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LHCb detector and its upgrades
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The Upgrade I of the LHCb experiment is 
currently in commissioning. What’s new?
● replacement of readout electronics 
● new fully software trigger system

The new detector will be able to collect 
datasets at least one order of magnitude 
larger thanks to an increased 
instantaneous luminosity (x5) and a more 
performant selection algorithm (x2).

To match the increase of collected data, 
larger simulated samples and a strategy to 
speed-up their production is unavoidable.Detector paper 

[JINST 3 (2008) S08005]
Upgrade design 
[LHCb-TDR-12]

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005
https://cds.cern.ch/record/1443882?ln=it
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Geant4 consumes the vast majority of the 
computing resources intended for simulation

The CPU-greedy Detailed Simulation 
needs faster solutions for a large 
fraction of the samples

Encoding the high-level response of the 
detector directly within statistical models

Ultra-Fast Simulation skips the simulation of the 
physics and reconstruction, reducing the 
computational cost 

● Such statistical models can be 
implemented with neural nets

● Training can be carried out in adversarial 
configuration (namely with GANs)

● Detection and reconstruction processes 
are encoded within neural nets
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Ultra-Fast Simulation at LHCb
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● In LHCb, Ultra-Fast parameterizations rely on Gradient Boosted Decision Trees for 
efficiency models and on GAN-based neural nets to model the detector response.

● Where possible, the models are trained directly on real data, otherwise they rely on 
Detailed Simulation

● The models are developed to be separated entities to be used either as single blocks 
within the Detailed Simulation or pipelined into a consistent purely-parametric 
complete simulation 
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Geometrical acceptance

github.com/landerlini/lb-trksim-train

     Tracking Models Training Repo

[LH
C

b-FIG
URE-2022-004]

model  : Gradient Boosted Decision Tree
loss   : Binary Cross Entropy

input  : position and slope of tracks

output : in acceptance [ True , False ]

Training performed on Detailed Simulation

The GBDT model well-reproduces the Detailed 
Simulation distribution of the generated tracks 
weighting by the probability of being in 
acceptance.

https://github.com/landerlini/lb-trksim-train
https://cds.cern.ch/record/2806749
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Tracking efficiency

model  : Gradient Boosted Decision Tree
loss   : Multi-class Cross Entropy

input  : position and slope of tracks

output : track classification as [ long , upstream ,
         downstream , non-reconstructed ]

Training performed on Detailed Simulation

The good performance of the GBDT model 
well-reproduces the complex structure of shadows 
describing the efficiency losses due to the 
non-trivial material sub-structure of the LHCb 
detector.

Weighted with
GBDT probability
(as “long track”)

[LH
C

b-FIG
URE-2022-004]

https://cds.cern.ch/record/2806749
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Tracking resolution
[LH

C
b-FIG

URE-2022-004]

model  : Generative Adversarial Networks
loss   : Binary Cross Entropy

input  : position, slope and momentum of tracks

output : reconstructed tracks information

Training performed on Detailed Simulation

The x-projection of the Impact Parameter of tracks 
originated from the Primary Vertex is 
well-reproduced by the GAN-based model even if 
neither the transverse momentum nor the phi 
angle are used for training.

https://cds.cern.ch/record/2806749
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PID system: training details

github.com/mbarbetti/lb-pidsim-train

PID  Models Training Repo

Calibration samples
[LHCb-PUB-2016-020]

To overcome the typical issues of GANs training, the parameterization of the LHCb Particle 
Identification system rely on CramerGAN: a stable, reliable and powerful GAN algorithm.

PID models are trained 
using Calibration Samples

Need for removing 
the residual background

● The CramerGANs are used to define robust base models, parameterizing both the 
signal and background components within the Calibration Samples

● The base models are then fine-tuned driven by either the Binary Cross Entropy or the 
Wasserstein distance as loss function

● The fine-tuning strategies are modified to statistically subtract the background 
component [JINST 14 (2019) P08020]

GAN issues
[arXiv:1701.04862]

CramerGAN
[arXiv:1705.10743]

https://github.com/mbarbetti/lb-pidsim-train
https://cds.cern.ch/record/2199780
https://iopscience.iop.org/article/10.1088/1748-0221/14/08/P08020
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1705.10743
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Rich detector: kaon-pion separation

[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters and
         detector occupancy

output : high-level response of the Rich detector

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize the high-level response of the 
Rich detector for kaon and pion tracks.

https://cds.cern.ch/record/2806749
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Muon detector: muon-proton separation 

[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters and
         detector occupancy

output : high-level response of the Muon detector

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize the high-level response of the 
Muon detector for muon and proton tracks.

https://cds.cern.ch/record/2806749
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Loose Binary Criterion: isMuon

model  : Gradient Boosted Decision Tree
loss   : Binary Cross Entropy

input  : track kinematic parameters and
         detector occupancy

output : isMuon passed [ True , False ]

Training performed on Calibration Samples

The residual background of Calibration 
Samples is subtracted when training the GBDT. 
The model well-reproduces the behaviour of 
the isMuon criterion on data. 

[LH
C

b-FIG
URE-2022-004]

isMuon criterion
[JINST 8 (2013) P10020]

sWeighted +
weighted with

GBDT probability

sWeighted

https://cds.cern.ch/record/2806749
https://iopscience.iop.org/article/10.1088/1748-0221/8/10/P10020
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PID system: stacking generative models
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● The kinematic parameters of the tracks and the detector occupancy information aren't enough 
to correctly parameterize the Global PID variables.

● Training a new set of neural networks fed by the high-level response of the Rich and Muon 
detectors allows to parameterize the Global PID variables that can be retrieved in the inference 
phase through a stack of GANs.

● The stack of GANs provides the higher-level response of the PID system.
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Global PID: kaon-pion separation

[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize a global PID variable named 
ProbNN for kaon and pion tracks.

https://cds.cern.ch/record/2806749
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Global PID: kaon-pion separation

[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize a global PID variable named 
ProbNN for kaon and pion tracks.

mismodeling 
well below 1%

https://cds.cern.ch/record/2806749
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Global PID: muon-proton separation

[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

4 neural networks trained in adversarial configuration 
are used to parameterize various global PID variables 
shown together in the Combined Differential 
Log-Likelihood for muon versus proton hypothesis.

https://cds.cern.ch/record/2806749


What’s next?
● Models of the electromagnetic 

calorimeter (in progress)
○ shower libraries [EPJ Web Conf. 214 

(2019) 02040] or Self-Attention GANs 
[EPJ Web Conf. 251 (2021) 03043] for 
the low-level response

○ a mixture of generative models and 
parametric functions for the 
high-level response

● Models for all current and future LHCb 
datasets
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Summary and outlook

● With the start of Run 3, developing faster solutions to 
produce simulated samples is of key importance.

● The Ultra-Fast Simulation at LHCb consists of modular 
components that can be used as single blocks within 
the Detailed Simulation or pipelined into a consistent 
purely-parametric complete simulation.

● A stack of GANs can be used to effectively 
parameterize the higher-level response of the PID 
system.

● Once trained, the models can be integrated within the 
LHCb simulation software as shared objects or easily 
replaced with new ones [details].

https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_02040/epjconf_chep2018_02040.html
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_02040/epjconf_chep2018_02040.html
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03043/epjconf_chep2021_03043.html
https://indico.cern.ch/event/1076291/contributions/4589153/attachments/2354094/4016662/scikinC%20-%20Computing%20Tools%20in%20High%20Energy%20Physics.pdf


Matteo Barbetti (University of Florence)

Simulating the LHCb experiment with Generative Models

16|15[2022.04.29] Learning to Discover

Backup
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LHCb computing requirements for Run 3

Updated from [LHCb-FIGURE-2019-018]

2023 2024 2025 2026
Year

2027

CPU resources needed for 
a simulation scheme only 
including Geant4-based 

Detailed Simulation

Available resources 
according to the planned 

funding scheme

Computing resources 
required by an excellent 

Fast and Ultra-Fast 
Simulation

https://cds.cern.ch/record/2696552
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Long, upstream and downstream tracks

Upstream tracks
Tracks reconstructed by the 
tracking stations upstream the 
magnet.

Long tracks
Tracks reconstructed after 
having traversed the whole 
detector.

Downstream tracks
Tracks reconstructed by the 
tracking stations, but no hits 
found in the VELO.
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LHCb-FIGURE-2022-004: Geometrical Acceptance

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Tracking Efficiency (1/2)

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Tracking Efficiency (2/2)

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Tracking Resolution

https://cds.cern.ch/record/2806749


Matteo Barbetti (University of Florence)

Simulating the LHCb experiment with Generative Models

23|15[2022.04.29] Learning to Discover

LHCb-FIGURE-2022-004: isMuon (1/2)

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: isMuon (2/2)

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Rich system

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Muon system

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Global Particle Identification

https://cds.cern.ch/record/2806749
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LHCb-FIGURE-2022-004: Global Muon Identification

https://cds.cern.ch/record/2806749
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Deployment within the LHCb simulation software

github.com/landerlini/scikinC

Deployment Tool Repo
scikinC tool

[presentation]

Transpile the 
model to a C file 

with scikinC

Link the shared 
object to the LHCb 
simulation software

Train a model

Compile the C file
to a shared object

Produce 
simulated 
samples

TensorFlow and ONNX use their own thread scheduler that can lead 
to huge overhead for HEP applications.

To make the most from the modular logic of LHCb Ultra-Fast 
Simulation, we are interested in a deployment tool that allow to 
easily replace a specific parameterization, without recompile the 
whole pipeline.

This is the idea behind the scikinC tool where the ML-based models 
are defined to be dynamically linked to the main application. In this 
way, models can be developed and released independently.

https://github.com/landerlini/scikinC
https://indico.cern.ch/event/1076291/contributions/4589153/attachments/2354094/4016662/scikinC%20-%20Computing%20Tools%20in%20High%20Energy%20Physics.pdf

