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PARTICLE TRACKING
TRADITIONAL TRACKING METHODS 

Iterative tracking algorithms are based on the combinatorial 

Kalman filter (CKF), iteratively extending and fitting tracks from 

an initial seed 

Connecting the dots: applying deep learning techniques in HEP | EP News (cern.ch)

Traditional 

tracking 

algorithms scale 

worse-than-

linearly with 

increasing pileup

[PDF] Kalman Filter Tracking on Parallel 

Architectures | Semantic Scholar



GNN TRACKING
EDGE CLASSIFICATION PARADIGM

Edge Classification Task

• Draw edges to hypothesize various particle 

trajectories, train a GNN to classify edges

• Use edge weights to produce tracks (i.e. apply a 

threshold to produce disjointed subgraphs)

• Key steps (general to many GNN workflows)

1) Graph construction from underlying data

2) GNN inference

3) Post-processing of GNN predictions



EDGE CLASSIFICATION / 
OBJECT CONDENSATION 
STRATEGY OVERVIEW
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GRAPH NEURAL 
NETWORKS
NEURAL MESSAGE PASSING

Message Passing (MPNN) Layers:
Framework for equivariant graph updates

At each layer k, compute messages 

in each node’s neighborhood: 
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Aggregate messages in a 

permutation-invariant way:
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Update the node’s state based on 

the messages it received:
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Figure Source: 

https://deepmind.com/blog/article/Towards-

understanding-glasses-with-graph-neural-networks

Input graph

Neural Message Passing

New graph embedding

GNN comprised of multiple 

message passing layers 
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GRAPH NEURAL 
NETWORKS
REPEATED MESSAGE PASSING

Generic MPNN Layers:
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Node Updates: collecting info from each node’s k-hop neighborhood 

at the kth layer

Outputs: node-level, edge-level, or graph-level predictions

GNN-Wednesday.pdf (petar-v.com)



Interaction Networks:

Even a single interaction network layer (depth-1 GNN) can 

achieve excellent edge classification accuracy

• (Edge Block) compute an interaction between two 

entities

• (Node Block) use the interaction to update the state of 

the receiving node

[1612.00222] Interaction Networks for Learning about Objects, Relations and Physics (arxiv.org)

simple architecture explored in 2103.16701.pdf (arxiv.org)

edge classification performance on a single graph

loss/accuracy training curves on a range of graph sizes



GRAPH CONSTRUCTION
EACH EVENT BROKEN (8X8) PHI-ETA SECTORS

• Truth cuts

• track pT > 1.0 GeV

• remove_noise: true

• Geometric edge selections:

• phi_slope < 0.007

• z0 < 350 mm

• n_phi_sectors: 8

• n_eta_sectors: 8

• phi sector overlap: 0.08

• eta sector overlap: 0.125
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EDGE CLASSIFICATION
BINARY CROSS ENTROPY

• BCE as usual to learn optimal edge weights
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Edge weights converge 

to high accuracy at 

intermediate stages of 

the GNN



OBJECT CONDENSATION
POTENTIAL LOSS + 
BACKGROUND SUPPRESSION

• Predict condensation “likelihood” (                )

and learned clustering coordinates (             )

• At truth level, use charge likelihoods to find “most 

likely” condensation point per track

• Attract hits belonging to the same track, repulse 

others (including noise)

Nodes are attracted 

to their particle’s 

condensation point 

and repulsed from 

other particles’



OBJECT 
CONDENSATION
TOTAL LOSS

Edge Classification

Attraction/Repulsion 

Background Suppression → scale 

by 

attract/repulse loss

epoch

epoch epoch

train loss test loss

(quadratic) (hinge)



POSTPROCESSING
DBSCAN → TRACK FINDING

• GNN output is the set of hit coordinates in the 

learned (h1, h2) space: 

• Need to run DBSCAN to generate cluster 

labels (clustering parameters are optimized 

per on graph sector):



associated t TRACKING EFFICIENCIES
VARIOUS DEFINITIONS 

• Perfect Match: fraction of clusters containing 

every hit associated to a particle and no others 

• Double Majority: fraction of clusters comprised 

of >50% of same-particle hits and containing 

>50% of that particle’s hits

• LHC Loose Match: fraction of clusters 

comprised of >75% same-particle hits 

assigned to green particle

assigned to orange particle

assigned to red particle



EXAMPLE: EVENT #1127
MODEL 10

summary of full event 

perfect match fraction: 0.862 

double majority fraction: 0.945

lhc loose fraction: 0.906

Sector 24:

unique labels: 8

perfect match fraction: 1.0

double majority fraction: 1.0

lhc loose fraction: 1.0

Sector 25

unique labels: 32 

perfect match fraction: 0.879 

double majority fraction: 0.939

lhc loose fraction: 0.939

Sector 26

unique labels: 36 

perfect match fraction: 0.914 

double majority fraction: 0.943 

lhc loose fraction: 0.943

Sector 27

unique labels: 23 

perfect match fraction: 0.762 

double majority fraction: 0.905 

lhc loose fraction: 0.810

NOTE: Cluster colors are 

DBSCAN labels, not truth 

labels! 



EXAMPLE: EVENT #1823
MODEL 10

Sector 33

unique labels: 20 

perfect match fraction: 0.947

double majority fraction: 0.947 

lhc loose fraction: 0.947

Sector 34

unique labels: 23 

perfect match fraction: 0.652

double majority fraction: 0.826 

lhc loose fraction: 0.739

Sector 35

number of labels: 21 

perfect match fraction: 0.810 

double majority fraction: 0.952 

lhc loose fraction: 0.905

Sector 32

unique labels: 2 

perfect match fraction: 1.0 

double majority fraction: 1.0 

lhc loose fraction: 1.0

NOTE: Cluster colors are 

DBSCAN labels, not truth 

labels! 

summary of full event 

perfect match fraction: 0.860 

double majority fraction: 0.939 

lhc loose fraction: 0.909



TRACKING EFFICIENCIES
AVERAGED ACROSS ~104 GRAPHS

• Per-graph summary

• Perfect Match Fraction: 0.827

• Double Majority Fraction: 0.932

• LHC Loose Fraction: 0.890

• Per eta-range: 

• Performance decreases with graph 

construction purity (decreasing eta)

|𝜂| LHC Loose 

Match

Double 

Majority

Perfect 

Match

Fake 

Fraction 

(0, 1.25) 0.851 +/-

0.070

0.905 +/-

0.058 

0.779 +/-

0.099 

0.091 +/-

0.072

(1.25, 2.5) 0.895 +/-

0.062

0.934 +/-

0.051

0.842 +/-

0.087

0.071 +/-

0.065

(2.5, 3.75) 0.939 +/-

0.053

0.966 +/-

0.044

0.884 +/-

0.079

0.083 +/-

0.081

(3.75, 5) 0.986 +/-

0.083

0.997 +/-

0.075

0.969 +/-

0.106

0.036 +/-

0.128

Graph construction purity/efficiency isn’t consistent among the eta ranges! 



CONCLUSIONS
AND FUTURE STEPS

• GNN-based tracking typically involves 1) graph 

construction, 2) GNN inference (edge 

classification, object condensation), and 3) 

postprocessing (track finding)

• Example GNN pipeline based on edge 

classification and object condensation

• Object condensation also accommodates 

track property predictions! → next step

• Future work: 

• Improve graph construction in central barrel 

region

• Relax the truth cuts (re-impose noise, zero the 

pT cut)

• Incorporate track parameter predictions 

• Explore dynamic graph construction 

techniques like GravNet (no edge 

classification)

• Full hyperparameter scan over network 

size/structure


