

OBJECT CONDENSATION
FOR GNN-BASED PARTICLE TRACKING
GAGE DEZOORT
04/27/2022

Iterative tracking algorithms are based on the combinatorial Kalman filter (CKF), iteratively extending and fitting tracks from an initial seed

Connecting the dots: applying deep learning techniques in HEP | EP News (cern.ch)

GNN TRACKING EDGE CLASSIFICATION PARADIGM

Edge Classification Task

 Draw edges to hypothesize various particle trajectories, train a GNN to classify edges

- Use edge weights to produce tracks (i.e. apply a threshold to produce disjointed subgraphs)
- **Key steps** (general to many GNN workflows)
 - 1) Graph construction from underlying data
 - 2) GNN inference
 - 3) Post-processing of GNN predictions

EDGE CLASSIFICATION / OBJECT CONDENSATION STRATEGY OVERVIEW

Input Graph

Node Features: $x_i = (r_i, \phi_i, z_i)$

Edge Features: $a_{ij} = (\Delta r_{ij}, \Delta \phi_{ij}, \Delta \eta_{ij}, \Delta R_{ij})$

Edge Classifier (updates edge features)

Node Features: $x_i = (r_i, \phi_i, z_i)$

Edge Features:

 $\tilde{a}_{ij} = (w_{ij}, \Delta r_{ij}, \Delta \phi_{ij}, \Delta \eta_{ij}, \Delta R_{ij})$

Opacity ~ Edge Score (w_{ij})

Object Condensation (coordinates in learned clustering space)

New Coordinates: $h_i \in \mathbb{R}^{d_{ ext{out}}}$

Condensation Strength: $\beta_i \in (0,1)$

GRAPH NEURAL NETWORKS NEURAL MESSAGE PASSING

Message Passing (MPNN) Layers:

Framework for equivariant graph updates

At each layer *k*, compute messages in each node's neighborhood:

$$\boldsymbol{m}_{uv}^{(k)} = \psi^{(k)} \left(\boldsymbol{h}_{u}^{(k-1)}, \boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{e}_{uv}^{(k-1)} \right)$$

Aggregate messages in a permutation-invariant way:

$$a_u^{(k)} = \bigoplus_{v \in N(u)} m_{uv}^{(k)}$$

Update the node's state based on the messages it received:

$$\boldsymbol{h}_{u}^{(k)} = \phi^{(k)}(\boldsymbol{h}_{u}^{(k-1)}, \boldsymbol{a}_{u}^{(k)})$$

GNN comprised of multiple message passing layers

Input graph

Neural Message Passing

New graph embedding

Figure Source:

https://deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks

GRAPH NEURAL NETWORKS REPEATED MESSAGE PASSING

Generic MPNN Layers:

$$\boldsymbol{h}_{u}^{(k)} = \phi^{(k)} \left[\boldsymbol{h}_{u}^{(k-1)}, \bigoplus_{v \in N(u)} \psi^{(k)} \left(\boldsymbol{h}_{u}^{(k-1)}, \boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{e}_{uv}^{(k-1)} \right) \right]$$

Node Updates: collecting info from each node's k-hop neighborhood at the k^{th} layer

Outputs: node-level, edge-level, or graph-level predictions

loss/accuracy training curves on a range of graph sizes

edge classification performance on a single graph

Interaction Networks:

[1612.00222] Interaction Networks for Learning about Objects, Relations and Physics (arxiv.org)

Even a single interaction network layer (depth-1 GNN) can achieve excellent edge classification accuracy

- (**Edge Block**) compute an interaction between two entities
- (Node Block) use the interaction to update the state of the receiving node

simple architecture explored in 2103.16701.pdf (arxiv.org)

GRAPH CONSTRUCTION

EACH EVENT BROKEN (8X8) PHI-ETA SECTORS

- Truth cuts
 - track $p_T > 1.0 \text{ GeV}$
 - remove_noise: true
- Geometric edge selections:
 - phi_slope < 0.007
 - z0 < 350 mm
 - n_phi_sectors: 8
 - n_eta_sectors: 8
 - phi sector overlap: 0.08
 - eta sector overlap: 0.125

GRAPH CONSTRUCTION

EACH EVENT BROKEN (8X8) PHI-ETA SECTORS

- Truth cuts
 - track $p_T > 1.0 \text{ GeV}$
 - remove_noise: true
- Geometric edge selections:
 - phi_slope < 0.007
 - z0 < 350 mm
 - n_phi_sectors: 8
 - n_eta_sectors: 8
 - phi sector overlap: 0.08
 - eta sector overlap: 0.125

Edge Classifier (updates edge features)

Node Features: $x_i = (r_i, \phi_i, z_i)$

Edge Features:

$$\tilde{a}_{ij} = (w_{ij}, \Delta r_{ij}, \Delta \phi_{ij}, \Delta \eta_{ij}, \Delta R_{ij})$$

Opacity ~ Edge Score (w_{ij})

BCE as usual to learn optimal edge weights

$$\mathcal{L}_w(y_j, w_j) = -\sum_{j=1}^{|\mathcal{E}|} (y_j \log w_j + (1 - y_j) \log(1 - w_j))$$

Edge weights converge to high accuracy at intermediate stages of the GNN

EDGE CLASSIFICATION BINARY CROSS ENTROPY

OBJECT CONDENSATION POTENTIAL LOSS + BACKGROUND SUPPRESSION

Object Condensation (coordinates in learned clustering space)

New Coordinates: $h_i \in \mathbb{R}^{d_{ ext{out}}}$

Condensation Strength: $\beta_i \in (0,1)$

- **Predict** condensation "likelihood" ($\beta_i \in (0,1)$) and learned clustering coordinates ($h_i \in \mathbb{R}^{d_h}$)
- At truth level, use charge likelihoods to find "most likely" condensation point per track
- Attract hits belonging to the same track, repulse others (including noise)

Nodes are attracted to their particle's condensation point and repulsed from other particles'

OBJECT CONDENSATION TOTAL LOSS

Object Condensation

(coordinates in learned clustering space)

New Coordinates: $h_i \in \mathbb{R}^{d_{ ext{out}}}$

Condensation Strength: $\beta_i \in (0,1)$

Edge Classification

$$\mathcal{L}_w(y_j, w_j) = -\sum_{j=1}^{|\mathcal{E}|} (y_j \log w_j + (1 - y_j) \log(1 - w_j))$$

Attraction/Repulsion

$$\mathcal{L}_{V} = \frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} q_{i} \sum_{k=1}^{K} \left(\mathbb{1}_{(l_{i}=k)} V_{k}^{\text{attract}}(h_{i}) + \left(1 - \mathbb{1}_{(l_{i}=k)}\right) V_{k}^{\text{repulse}}(h_{i}) \right) \tag{hinge}$$

Background Suppression → scale

by 2.5×10^{-3}

$$\mathcal{L}_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{k}^{(c)}) + s_{B} \frac{\sum_{i=1}^{|\mathcal{V}|} \beta_{i} \mathbb{1}_{\{l_{i}=0\}}}{\sum_{i=1}^{|\mathcal{V}|} \mathbb{1}_{\{l_{i}=0\}}}$$

• GNN output is the set of hit coordinates in the learned (h_1, h_2) space:

 Need to run DBSCAN to generate cluster labels (clustering parameters are optimized per on graph sector):

POSTPROCESSING DBSCAN TRACK FINDING

 Perfect Match: fraction of clusters containing every hit associated to a particle and no others

 Double Majority: fraction of clusters comprised of >50% of same-particle hits and containing >50% of that particle's hits

• LHC Loose Match: fraction of clusters comprised of >75% same-particle hits

TRACKING EFFICIENCIES VARIOUS DEFINITIONS

EXAMPLE: EVENT #1127 MODEL 10

summary of full event perfect match fraction: 0.862 double majority fraction: 0.945 lhc loose fraction: 0.906

NOTE: Cluster colors are DBSCAN labels, not truth labels!

EXAMPLE: EVENT #1823 MODEL 10

summary of full event perfect match fraction: 0.860 double majority fraction: 0.939 lhc loose fraction: 0.909

NOTE: Cluster colors are DBSCAN labels, not truth labels!

TRACKING EFFICIENCIES AVERAGED ACROSS ~10⁴ GRAPHS

- Per-graph summary
 - Perfect Match Fraction: 0.827
 - Double Majority Fraction: 0.932
 - LHC Loose Fraction: 0.890
- Per eta-range:
 - Performance decreases with graph construction purity (decreasing eta)

$ \eta $	LHC Loose	Double	Perfect	Fake
	Match	Majority	Match	Fraction
(0, 1.25)	0.851 +/-	0.905 +/-	0.779 +/-	0.091 +/-
	0.070	0.058	0.099	0.072
(1.25, 2.5)	0.895 +/-	0.934 +/-	0.842 +/-	0.071 +/-
	0.062	0.051	0.087	0.065
(2.5, 3.75)	0.939 +/-	0.966 +/-	0.884 +/-	0.083 +/-
	0.053	0.044	0.079	0.081
(3.75, 5)	0.986 +/-	0.997 +/-	0.969 +/-	0.036 +/-
	0.083	0.075	0.106	0.128

Graph construction purity/efficiency isn't consistent among the eta ranges!

CONCLUSIONS AND FUTURE STEPS

- GNN-based tracking typically involves 1) graph construction, 2) GNN inference (edge classification, object condensation), and 3) postprocessing (track finding)
- Example GNN pipeline based on edge classification and object condensation
 - Object condensation also accommodates track property predictions! → next step
- Future work:
 - Improve graph construction in central barrel region
 - Relax the truth cuts (re-impose noise, zero the p_T cut)
 - Incorporate track parameter predictions
 - Explore dynamic graph construction techniques like GravNet (no edge classification)
 - Full hyperparameter scan over network size/structure