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. Charged particle tracking — 1960s style

The 80 inch (2.0 m) bubble chamber

Discovery of the Omega-minus baryon in 1964
at BNL
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THE USE_OF MULTIVWIRE PROPORTIONAL COUNTERS

. Electronic readout ! e ot et 8

TO SELFCT AND LOCALIZE CHARGED PARTICLES /
-
. . . Ge Charpak, R. Bouclier, T, Bressani, J, Favier
Multi-wire proportional chamber | and B, Zupentis
CEBN, Geneva, Switzerland.
L 4 ABSTRACT
Properties of chambers made of planes of independent wires placed

L between twe plane electrodes have been investigated, A direct voltage is

applied to the wires, It has been checked that each wire works as an

Q=—»0 (o) (o] O (o] o independent proportional counter down to separation of 0.1 cm between

wires, . .
d - Counting rates of 10°Avire are easily reached,

- Time resolutions of the order of 100 nsec have been obtained in some

gases,
/ / - It is possible to measure the position of the tracks between the
Cath Ode " wires using the time delay of the pulses.
/ \n Od e WI res - Energy resolution comparable to the one obtained with the best cylin-

drical chembers is observed.

- The chambers can be operated in strong magnetic fields.

Geneva - 23 February, 1968
e—
(Submitted to Nucl. Instrum, and Methods)

Nobel prize
in physics (1992)

Messrs, G. Amato and J.P. Papis were of great help in the research
into very low=cost amplifiers and were successful in this respect. They
showed that less than two dollars of equipment per wire was sufficient

DAADAAAAALALAALNDLLDAAD W
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to bring the pulses to a level close to 1 volt, where their utilization

L AAALN AL 0028 ANAINADAAANAMNDNL

by logic circuits is easy,
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.Today: silicon trackers

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter :15.0m Pixel (100x150 ym) ~1m? ~66M channels
Overall length :28.7m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field :3.8T L

SUPERCONDUCTING SOLENOID

Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

X PRESHOWER
L Silicon strips ~16m?> ~137,000 channels

Integration test in 2007

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCA
Brass + Plastic scintillator ~7,000 channels
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. LHC, discovery of the Higgs boson

Large Hadron Collider (LHC) at CERN Discovery of the Higgs boson (2012)
* Explore small structures -> high energy

» Study rare processes -> high frequency of collisions (40 MHz)
* Two general-purpose detectors: CMS and ATLAS

Counting experiment in bins (intervals) of mass

Comparison to theory prediction

C T I T T 1] T I T T T T I I T
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.And since then ?
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* Since 2012, higher beam energy, accumulation of much more statistics

* Study of the coupling strength of the Higgs boson to many other particles:
demonstration of clear correlation between the mass of a given particle and
its coupling to the Higgs boson

* Key goal for HL-LHC: first experimental probe of the Higgs potential

-> expect to gain insight on the first instants of the universe
* Study Higgs self-coupling: h -> hh
* Very rare process

Coupling

TB |

)

C

O

)

o

o

©
®)
S o
field
Violent phase
just after transition ??? today
big bang -> creation of
matter/anti-matter

hot Universe asymmetry cold Universe

Jan Stark Learning to Discover, Institut Pascal, Université Paris-Saclay | April 19th 2022 6 m



Fifteen times more data

30 fp~1 190 fp~1 350 fb~1 3000 fb~* Integrated luminosity

Run 1 Run 2 Run 3 Run 4-5...

High luminosity phase:

Work towards HL-LHC,
today :

* beam injection chain
e construction of new

* more data
* 5 times more protons/bunch
* more complex events

40 million crossings of pairs of proton * highly granular detectors detector components
bunches per second ! * design of computing
models

High luminosity: how ? Cannot reduce distance between bunches any further. More protons/bunch !

O O O O O© O O O o oo v vPTor v oo @ =
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. Computing resources

Resources used today:

- O(1) million de CPU cores running continuously

- O(1) exabyte of storage

At HL-LHC: with our current computing model, we would face a significant shortage of computing resources

Annual CPU Consumption [MHS06-years])

used
today

- need to make important changes

-> ... or live with cuts into our physics programme

Jan Stark
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ML for track pattern recognition ?

N — 1\

‘\\.17_\ o N \ ]

;;rli Cha 7 L N $25,000 Challenge on Kaggle platform (in 2018): (link)

High Energy Physics particle~iEé‘cking in-CE rs ATy L e SN Prize Money

Article in proceedings of CHEP 2018: (link)

QQ&\? CERN - 651teams - 4 years-ago

Can’t use the same tools

How to present tracking
data to a neural network ?

622 * 415 pixels ATLAS tracker for HL-LHC:
5 * 10° readout channels

a large fraction carries information _
~3 * 10° 3D space-points per event

about the person
=> data are sparse
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https://www.kaggle.com/c/trackml-particle-identification
https://doi.org/10.1051/epjconf/201921406037

S. Farrell et al., “Novel deep learning methods for track reconstruction”,

. Representing tracking data using graphs proceedings of Connecting the Dots conference 2018 (link)

Represent the data using a Goal:

Charged particles leave hits in the
graph classify the edges of the graph

detector

High classification
score

=> high probability
that the edge is part of
a track

Low classification score
=> low probability that
the edge is part of a
track

One node of the graph = one hit in the detector

Connect two nodes using an edge
if “it seems possible” that the two hits
are two (consecutive) hits on a track
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https://arxiv.org/abs/1810.06111

.Graph creation

A classic use case for graph neural networks:

Study molecules and their chemical bonds

QP!
NH,

“l suppose I'll be the one
to mention the elephant in the room.”

In our tracking example, using the TrackML dataset, we have O(100k) hits per event.
= A fully connected graph would have O(100k) nodes and O(109) edges. This is not going to fly.

Keep in mind that we want to run this at high throughput.
Efficient graph creation becomes an area of study on its own.
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° i )) C. Biscarat et al., “Towards a realistic track reconstruction algorithm
Graph creation: “module ma oraceedings ofthe veHER2021 contarente (ink)
° proceedings of the vCHEP2021 conference (link

Results for TrackML detector

New data-driven graph construction method:
* build graphs starting from a list of possible connections from a zone to another zone: the module map
* done using 1000 tt events considering tracks with p7>0.5 GeV and leaving at least 3 hits

Particles leaving hits Module map creation Graph creation
| [L]-[2]
all I N EN
5 n — m For event reconstruction

N b Done once
\5\? > []-[E] >

d
1

4 ' m—b-
3 =713 --’E

‘ [1-[&]
M= tigt

239 699 module connections found
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https://doi.org/10.1051/epjconf/202125103047

.Graph creation: “module map”

Results for TrackML detector

* Graphs created with this module map have 0(10°) nodes and 0(107) edges

:> Need to reduce further !

_ ) Mean number of edges ¢
Edge selection on geometric parameters: Tnitial 185 x 10° —
6
o ZQ — Zhl . rh]_x (&) ° Aq) — ¢h2 — ¢h1 20 3.56 x 106 19%
Ar 205 Psiope 1.32 x 10 7.1%
6
. ¢slope — AA_(I) ® An =MNu2 — Mn1 20 ¢slopea A 1.10 x 106 5.8%
x 205 Psiopes AP, An | 1.05 x 10 5.6%
h, , being the hits connected by a given edge
* Input graph
Node features = (r, ¢, z)
Edge features = (An,A¢, Ar, Az)
e Target graph
Edge features = (boolean truth flag)
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C. Biscarat et al., “Towards a realistic track reconstruction algorithm
based on graph neural networks for the HL-LHC”,
proceedings of the vCHEP2021 conference (link)



https://doi.org/10.1051/epjconf/202125103047

X. Yu et al., “Performance of a geometric deep learning pipeline for

. G ra p h C reatio n : m et ri C I ea rn i n g HL-LHC particle tracking”, Eur. Phys. J. C 81 (2021) 876 (link)

First Step: metric learning

> For all hits, embed features (coordinates, cell direction, ...) with multi-layer perceptron (MLP) into N-dimensional space
> Associate hits on same track as close as N-dimensional distance

> Score each neighbour hit within embedding neighbourhood against the “source” hit at centre

> Create edges between the source hit at centre and the neighbouring hits above a given threshold on the score.

Embed into learned Connect all spacepoints All spacepoint connections
latent space within radius r joined into graph

A

A il A

Second step: filtering

Reduce the number of edges using an MLP that looks separately at each edge (the features of the two nodes).
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https://arxiv.org/abs/2103.06995

S. Farrell et al., “Novel deep learning methods for track reconstruction”,

. G N N a r C h i t e Ct u r e S proceedings of Connecting the Dots conference 2018 (link)

Also used in Biscarat et al. (vVCHEP2021).

Input graph N, Edge scores

r () Z
Nnodes[ : 5 : ]

& B ar £ ':>[ Encoders } —> H, —> Edge — Node |, Hiypg — [Decoder} > Negges| :

Niges| : : : & Block Block -
g J
Y
Interaction
N
ode Edge Network Transforms the D-dimensional space
Encoder Encoder ) e e
of each edge into a classification
ﬂ ﬂ score for each edge

Embed the features into
a D-dimensional parameter space

An alternative GNN architecture (“Recurrent Attention Message Passing”)
is presented in N. Choma et al. (CTD 2020) (link)
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https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/2007.00149

. Edge-level performance

10°
10°

10*

edge score

Results for TrackML dataset

C. Biscarat et al., “Towards a realistic track reconstruction algorithm
based on graph neural networks for the HL-LHC”,

proceeding

s of the vVCHEP2021 conference (link)

Cut 0.5

0.7

0.8

Per-edge efficiency | 0.992 (0.987

0.982

103;_ .
ek Per-edge purity 0.916 0937 0.950
10;—
1: llIlIIllIlIll11IlllllllllllllllllllAlIJIIlIIlIJI
0 01 02 O 04 05 06 07 08 .9
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>1.05 - 1.2 51 .05_
8 L o o = - . QC) | o o
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£ [ S I s I
(4] - he] 1— ) 11—
e 1 adan o L 2 i —A—A—A-AAy .
- AAA AL = b —A—
?’ i WY AAAAAAA‘AA . o i R AL A AsAAAMMMAAAAAAZ LA AR 5 A — * —Af—*_
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https://doi.org/10.1051/epjconf/202125103047

.Track building starting from graph with edge scores

= Edge below threshold

GNN

"~ GNN (Interaction Net:

Edge above threshold

= Edge kept

Matching Criteria

Particle: 00000000000000000000

Loose matching : eoooo0e000e®

Tight matching: 00000000000000000000
Perfect matching: 00000000000000000000

Results for TrackML dataset

C. Biscarat et al., “Towards a realistic track reconstruction algorithm
based on graph neural networks for the HL-LHC”,
proceedings of the vCHEP2021 conference (link)

Jan Stark
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https://doi.org/10.1051/epjconf/202125103047

. Inference speed

Article in proceedings of ACAT2021 conference (link)

Accelerating the Inference of the Exa.TrkX Pipeline

Alina Lazar!, Xiangyang Ju?, Daniel Murnane?, Paolo Calafiura?,
Steven Farrell?, Yaoyuan Xu3, Maria Spiropulu?, Jean-Roch
Vlimant4, Giuseppe Cerati®, Lindsey Gray®, Thomas Klijnsma®, Jim
In many studies, no attempt is made to Kowalkowski®, Markus Atkinson®, Mark Neubauer®, Gage DeZoort’,
optimise execution speed (demonstrate Savannah Thais?, Shih-Chieh Hsu®, Adam Aurisano®, Jeremy
feasibility first) Hewes®?, Alexandra Ballow!, Nirajan Acharya!, Chun-yi Wang!°,
: Emma Liu'!, Alberto Lucas'?

Youngstown State University, 2Lawrence Berkeley National Lab, 3University of

Constraints imposed by the need to run the California-Berkeley, *California Institute of Technology, Fermi National Accelerator
. . ] . . Laboratory, 6University of Illinois Urbana-Champaign, "Princeton University, 8University of
final algorlthm at hlgh throughput are kept in mind. Washington, ®University of Cincinnati, *°National Tsing Hua University '* University of

California, Los Angeles *2California State University, Monterey Bay

Competitive execution speed has been demonstrated
P P Table 1. Wall time of the Python-based Inference pipeline for the baseline and optimized

for one complete chain of algorithms. implementations. The time is calculated with 500 events on an Nvidia Volta 100 GPU with a
memory of 16 GB. The reported times are the average time and the standard deviation of the

Substantial gains expected from future implementations time in the unit of seconds.

with custom CUDA kernels ( Baseline Faiss cuGraph AMP FRNN

Data Loading 0.0022 +0.0003 0.0021 £ 0.0003 0.0023 & 0.0003 0.0022 £ 0.0003 0.0022 £ 0.0003
Embedding 0.02 £ 0.003 0.02 £ 0.003 0.02 £ 0.003 0.0067 £ 0.0007 0.0067 £ 0.0007

Build Edges 12 + 2.64 0.54 + 0.07 0.53 + 0.07 0.53 +0.07 0.04 + 0.01
Filtering 0.7+0.15 0.7+0.15 0.7+ 0.15 0.37 + 0.08 0.37 £ 0.08
GNN 0.17 4+ 0.03 0.17 + 0.03 0.17 + 0.03 0.17 +0.03 0.17 £ 0.03
Labeling 2.2+0.3 21+0.3 0.11 +0.01 0.09 -+ 0.008 0.09 = 0.008
(Any volunteer for coding the module map in CUDA ?) Total time  (15+3. ) 3.6+ 0.6 1.6+0.3 1.2+40.2 Cor+01)
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https://arxiv.org/abs/2202.06929
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https://cds.cern.ch/record/2285584

.Simplify GNN -> inference on FPGA

Computing and Software for Big Science (2021) 5:26 .
https:/doi.org/10.1007/541781-021-00073-z link

ORIGINAL ARTICLE
Work has also been done to accelerate the inference of

deep neural networks with heterogeneous resources beyond
GPUs, like field-programmable gate arrays (FPGAs)

Charged Particle Tracking via Edge-Classifying Interaction Networks [49_57]. This work extends to GNN architectures [20,
58]. Specifically, in Ref. [29], a compact version of the IN

Gage DeZoort' © - Savannah Thais - Javier Duarte? - Vesal Razavimaleki? - Markus Atkinson? - Isobel Ojalvo - was implemented for py > 2GeV segmented geometric

Mark Neubauer? - Peter Elmer’ graphs with up to 28 nodes and 37 edges, and shown to
have a latency less than 1 us, an initiation interval of 5 ns,

Received: 12 July 2021 / Accepted: 13 October 2021 / Published online: 15 November 2021 reproduce the floating-point precision model with a fixed-

© The Author(s) 2021 point precision of 16 bits or less, and fit on a Xilinx Kintex
UltraScale FPGA.

Abstract While this preliminary FPGA acceleration work is prom-

Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNN5s) are well suited ising, there are several limitations of the current FPGA

to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are implementation of the IN:

naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of

hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt 1. This fully pipelined design cannot easily scale to beyond

the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to O(100) nodes and O(1000) edges. However, if the initia-

those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta tion interval requirements are loosened, it can scale up

thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of meas- to O(10, 000) nodes and edges.

urements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN 2. The neural network itself is small, and while it is effec-

architecture is substantially smaller than prev1ously studied GNN tracking architectures; this is partlcularly promising as a
reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore the IN
may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate
each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.

tive for pr > 2 GeV graphs, it may not be sufficient for

lower-pr graphs.
ey Tha FP(I A Aacian malrac na aconmntinnce ahant tha nnc_
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https://link.springer.com/article/10.1007/s41781-021-00073-z

. ATLAS Detect:
. T r i r i n ( n T L n S [ Inner Tracker ] [ Calorimeters ] [ Muon System ] Systeﬁ;c or Event rate: 40 MHz
LOMuon ]
Barrel NSW Trigger
@ Sector Logic Processor
ATLAS (link) Endcap MDT Trigger
Sector Logic Processor aE>
2
%)
| MUCTPI I— o
S
. . ﬁ =
Technical Design Report for the Phase-II g Global Trigger =
Upgrade of the ATLAS Trigger and Data ° Event | [ ©
o sge . o Processor °
Acquisition System - EF Tracking Amendment p )
k:
5 -
A o cTP
A The ATLAS Collaboration >
< — _I_‘
g P after hardware-based
>3 0
a © TTC .
3 £ LO trigger: 100 kHz
g o | —
- Reference: vl2 g ( Readout )
g Created: March 1, 2022 = FELIX Data
8 Last modified: March 1, 2022 Handlers
Lu.:) ~ Prepared by: The ATLAS Collaboration \ J g B
gg 2 detailed detector readout
8 @
B3 4 Dataflow N g after LO accept
ol :
©2022 CERN for the benefit of the ATLAS Collaboration. Event Storage Event ||
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. Builder Handler Aggregator
\ 7, ]
-] E
Abstract Event Filt 2
This Technical Design Report Amendment describes revised plans for Event Fil- @
ter Tracking in the upgrade of the ATLAS Trigger and Data Acquisition system Processor 3
for the High Luminosity LHC. The motivation to change the baseline for Event Farm = after event filter
Filter Tracking is explained. Next, a description of the requirements for Event f:>:> .
Filter Tracking and the definition of the proposed baseline to meet these require- —u (tO ta P e) : 1.5 kHz
ments are presented. Several demonstrations using various hardware and soft- ATLAS
ware are reported in support of this proposal. Finally, the organization and P;rmanent Offline
resources needed to deliver the new baseline are set out. torage Computing
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https://cds.cern.ch/record/2802799

. From the TrackML dataset to the real world

At least two major complications have been (deliberately) omitted from the TrackML dataset.

Secondary particles from interactions with material in detector

electron knocked out of atom

hadronic interactions:

(lots of relatively high-Z material in
modern trackers [support, cooling,
readout])

Silicon strip detectors

K

-

S

strip (one strip = 1 readout channel)
@ hit from a charged particle

O “ghost” (accidental crossing of strips)

It would be extremely useful to have a new open dataset that includes these effects.

Maybe even a dataset released by CMS and/or ATLAS ?
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Comment on GNN design

E
E

1200—
1000
800

600

RN P U LN R ]
1400—ATLAS Simulation Preliminary —
" ITk Layout: 23-00-03

T In this region, it is relatively clear in which direction to look
/ for the next hit.

n=1.0

Battaglia et al. (2018) (link)

III|III|III|I\I|I[I|III|I

I /| 1 | 1 | | | 1 | | 1 | L L | |
0 1500 2000 2500 3000 3500 u— R ¢u —u
uminous regon: et N[ T—
gion: 0
-200<z< 200 , the direction is less clear. 1\ >0 /
atr=0 iti is i i its | v A\ / B
In addition, this is where the density of hits is largest. N
p€—>’U pe—)u
One can easily have >10 edges on a given node.
E _ ¢6 —_— E/
In this aggregation function, we simply add “messages”
. . . Edge block Node block Global block
over all incoming edges. Is a straight sum over
>10 edges a good idea ? Should we pay more attention (a) Full GN block
to the most interesting edges ?
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.Conclusion

* Lots of exciting physics results since the Higgs boson discovery in 2012; the
Higgs boson as new tool for precision tests of the standard model

* Even more exciting outlook for the HL-LHC: among others, probe the first
moments of the Universe right after the Big Bang (EW baryogenesis)

* TrackML challenge in 2018 was huge boost to get the “ML for tracking”
effort going. The dataset from then is still being used today.

 Feasibility of complete GNN-based tracking solutions has been
demonstrated in 2021.

* These conceptual solutions are trying to face the real world right now.
* A new open dataset that is close to the real world would really help.

* Lot’s of variants:

Fast, use in trigger decision
Seeding only

Large radius tracking

I ———————
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Backup material
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. La physique des particules et le boson de Higgs

 Comprendre les constituants fondamentaux de la matiere et les
interactions qui les régissent

Séminaire SFP MP, Jan Stark (L2IT), déc. 2019

MATIERE MOdele St

Lsy Lpirac + Lmass

andard de

Lgaug L 1

la physique des particules

CLoirac = ik 06L, + i QU + ihPeh + it Pu. + id P, + it Db, + idsPeli

M3
Lonass = =0 (Néh ek + Ny upy + Ny dy +hec.) = MWW - —W__7 7

Au cours des années 60 et 70, un modéle

qui décrit I'ensemble des particules fondamentales
Cette équation peut étre déduite a partir de : et leurs interactions a été mis au point :

le « modeéle standard ».
- considérations de symétrie,

Voici I’équation qui résume ce modéle
Proton - et du mécanisme de Higgs. (son « lagrangien »).

Neutron

Concretement, le modéle standard est une théorie
. XX 2 quantique des champs qui respecte la symétrie
Electron el _——

PROTON suivante :

G =SU@3), xSUQ2), x U(l)l:‘

Noyau
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. Higgs potential

A measurement of the Higgs self-coupling is the only way to experimentally reconstruct
the Higgs potential (reconstruct its shape close to the minimum).

Higgs potential in the standard model:

V(D)=u’®d @ +n(d" @)
ﬂ expansion around the minimum

+ potential

1 _2 ;2 4
/
, /
N\ h / h,
ﬁe] i
dvallle Ev= (
h \ h
\
\
\
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Electroweak baryogenesis ?

To get the observed baryon asymmetry of the universe from an
initially baryon-symmetric universe, Sacharow's conditions

must be satisfied.

(1) Baryon number (B) violation
(2) C and CP violation
L (3) Out of equilibrium

Veii(v:T) - Vers(0:T)

S

T>T.>0

y (1)

2nd order PT

Ny

v

1st order PT

It is not easy to construct a credible
mechanism that meets these conditions.

The mechanism that meets these conditions
and that is considered to be the most credible
one is electroweak baryosynthesis.

An effective potential (free energy density)
is used to describe the Higgs potential
during the electroweak phase transition.

Electroweak baryosynthesis can only work
if the electroweak phase transition is a
a first order phase transition (PT).

First order PTs imply a system that is
out of equilibrium (violent transition, large
creation of entropy).
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« Computing enables physics »

Photography: C. Biscarat

g [ Pt O o

—

Annonce de |la découverte
du maillon manquant de notre
Modele Standard, le boson
de Higgs.
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. 10 ans pour nous préparer

Community white paper (2017)
* Algorithmes, infrastructures, data access...

Des actions concretes
* HEP Software Foundation (HSF)

» Software Institute for Data-Intensive Sciences (SIDIS)

* Création d’une revue scientifigue « Computing and software
for big Science » (Springer)

« IRIS-HEP (Projet NSF U.S.A.)

Projet international Data Organization, Management and
Access (DOMA)

* The 2020 update of the EU strategy for particle physics

D. Large-scale data-intensive software and computing infrastructures are an
essential ingredient to particle physics research programmes The community faces
major challenges in '(hIS 3 -LHC. As a result, the

policies on open dataa serva : : puraged, and an
adequate level of resources invested in their lmplementatlon.

arXiv.org > physics > arXiv:1712.06982

Search All fields R Search

Help | Advanced Search

Physics > Computational Physics
A Roadmap for HEP Software and Computing R&D for the 2020s

Johannes Albrecht, Antonio Augusto Alves Jr, Guilherme Amadio, Giuseppe Andronico, Nguyen Anh-Ky, Laurent
Aphecetche, John Apostolakis, Makoto Asai, Luca Atzori, Marian Babik, Giuseppe Bagliesi, Marilena Bandieramonte,
Sunanda Banerjee, Martin Barisits, Lothar A.T. Bauerdick, Stefano Belforte, Douglas Benjamin, Catrin Bernius, Wahid
Bhimiji, Riccardo Maria Bianchi, lan Bird, Catherine Biscarat, Jakob Blomer, Kenneth Bloom, Tommaso Boccali, Brian
Bockelman, Tomasz Bold, Daniele Bonacorsi, Antonio Boveia, Concezio Bozzi, Marko Bracko, David Britton, Andy
Buckley, Predrag Buncic, Paolo Calafiura, Simone Campana, Philippe Canal, Luca Canali, Gianpaolo Carlino, Nuno

Castro, Marco Cattaneo, Gianluca Cerminara, Javier Cervantes Villanueva, Philip Chang, John Chapman, Gang Chen,

Taylor Childers, Peter Clarke, Marco Clemencic, Eric Cogneras, Jeremy Coles, lan Collier, David Colling, Gloria Corti,
Gabriele Cosmo, Davide Costanzo, Ben Couturier, Kyle Cranmer, Jack Cranshaw, Leonardo Cristella, David Crooks,
Sabine Crépé-Renaudin, Robert Currie, Stinje Dallmeier-Tiessen, Kaushik De, Michel De Cian, Albert De Roeck,
Antonio Delgado Peris, Frédéric Derue, Alessandro Di Girolamo, Salvatore Di Guida, Gancho Dimitrov, Caterina
Doglioni, Andrea Dotti, Dirk Duellmann, Laurent Duflot, Dave Dykstra, Katarzyna Dziedziniewicz-Wojcik, Agnieszka
Dziurda, Ulrik Egede, Peter Elmer, Johannes EImsheuser, V. Daniel Elvira, Giulio Eulisse, Steven Farrell, Torben
Ferber, Andrej Filipcic, lan Fisk, Conor Fitzpatrick, José Flix, Andrea Formica, Alessandra Forti, Giovanni Franzoni,
James Frost, Stu Fuess, Frank Gaede, Gerardo Ganis, Robert Gardner, Vincent Garonne, Andreas Gellrich et al. (210
additional authors not shown)

(Submitted on 18 Dec 2017 (v1), last revised 19 Dec 2018 (this version, v5))

Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large
investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires
commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be
recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals
and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to
prepare for this software upgrade.
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. Contraintes et opportunités

Budget

La phase de haute luminosité :
Plus de données,
Des collisions plus complexes,

Des détecteurs extrémement
sophistiqués.

Algorithmes
Modele distribué
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. The TrackML dataset

* Generation (Pythia8): 1000 tt events from pp collisions
e /s =14 TeV, u = 200 (HL-LHC conditions), pile-up modeling using A3 tune

* Simulation: Generic detector simulated with fast simulation of ACTS framework

18 728 silicon modules
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e
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Le défi de HL-LHC pour |la reconstruction de traces

* Reconstruction actuellement résolu par des algorithmes basés sur des filtres de Kalman

* Estimation des parametres de la trajectoire hélicoidal

* Tres bonne performance et optimisé depuis des années

* La partie la plus colteuse en complexité de calcul (donc en ressources CPU) dans la
reconstruction d’'un événement

* La combinatoire va exploser avec HL-LHC (pileup ~20 => pileup ~200) | propagate pii and its covariance G :
* Va entrainer une augmentation tres importante du volume et de la complexité des données Z""“li’;’i"“l(‘é"‘”k‘l)ﬂ
klk-1 = Lk|k-1C k-1]k-1 k|k_1+Qk

e Les algorithmes actuels ne suffiront pas with Q~ noise term (M.5.)
2. update prediction to get gk and Ck:
e = Qi1 + Kilmy — hi(qpgpe-1)]
Cu =T - KiH ) Cpeq

LHC (plleup NZO) HL-LHC (p||eup NZOO) with K~ gain matrix :

K = Cyp1H (G + HiCpy 1 H}) ™!

100 T T T

E Reconstruction of 2017 pp data, {s = 13 TeV -

90E-  in Athena release 21.0.37 tuned for () = 30 5
F  onintel” Xeon" CPU E5-2630 v3 3

80 - low-j1 reference runs 10862 luminosity blocks

F W high-u run 335302 463 luminosity blocks :

70E
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Apprentissage des patterns de traces avec des GNNs

Edges scores

Input graph T 722
Nodes features: (7, ¢, z) T W I |
Edges features: (An, A, Ar,Az) S os*

ry ",,{o.e

v¥ node features
el edge features
V2 at iteration k

/ GNN (Interaction Network)\ Predict graph %

1

k
€01 9(’)(;1 = 4’(”(’)(' vé‘, e(’)cz)
véﬁ-l = ¢(V(I)cﬂze(’)(]?1

Target graph
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Graph (neural) networks

Oct 2018 (link)

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia'* Jessica B. Hamrick!, Victor Bapst!,
Alvaro Sanchez-Gonzalez!, Vinicius Zambaldi', Mateusz Malinowski!,
Andrea Tacchetti!, David Raposo!, Adam Santoro!, Ryan Faulkner!,

Caglar Gulcehre!, Francis Song!, Andrew Ballard!, Justin Gilmer?,
George Dahl?, Ashish Vaswani?, Kelsey Allen?, Charles Nash?,
Victoria Langston', Chris Dyer!, Nicolas Heess!,
Daan Wierstra', Pushmeet Kohli!, Matt Botvinick!,

Oriol Vinyals', Yujia Li!, Razvan Pascanu'

DeepMind; 2Google Brain; 3MIT; 4University of Edinburgh

Edge block Node block Global block

(a) Full GN block

A GN block contains three “update” functions, ¢, and three “aggregation” functions, p,

e;c = ¢e (eka Vs Vskau) é; = pe—m (Ez,)
vi = ¢" (&, vi,u) & = p= (E)
u/ — ¢u (é/, ‘—,_/, u) ‘—,/ — p’U—)u (VI)

where E'Z = {(e;ca/rka Sk)}rkZi, k=1:N¢> V/ = {V;Z}izlzNW and E/ = Uz E’Z = {(e;c’rk’ sk)}kzlzNe'
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Graph (neural) networks

Oct 2018 (link)

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia'* Jessica B. Hamrick!, Victor Bapst!,
Alvaro Sanchez-Gonzalez!, Vinicius Zambaldi!, Mateusz Malinowski',
Andrea Tacchetti!, David Raposo!, Adam Santoro', Ryan Faulkner!,
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Victoria Langston', Chris Dyer!, Nicolas Heess!,

Daan Wierstra', Pushmeet Kohli!, Matt Botvinick!,

Oriol Vinyals', Yujia Li!, Razvan Pascanu'

DeepMind; 2Google Brain; 3MIT; 4University of Edinburgh

Interaction networks

Interaction Networks (Battaglia et al.l [2016; Watters et al., [2017) and the Neural Physics Engine
|Chang et al.| (2017) use a full GN but for the absence of the global to update the edge properties:

¢e (ekyvrkavsky ll) = fe (ek7v7'k7vsk) = NN, ([eka Vg Vsk])
¢U (éf/iavia u) : fv (é;7v’i7u) = NN, ([égavivu])

o (Bl) = - Y ¢

{k:rp=i}
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