

Linear (Dense) Net

Great for small-size lattice

Number of parameter ∝ N2

Conv Net

Economic w.r.t parameters

Many layers needed to correlate a big lattice

Other possibilities?

What about constructing layers inspired by effective theories to propagate

correlation in more efficient ways?

JK (ETH) 5 / 15

Effective Action & Power Spectral Density

Let us consider a scalar field in n spacetime dimensions with action

S[φ] =

∫
dnx

1

2
∂µφ∂µφ+

1

2
m2φ2 +

J∑
j=3

gjφ
j

 .

We now define the quantum effective action

Γ[φ] =
1

2

∫
dnk φ̃(−k)

(
k2 +m2 −Π(k2)

)
φ̃(k) + · · ·

The quantum action has the property that the tree-level Feynman diagrams it
generates give the complete scattering amplitude of the original theory.(
k2 +m2 −Π(k2)

)
is the inverse of two-point correlator/Green’s function.(

k2 +m2 −Π(k2)
)

is the inverse of power spectral density.

JK (ETH) 6 / 15

A close look to PSD:

The inverse of PSD of a 1-dim double-well potential (from MC simulation)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k̂2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1/
P

S
D 0.000 0.025 0.050 0.075

0.00

0.05

0.10

3.6 3.7 3.8 3.9 4.0
3.6

3.8

4.0

−4 −2 0 2 4
0.0

0.1

0.2

0.3

Histogram of xn

−4 −2 0 2 4
−4

−2

0

2

4
hist2d of xn & xn+1

0.0

0.1

0.2

0.3

0.4

Looks like a line with respect to k̂ = 2 sin k
2 , but it is not!

1/PSD can be manipulated using a positive, monotonically increasing

function of k̂2; ML techniques can be employed to construct such a function.
Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales.

JK (ETH) 7 / 15

The inverse of PSD for a 2-dim double-well potential (from MC simulation)

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))

2 +
m2

2
φ(x)2 + λφ(x)4

}

@ Broken Phase

PSD at k2 = 0 blows up

Mean-field potential turns to a double-well potential

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean

field to a mean field of interest

JK (ETH) 8 / 15

For the sake of comparison with [arXiv:2105.12481, Debbio et.al.] we consider this
action

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))2 +

m2

2
φ(x)2 + λφ(x)4

}
where κ = β, m2 = −4β, and λ = 0.5, with β ∈ [0.5, 0.8] in our simulations.

Goal:

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

economic w.r.t. parameters

do not require many layers of ConvNet to propagate correlations

JK (ETH) 9 / 15

A model with

1 an initial layer to manipulate PSD of white normal noise & general activation

2 followed by two layers of affine coupling implemented with ConvNet &
general activation

The last column shows only accepted configurations (κ = 0.6 & L = 32)

JK (ETH) 10 / 15

Acceptance rate & critical point & large volume

0.5 0.6 0.7 0.8

κ

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

pt
-r

at
e

L
8

12

16

20

32

46

64

L ∈ [8, 64]

parameters ≈ 3.4K for all cases

Trained with transfer learning

Compare with
[arXiv:2105.12481, Debbio et.al.]

L ∈ [6, 20]

parameters ∼ 100K

JK (ETH) 11 / 15

Magnetization & critical point & (un)broken phase

0.50 0.55 0.60 0.65 0.70 0.75 0.80

κ

−1.0

−0.5

0.0

0.5

1.0

φ̄

L = 32

0.50 0.55 0.60 0.65 0.70 0.75 0.80

κ

−1.0

−0.5

0.0

0.5

1.0

φ̄

L = 64

JK (ETH) 12 / 15

Uncertainty in log(q/p) & acceptance rate

The uncertainty in log(q/p) determines acceptance rate

The uncertainty in log(q/p) scales with
√

volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations

Optimization for κ = 0.5 for L ∈ {8, 16, 32, 64}:

0 2000 4000 6000 8000 10000

epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

p
t

ra
te

0 2000 4000 6000 8000

epoch

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
(q
/
p
)

8

16

32

64

JK (ETH) 13 / 15

Uncertainty in log(q/p) & acceptance rate

Toy model: x ∼ N(0, σ2) and y is the output of the “Metropolis Filter”

prior Metropolis

delay

x y

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

y/(2/2)
y/

accept rate

0 1 2 3 4

10 2

10 1

100

y/(2/2)
y/

accept rate

20 15 10 5 0 5 10
0.0

0.5

1.0
x = 0.125
normal; = 0.5
filtered; r = 0.72

20 15 10 5 0 5 10
0.0

0.2

0.4
x = 0.5
normal; = 1
filtered; r = 0.48

20 15 10 5 0 5 10
0.0

0.1

0.2
x = 2
normal; = 2
filtered; r = 0.16

20 15 10 5 0 5 10
0.00

0.05

0.10
x = 8
normal; = 4
filtered; r = 0.0048

JK (ETH) 14 / 15

Concluding points & dealing with poor acceptance rate

We briefly discussed how to use effective theories to design layers that affect
the data at both long&short scales with limited number of parameters.
Still, the acceptance rate drops fast as the lattice volume increases.
Suggestion: Divide&Conquer

Instead of proposing a completely new sample, we can divide the current
sample into blocks & update block by block.
The block size can be chosen such that the acceptance rate of updating a
blocks gets relatively large (about 1/4 or so).
We can follow the strategy of hit-till-accepted for each block.
Needs to be checked: auto-correlation; in progress...

prior transform

action

switch

/ Metropolis

delay

gradient descent

block size

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

φ(x)

q[φ]

p[φ] log q/p

on/off

JK (ETH) 15 / 15

	Lattice Field Theory & Monte Carlo Simulations
	Machine Learning & Lattice Field Theory
	Designing Networks for Normalizing Flow

