
Learning general purpose
physical simulators

Presenter: Alvaro Sanchez-Gonzalez

April 19, 2022

Workshop on Representation Learning from
Heterogeneous/Graph-Structured Data

Learning to Discover - Institut Pascal Paris-Saclay

Google Research
 Dmitrii Kochkov

Flatiron Institute
Drummond Fielding

Can Cui
Shirley Ho

Princeton University
Miles Cranmer

Stanford University
Jure Leskovec

Rex Ying

And external
collaborators:

Our DeepMind team

1. Speed
Learn subgrid dynamics, compensate for large time stepping
classical limits (e.g. CFL condition) don’t directly apply

2. Differentiability
Improved design optimization, boundary inference, control

3. Learn unknown physics
compensate for unknown models/parameters

4. Distill reusable modules
which run efficiently on modern accelerator hardware

Why learn simulation?

But!

High-dim outputMagical NNInput parameters

t=0.3
x=1.2
v=9.9

But!

Training

Testing

High-dim outputMagical NNInput parameters

t=0.3
x=1.2
v=9.9

But!

Training

Testing

High-dim outputMagical NNInput parameters

t=0.3
x=1.2
v=9.9

1. Neural networks are good at interpolation,
bad at extrapolation

2. Learned physics models often don’t learn anything close to
the underlying physical equations

3. There’s no way we can build a dataset that covers the input
space of a general-purpose simulator

Strong generalization using Graph Networks

Structure the learning setup such that we learn reusable knowledge, similar to
physical laws, and can apply our model far outside training set conditions.

Learned simulation model with very desirable properties:

- Strong generalization
- Graph models which scale (we demonstrate up to 100k nodes)
- Stable rollouts
- Speed: 10-100x faster than ground truth simulator
- Same model works on vastly different systems

Learning to Simulate Complex
Physics with Graph Networks
ICML 2020
arxiv.org/pdf/2002.09405
sites.google.com/view/learning-
to-simulate

Learning Mesh-Based Simulation
with Graph Networks
ICLR 2021, Outstanding paper
award
arxiv.org/pdf/2010.03409.pdf
sites.google.com/view/meshgraph
nets

https://arxiv.org/pdf/2002.09405
https://sites.google.com/view/learning-to-simulate
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2010.03409.pdf
https://sites.google.com/view/meshgraphnets
https://sites.google.com/view/meshgraphnets

Follow-up simulation work

Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

Constraint-based graph network simulator
arXiv (ICML 2022 submission)

arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator

Strong generalization using Graph Networks

What this talk isn’t about:

- An actual product (this is basic research :)

- Accuracy & convergence guarantees

- Mixing learned models with hard-coded solvers

Particle-based simulation
Videos: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1tn9qpDVX19mZhkxrCjMCex3dUuB655BT/preview
https://sites.google.com/view/learning-to-simulate

Incompressible fluids

Eulerian simulation
[COMSOL]

triangular mesh

Network output:
velocity field

pressure field

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1tHdQvCbvCvDpkXEGaDgWqgLknotfDNpE/preview
https://sites.google.com/corp/view/meshgraphnets

Aerodynamics

Eulerian simulation
[SU2]

triangle mesh

Network output:
velocity field
density field

pressure field

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1n43-gpya6xVEz4v4xyd-IFtskNjEq-g0/preview
https://sites.google.com/corp/view/meshgraphnets

Cloth dynamics

Lagrangian
simulation
[Arcsim]

dynamic triangular
mesh

Network output:
per-node

acceleration

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/11YdlKcxW1pqKNNm2DFeju9-CjyxEChlc/preview
https://sites.google.com/corp/view/meshgraphnets

Structural mechanics

Lagrangian
quasi-static
simulation
[COMSOL]

tetrahedral mesh

Network output:
per-node

position change

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1PJsky3flqjZVbHf97bYz3LWAGXSFr3H-/preview
https://sites.google.com/corp/view/meshgraphnets

How does it work?

How does it work?

Main design principle: neural networks are dumb, let’s make their life easy

“If I have seen further it is by
standing on the shoulders of giants.”

-Sir Isaac Newton-

Our Neural Networks should also have
the knowledge of giants!

Inductive Biases

Inductive biases

Inductive bias → Prior for generalization

“An inductive bias allows a learning algorithm to prioritize
one solution (or interpretation) over another.”

Mitchell, T. M.. The need for biases in learning generalizations. (1980)

A simple inductive bias: Inertial dynamics

xt+1 = NN(xt, vt) Has to learn to predict
static motion

Position: x(t)

Velocity: v(t)

Static prior

xt+1 = xt + NN(xt, vt)

Trivial to predict static
motion

Has to learn to predict
inertial motion

Inertial prior

xt+1 = xt + Δt•vt+ NN(xt, vt)
Trivial to predict
inertial motion!

Physics-inspired inductive biases!

Spatial
equivariance

Pairwise
interactionsLocal

interactions

Superposition
principleUniversal

rules
Permutation equivariance

Differential
equations

Physics-inspired inductive biases!

Spatial
equivariance

Local
interactions

Universal
rules

Pairwise
interactions

Superposition
principle

Permutation equivariance

Differential
equations

Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

MLP() ≠

MLP() ≠

MLP() ≠ ...

● MLPs operate over vectors

Graph Networks

● Neural networks that operate over graphs

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks

● Neural networks that operate over graphs
○ Node features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks

● Neural networks that operate over graphs
○ Edge features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks

● Neural networks that operate over graphs
○ Global features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Update edge, node and global embeddings

GN

Permutation
equivariance

Message passing: Edge update

Edge (message) function (for every edge)

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Pairwise
interactions

Universal
rules

Edg
e f

ea
tur

es

Rec
eiv

er
no

de
 fe

atu
res

Sen
de

r n
od

e f
ea

tur
es

Glob
al

fea
tur

es

()

Message passing: Node update

Node function (for every node)

Receiver edge aggregation (Message pooling) (for every node)

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Superposition
principle

Universal rules
Local

interactions

Agg
reg

ate
d e

dg
e f

ea
tur

es

Nod
e f

ea
tur

es

Glob
al

fea
tur

es

()

Global node and edge aggregation

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)Graph Networks: Global update

Global function

Local
interactions

Agg
reg

ate
d e

dg
e f

ea
tur

es

Agg
reg

ate
d n

od
e

fea
tur

es

Glob
al

 fe
atu

res

()

Encoding Graphs

Transform the inputs into a graph

○ Edges: Mesh edges (for meshes)
or proximity-based (for particles)

Encoding Graphs

Transform the inputs into a graph

○ Edges: Mesh edges (for meshes)
or proximity-based (for particles)

Encoding Graphs

posi veli typei

Transform the inputs into a graph

○ Edges: Mesh edges (for meshes)
or proximity-based (for particles)

Encoding Graphs

posi veli typei

posij=posi-posi

Spatial
equivariance

Encoding Graphs

Simulation model

Decoder and update

● predict position ?

○ xt+1 = decode(G)

xt+1

Decoder and update

● predict acceleration !

○ vt+1 = vt + decode(G)

○ xt+1 = xt + vt+1

Easy to predict static dynamics

xt+1
xt“Acceleration” (Euler integrator with dt=1)

Easy to predict inertial dynamics → Good prior

xt
 + vt

Simulation model

Simulation model

Incompressible
fluid simulationStructural mechanicsCloth simulation Compressible

aerodynamics

same model, same hyperparameters can simulate many systems

Liquids/granular
materials

Lagrangian Eulerian,
2d triangular

3d tetrahedral3d
triangular
adaptive quasi-static

simulation

dynamic
simulation

Lagrangian,
particle based

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview

Simulation model

Incompressible
fluid simulationStructural mechanicsCloth simulation Compressible

aerodynamics

same model, same hyperparameters can simulate many systems

Liquids/granular
materials

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview

Model rollouts
Train on next-step prediction, unroll for 1000s of steps

=

Model rollouts
What usually happens

Credit: Ummenhofer et al.

=

Model rollouts
What usually happens

Credit: Ummenhofer et al.

slightly imperfect
prediction

error accumulates Physically invalid
states develop

I don’t know what to
do with this input!
Let’s explode!

=

Model rollouts
Training noise

=

+ noise(0, σ) 🐱 plz
fix!

Prediction vs. Ground truth simulation

https://docs.google.com/file/d/1o2uIg6fNI_MxDiyidwjQvpoyEPyiXTXg/preview

Long-term stability

https://docs.google.com/file/d/1jwKKxLuw65A5nxiWAs-TLf4bf7nFWD43/preview

Locality, equivariances and generalization

https://docs.google.com/file/d/1WTYeR7zpT9UyvQAwcYHZyVoNAwOsCfOF/preview

Locality, Equivariance and Generalization

Locality, Equivariance and Generalization

Water surface dynamics

Interaction with box boundaries

Dense blocks of water

Generalization

Training:
2k nodes

Testing:
>20k nodes

https://docs.google.com/file/d/1JWfx63uOs0suNYjnprTe6iaicnQOQd_z/preview

Let’s talk about meshes

FEM Simulations on meshes

Let’s talk about meshes

[de Bezenac et al. 2018]

[Thuerey et al. 2020]

[Guo et al. 2016]

FEM Simulations on meshes Vast majority of ML/Sim research

Let’s talk about meshes

40m

2·10-4m

adaptive mesh:
5,000 nodes

uniform grid at 2·10-4m:
40,000,000,000 nodes

Learned adaptive remeshing

sizing
field

R
es

ol
ut

io
n

Fine-scale regions at ti
Fine-scale regions at tj

Sizing field at ti

Time

Sizing field at tj

Predict sizing field
and remesh!

Learned remeshing

https://docs.google.com/file/d/1IxJCXBOxgT_RGBjunDf26q_n0q7J7QeJ/preview

Up to 300x speed ups compared to solvers!

Speed-ups

200x
30x
11x

100x
40x

300x

Dataset Time per step
GNN Solver

Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

Constraint-based graph network simulator
arXiv (ICML 2022 submission)

arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator

Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate

Designing tools is a hallmark of intelligence …

Scalability High PrecisionSimple tool creation

Can we automatically design these structures within a
general-purpose framework?

Outer loop: design optimization process

General Inverse Design Framework

Inner loop: forward model rollout

General Inverse Design Framework

Inner loop: forward model rollout

Outer loop: design optimization process

Which Models?

Which optimizers?

 Sanchez-Gonzalez*, Godwin*, Pfaff*, Ying*, et al, ICML 2020 / Pfaff*, Fortunato*, et al, ICLR 2021;

Can we leverage Pre-trained GNN models for Inverse Design?

Gradient-based with
learned models

Sampling-based
black-box models

Gradient-based with
analytical models

Can we use a GNN based model
pre-trained on physical

dynamics for inverse design?

Discovered designs
2D Fluid Tools

100 - 1000 particles,
16 - 36 design dimensions

Gradient
based*
(ours)

Sampling
based

Overall reward
(higher is better)

Sampling-based
optimization

Gradient-based
optimization

m
az

e
ra

m
p

co
nt

ai
n

Training
distribution

Discovered designs - 3D WaterCourse
2k - 4k particles, 625 design dimensions

● Gradient descent through a learned simulator (GD-M) outperforms a sampling-based
approach (CEM-M) by 1-2 orders of magnitude.

Gradient-based Sampling-based

Discovered designs - Airfoil

● Airfoil designs converges fairly quickly in about 150 steps
● Very similar drag coefficients achieved with the true simulator and learned models

4158 node mesh, 10 design dimensions

Constraint-based graph network simulator
arXiv (ICML 2022 submission)
arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator

Explicit GNN simulator*

*Sanchez-Gonzalez, Godwin, Pfaff et al., ICML 2020

*Pfaff, Fortunato, Sanchez-Gonzalez et al., ICLR 2021

Nodes = per particle

Edges = particle interactions

 Task:
predict at
the next time step

The next state
is predicted

explicitly

How do we use explicit GNN simulator?

Fixed
Task:

predict the next
simulation state

Many physical simulators don’t work like that!

The next state is
defined implicitly

Solve the constraints to find

E.g.
● Objects do not overlap
● Momentum and energy

are conserved

: Is proposed

 consistent with ?

Constraint function

Valid next
state

High

Low

Invalid
state

Invalid
state

Valid
stateInvalid state:

Two ball overlap

Invalid state:
bounced too far

High

Low

Forward pass

Run gradient descent on to find

Forward pass

scalar

=

…

Gradient descent step

Initial proposal for
the next state

Model
output

Trainable end-to-end: Don’t need constraint labels!

Domains

BoxBath Bouncing Balls Bouncing Rigids Rope

Interpreting the constraints

Ground-truth
next state

Moving freely

Avoid overlapping
with other particles

Combining constraint functions

At test time optimize
a learned constraint a user-defined constraint

(e.g. new obstacle)

No collisions were ever
observed at training time!

https://docs.google.com/file/d/1YG6Y11-ZMUOFg9rJQQSzYc4Lxzo_AxSn/preview?resourcekey=0-iOd6dhLeGsvCwgP4Ctf6LQ

Improving accuracy on larger systems

Ro
llo

ut
 M

SE

3-fold decrease in the
rollout error!

GD iterations (test time)

Longer rope
(2x more nodes)

iterations
used at training

Better generalization than explicit models!

Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate

Turbulence Simulation

Engineering Science

Classical numerical solvers are powerful but computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence
accurately at faster speeds?

Forecasting

1. Use classical physics solvers to produce high-resolution trajectories

2. Downsample these trajectories in space and time to produce training data

3. Train a neural network to do next-step prediction on low-resolution frames

Our Approach

1D Kuramoto-Sivashinsky (KS) Equation

X Velocity Y Velocity PressureZ VelocityDensity

3D Mixing Layer Turbulence with Radiative Cooling

P
re

di
ct

io
n

G
ro

un
d

Tr
ut

h

X Velocity Y Velocity PressureZ VelocityDensity

3D Uniform Compressible Decaying Turbulence
X Velocity

X Velocity Y Velocity Vorticity

P
re

di
ct

io
n

G
ro

un
d

 T
ru

th

2D Incompressible Turbulence

P
re

di
ct

io
n

G
ro

un
d

 T
ru

th

P
re

di
ct

io
n

G
ro

un
d

Tr
ut

h
Domain Generality

One model → 4 different domains

Po
w

er
 s

p
ec

tr
al

d

en
si

ty

Frequency

Spatial Coarsening

1283

Initial
condition

&
training

data

Athena++
at 1283

Down
sample

Athena++
at 643

643

Athena++
at 323

323

Down
sample

En
er

gy

Better RMSE than Athena at 323

Model
at 323

Better spectrum than Athena at 643

Temporal Coarsening

Rollout

Energy RMS error
(trained with noise)

One-stepLearned simulators can be trained on
larger timesteps.

Learned model timestep

1x 2x 4x 8x 16x 32x 64x 128x

Ground
Truth

256x

Running time

Simulator Time (s)

Athena++ 323 ~4

Athena++ 643 ~60

Athena++ 1283 ~1000

Model 1283 → 323 ~20-30

Model 1283 → 323 (GPU) ~1

● Athena++
○ Scales O(resolution4)
○ CPU only

● Learned model:
○ Up to 1000x faster than

Athena at 128

Learned Model Comparison

Ground
Truth

Dil-ResNet U-Net TF-Net Con-TF-NetCon-Dil-ResNet FNO (k=8) FNO

However, most learned models do qualitatively pretty well

Our models quantitatively outperform other, more specialized, parameterized models

Constraints satisfaction as function of time

1D KS
total momentum

consevation

2D Incompressible
velocity field
divergence

3D turbulence
mass, energy,

momentum
conservation

Generalization out of the training distribution

Generalization to longer trajectories:

Does not generalize to more developed turbulence

Generalization to different initial conditions:

Generalizes to higher solenoidal components

Fails to generalize to higher compressive components

Generalization to different box lengths

Trained on a
single box size

L = 0.75

P
re

di
ct

io
n

(L
=0

.7
5)

Larger Box
L = 2

G
ro

un
d

Tr
ut

h

Trained on
multiple box

sizes

 L = 0.5 0.75 1. 1.25

P
re

di
ct

io
n

 L
={

0.
5,

 0
.7

5,
 1

.0
, 1

.2
5)

Generalization to different box lengths

Trained on a
single box size

L = 0.75

P
re

di
ct

io
n

(L
=0

.7
5)

Larger Box
L = 2

G
ro

un
d

Tr
ut

h

Trained on
multiple box

sizes

 L = 0.5 0.75 1. 1.25

P
re

di
ct

io
n

 L
={

0.
5,

 0
.7

5,
 1

.0
, 1

.2
5) Quantitative

generalization remains a
challenge

1. Learning reusable knowledge and inductive biases are key to
generalization

2. Graph & Mesh representations for ML do scale, and are worth
considering

3. Learned simulators can bring unique advantages

a. Accelerated predictions

b. Gradients and inverse design.

c. Interpretability

d. …

Conclusions

Learning general purpose
physical simulators

Presenter: Alvaro Sanchez-Gonzalez

April 19, 2022

Workshop on Representation Learning from
Heterogeneous/Graph-Structured Data

Learning to Discover - Institut Pascal Paris-Saclay

Thanks for your attention!

Question time?

