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Lattice Field Theory & Monte Carlo Simulations

Path integral formulation & imaginary time &
discretization & Monte Carlo simulations

⇓
define & solve a field theory non-perturbatively

〈O〉 =
1

Z

∫
Dφ O[φ] e−S[φ]

Monte Carlo simulations:
Draw samples from 1

Z
e−S[φ] distribution (weight of each path/configuration)

Methods based on local updating suffer from: critical slowing down,
topological freezing, · · ·

update

e−S[φ]

switch

Metropolis

delay

ACCEPT/REJECT

φ(x)

on/off
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Alternative methods? Normalizing Flows, ...

Normalizing Flows for Lattice Field Theory: new ideas (for scalar theories) are
explored first in a series of papers by a group from MIT & Deep Mind:
[arXiv:1904.12072, 2002.02428, & 2003.06413]

Start from a simple stochastic process and transform
it to the one of interest: p[φ] = e−S[φ]/Z

prior transform

action

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

φ(x)

q[φ]

p[φ] log q/p

on/off

Principle of minimum discrimination information: (reverse) Kullback-Leibler
(KL) divergences measure how similar two distributions are:

DKL(q||p) ≡
∫
dφ q[φ]

(
log q[φ]− log p[φ]

)
≥ 0
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Designing Networks for Normalizing Flow
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Designing Networks for Normalizing Flow

Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

Widely used layers of neural networks

Linear (Dense) Net

Great for small-size lattice

Number of parameter ∝ N2

Conv Net

Economic w.r.t parameters

Many layers needed to correlate a big lattice

Other possibilities?

What about constructing layers inspired by effective theories to propagate

correlation in more efficient ways?

JK (ETH) 5 / 15



Designing Networks for Normalizing Flow

Checkerboard strategy for Normalizing flow is widely used: divide the data to
active & passive, update the active, and....

Widely used layers of neural networks

Linear (Dense) Net

Great for small-size lattice

Number of parameter ∝ N2

Conv Net

Economic w.r.t parameters

Many layers needed to correlate a big lattice

Other possibilities?

What about constructing layers inspired by effective theories to propagate

correlation in more efficient ways?

JK (ETH) 5 / 15



Effective Action & Power Spectral Density

Let us consider a scalar field in n spacetime dimensions with action

S[φ] =

∫
dnx

1

2
∂µφ∂µφ+

1

2
m2φ2 +

J∑
j=3

gjφ
j

 .

We now define the quantum effective action

Γ[φ] =
1

2

∫
dnk φ̃(−k)

(
k2 +m2 −Π(k2)

)
φ̃(k) + · · ·

The quantum action has the property that the tree-level Feynman diagrams it
generates give the complete scattering amplitude of the original theory.(
k2 +m2 −Π(k2)

)
is the inverse of two-point correlator/Green’s function.(

k2 +m2 −Π(k2)
)

is the inverse of power spectral density.
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A close look to PSD:

The inverse of PSD of a 1-dim double-well potential (from MC simulation)
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Looks like a line with respect to k̂ = 2 sin k
2 , but it is not!

1/PSD can be manipulated using a positive, monotonically increasing

function of k̂2; ML techniques can be employed to construct such a function.
Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales.

JK (ETH) 7 / 15



The inverse of PSD for a 2-dim double-well potential (from MC simulation)

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))

2 +
m2

2
φ(x)2 + λφ(x)4

}

@ Broken Phase

PSD at k2 = 0 blows up

Mean-field potential turns to a double-well potential

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean

field to a mean field of interest
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For the sake of comparison with [arXiv:2105.12481, Debbio et.al.] we consider this
action

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))2 +

m2

2
φ(x)2 + λφ(x)4

}
where κ = β, m2 = −4β, and λ = 0.5, with β ∈ [0.5, 0.8] in our simulations.

Goal:

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

economic w.r.t. parameters

do not require many layers of ConvNet to propagate correlations
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A model with

1 an initial layer to manipulate PSD of white normal noise & general activation

2 followed by two layers of affine coupling implemented with ConvNet &
general activation

The last column shows only accepted configurations (κ = 0.6 & L = 32)
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Acceptance rate & critical point & large volume
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L ∈ [8, 64]

# parameters ≈ 3.4K for all cases

Trained with transfer learning

Compare with
[arXiv:2105.12481, Debbio et.al.]

L ∈ [6, 20]

# parameters ∼ 100K

JK (ETH) 11 / 15



Magnetization & critical point & (un)broken phase
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Uncertainty in log(q/p) & acceptance rate

The uncertainty in log(q/p) determines acceptance rate

The uncertainty in log(q/p) scales with
√

volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations

Optimization for κ = 0.5 for L ∈ {8, 16, 32, 64}:
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Uncertainty in log(q/p) & acceptance rate

Toy model: x ∼ N(0, σ2) and y is the output of the “Metropolis Filter”

prior Metropolis

delay
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Concluding points & dealing with poor acceptance rate

We briefly discussed how to use effective theories to design layers that affect
the data at both long&short scales with limited number of parameters.
Still, the acceptance rate drops fast as the lattice volume increases.
Suggestion: Divide&Conquer

Instead of proposing a completely new sample, we can divide the current
sample into blocks & update block by block.
The block size can be chosen such that the acceptance rate of updating a
blocks gets relatively large (about 1/4 or so).
We can follow the strategy of hit-till-accepted for each block.
Needs to be checked: auto-correlation; in progress...

prior transform

action

switch

/ Metropolis

delay

gradient descent

block size

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

φ(x)

q[φ]

p[φ] log q/p

on/off
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