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1. Speed
Learn subgrid dynamics, compensate for large time stepping
classical limits (e.g. CFL condition) don’t directly apply

2. Differentiability
Improved design optimization, boundary inference, control

3. Learn unknown physics
compensate for unknown models/parameters

4. Distill reusable modules
which run efficiently on modern accelerator hardware

Why learn simulation?
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High-dim outputMagical NNInput parameters
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1. Neural networks are good at interpolation, 
bad at extrapolation

2. Learned physics models often don’t learn anything close to 
the underlying physical equations

3. There’s no way we can build a dataset that covers the input 
space of a general-purpose simulator



Strong generalization using Graph Networks

Structure the learning setup such that we learn reusable knowledge, similar to 
physical laws, and can apply our model far outside training set conditions.

Learned simulation model with very desirable properties:

- Strong generalization
- Graph models which scale (we demonstrate up to 100k nodes)
- Stable rollouts
- Speed: 10-100x faster than ground truth simulator
- Same model works on vastly different systems

Learning to Simulate Complex 
Physics with Graph Networks 
ICML 2020
arxiv.org/pdf/2002.09405
sites.google.com/view/learning-
to-simulate

Learning Mesh-Based Simulation 
with Graph Networks 
ICLR 2021, Outstanding paper 
award
arxiv.org/pdf/2010.03409.pdf
sites.google.com/view/meshgraph
nets

https://arxiv.org/pdf/2002.09405
https://sites.google.com/view/learning-to-simulate
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2010.03409.pdf
https://sites.google.com/view/meshgraphnets
https://sites.google.com/view/meshgraphnets


Follow-up simulation work

Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

Constraint-based graph network simulator
arXiv (ICML 2022 submission)

arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator


Strong generalization using Graph Networks

What this talk isn’t about:

- An actual product (this is basic research :)

- Accuracy & convergence guarantees

- Mixing learned models with hard-coded solvers



Particle-based simulation
Videos: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1tn9qpDVX19mZhkxrCjMCex3dUuB655BT/preview
https://sites.google.com/view/learning-to-simulate


Incompressible fluids

Eulerian simulation 
[COMSOL]

triangular mesh

Network output:
velocity field

pressure field

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1tHdQvCbvCvDpkXEGaDgWqgLknotfDNpE/preview
https://sites.google.com/corp/view/meshgraphnets


Aerodynamics

Eulerian simulation 
[SU2]

triangle mesh

Network output:
velocity field
density field

pressure field

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1n43-gpya6xVEz4v4xyd-IFtskNjEq-g0/preview
https://sites.google.com/corp/view/meshgraphnets


Cloth dynamics

Lagrangian 
simulation
[Arcsim]

dynamic triangular 
mesh

Network output:
per-node 

acceleration

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/11YdlKcxW1pqKNNm2DFeju9-CjyxEChlc/preview
https://sites.google.com/corp/view/meshgraphnets


Structural mechanics

Lagrangian 
quasi-static 
simulation 
[COMSOL]

tetrahedral mesh

Network output:
per-node 

position change

Videos: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1PJsky3flqjZVbHf97bYz3LWAGXSFr3H-/preview
https://sites.google.com/corp/view/meshgraphnets


How does it work?



How does it work?

Main design principle: neural networks are dumb, let’s make their life easy



“If I have seen further it is by 
standing on the shoulders of giants.”

-Sir Isaac Newton-

Our Neural Networks should also have 
the knowledge of giants!

Inductive Biases



Inductive biases

Inductive bias → Prior for generalization

“An inductive bias allows a learning algorithm to prioritize 
one solution (or interpretation) over another.” 

Mitchell, T. M.. The need for biases in learning generalizations. (1980)



A simple inductive bias: Inertial dynamics

xt+1 = NN(xt, vt) Has to learn to predict 
static motion

Position: x(t) 

Velocity: v(t)

Static prior

xt+1 = xt + NN(xt, vt)

Trivial to predict static 
motion

Has to learn to predict 
inertial motion

Inertial prior

xt+1 = xt + Δt•vt+ NN(xt, vt)
Trivial to predict 
inertial motion!



Physics-inspired inductive biases!

Spatial 
equivariance

Pairwise 
interactionsLocal 

interactions

Superposition 
principleUniversal 

rules
Permutation equivariance

Differential 
equations
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Differential 
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Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)

MLP(                  )  ≠ 

MLP(                  )  ≠ 

MLP(                  )  ≠ ...

● MLPs operate over vectors
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Graph Networks

● Neural networks that operate over graphs
○ Global features

Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)



Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)

Update edge, node and global embeddings

GN

Permutation 
equivariance



Message passing: Edge update

Edge (message) function (for every edge)

Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)

Pairwise 
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Universal 
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Message passing: Node update

Node function (for every node)

Receiver edge aggregation (Message pooling) (for every node)

Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)

Superposition 
principle

Universal rules
Local 

interactions
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Global node and edge aggregation

Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)Graph Networks: Global update

Global function

Local 
interactions
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Encoding Graphs



Transform the inputs into a graph

○ Edges: Mesh edges (for meshes)
or proximity-based (for particles)
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Transform the inputs into a graph

○ Edges: Mesh edges (for meshes)
or proximity-based (for particles)

Encoding Graphs

posi veli typei

posij=posi-posi

Spatial 
equivariance



Encoding Graphs



Simulation model



Decoder and update 

● predict position ?

○ xt+1 = decode(G)

xt+1



Decoder and update 

● predict acceleration !

○ vt+1 = vt + decode(G)

○ xt+1 = xt + vt+1

Easy to predict static dynamics

xt+1
xt“Acceleration” (Euler integrator with dt=1)

Easy to predict inertial dynamics → Good prior

xt
 + vt



Simulation model



Simulation model

Incompressible 
fluid simulationStructural mechanicsCloth simulation Compressible

aerodynamics

same model, same hyperparameters can simulate many systems

Liquids/granular 
materials

Lagrangian Eulerian,
2d triangular

3d tetrahedral3d 
triangular
adaptive quasi-static 

simulation

dynamic
simulation

Lagrangian,
particle based

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview


Simulation model

Incompressible 
fluid simulationStructural mechanicsCloth simulation Compressible

aerodynamics

same model, same hyperparameters can simulate many systems

Liquids/granular 
materials

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview


Model rollouts
Train on next-step prediction, unroll for 1000s of steps

=



Model rollouts
What usually happens

Credit: Ummenhofer et al.

=



Model rollouts
What usually happens

Credit: Ummenhofer et al.

slightly imperfect 
prediction

error accumulates Physically invalid 
states develop

I don’t know what to 
do with this input!
Let’s explode!

=



Model rollouts
Training noise

=

+ noise(0, σ) 🐱 plz 
fix!



Prediction vs. Ground truth simulation

https://docs.google.com/file/d/1o2uIg6fNI_MxDiyidwjQvpoyEPyiXTXg/preview


Long-term stability

https://docs.google.com/file/d/1jwKKxLuw65A5nxiWAs-TLf4bf7nFWD43/preview


Locality, equivariances and generalization

https://docs.google.com/file/d/1WTYeR7zpT9UyvQAwcYHZyVoNAwOsCfOF/preview


Locality, Equivariance and Generalization



Locality, Equivariance and Generalization

Water surface dynamics

Interaction with box boundaries

Dense blocks of water



Generalization

Training:
2k nodes

Testing:
>20k nodes

https://docs.google.com/file/d/1JWfx63uOs0suNYjnprTe6iaicnQOQd_z/preview


Let’s talk about meshes

FEM Simulations on meshes



Let’s talk about meshes

[de Bezenac et al. 2018]

[Thuerey et al. 2020]

[Guo et al. 2016]

FEM Simulations on meshes Vast majority of ML/Sim research



Let’s talk about meshes

40m

2·10-4m

adaptive mesh: 
5,000 nodes

uniform grid at 2·10-4m: 
40,000,000,000 nodes



Learned adaptive remeshing

sizing 
field

R
es

ol
ut

io
n

Fine-scale regions at ti
Fine-scale regions at tj

Sizing field at ti 

Time

Sizing field at tj 

Predict sizing field 
and remesh!



Learned remeshing

https://docs.google.com/file/d/1IxJCXBOxgT_RGBjunDf26q_n0q7J7QeJ/preview


Up to 300x speed ups compared to solvers!

Speed-ups

200x
30x
11x

100x
40x

300x

Dataset Time per step
GNN Solver



Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

Constraint-based graph network simulator
arXiv (ICML 2022 submission)

arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate
https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator


Physical Design using Differentiable Learned Simulators
arXiv (ICML 2022 submission)

arxiv.org/pdf/2202.00728.pdf
sites.google.com/view/learning-to-simulate

https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/learning-to-simulate


Designing tools is a hallmark of intelligence …



Scalability High PrecisionSimple tool creation

Can we automatically design these structures within a 
general-purpose framework?



Outer loop: design optimization process

General Inverse Design Framework

Inner loop: forward model rollout



General Inverse Design Framework

Inner loop: forward model rollout

Outer loop: design optimization process

Which Models?

Which optimizers?



 Sanchez-Gonzalez*, Godwin*, Pfaff*, Ying*, et al, ICML 2020               /            Pfaff*, Fortunato*, et al, ICLR 2021;                               

Can we leverage Pre-trained GNN models for Inverse Design?

Gradient-based with 
learned models

Sampling-based 
black-box models

Gradient-based with 
analytical models

Can we use a GNN based model 
pre-trained on physical 

dynamics for inverse design?  



Discovered designs 
2D Fluid Tools

100 - 1000 particles, 
16 - 36 design dimensions

Gradient
based* 
(ours)

Sampling 
based

Overall reward 
(higher is better)

Sampling-based 
optimization

Gradient-based 
optimization

m
az

e
ra

m
p

co
nt

ai
n

Training 
distribution



Discovered designs - 3D WaterCourse
2k - 4k particles, 625 design dimensions

● Gradient descent through a learned simulator (GD-M) outperforms a sampling-based 
approach (CEM-M) by 1-2 orders of magnitude.

Gradient-based Sampling-based



Discovered designs - Airfoil

● Airfoil designs converges fairly quickly in about 150 steps
● Very similar drag coefficients achieved with the true simulator and learned models

4158 node mesh, 10 design dimensions



Constraint-based graph network simulator
arXiv (ICML 2022 submission)
arxiv.org/pdf/2112.09161.pdf
sites.google.com/view/constraint-based-simulator

https://arxiv.org/pdf/2112.09161.pdf
https://sites.google.com/view/constraint-based-simulator


Explicit GNN simulator*

*Sanchez-Gonzalez, Godwin, Pfaff et al., ICML 2020

*Pfaff, Fortunato, Sanchez-Gonzalez et al., ICLR 2021

Nodes =                   per particle

Edges = particle interactions
               

             Task:
predict                    at 
the next time step

The next state 
is predicted 

explicitly 



How do we use explicit GNN simulator?

Fixed
Task:

predict the next 
simulation state



Many physical simulators don’t work like that!

The next state is 
defined implicitly 

Solve the constraints to find   

E.g.
● Objects do not overlap
● Momentum and energy 

are conserved

: Is proposed            

     consistent with          ?     



Constraint function

Valid next 
state

High

Low

Invalid 
state

Invalid 
state

Valid 
stateInvalid state:

Two ball overlap

Invalid state:
bounced too far



High

Low

Forward pass

Run gradient descent on         to find



Forward pass

scalar

=

…

Gradient descent step

Initial proposal for 
the next state

Model
output

Trainable end-to-end: Don’t need constraint labels!



Domains

BoxBath Bouncing Balls Bouncing Rigids Rope



Interpreting the constraints

Ground-truth
next state

Moving freely

Avoid overlapping 
with other particles



Combining constraint functions

At test time optimize 
a learned constraint a user-defined constraint

(e.g. new obstacle)

No collisions were ever 
observed at training time!

https://docs.google.com/file/d/1YG6Y11-ZMUOFg9rJQQSzYc4Lxzo_AxSn/preview?resourcekey=0-iOd6dhLeGsvCwgP4Ctf6LQ


Improving accuracy on larger systems

Ro
llo

ut
 M

SE

3-fold decrease in the 
rollout error!

# GD iterations (test time)

Longer rope
(2x more nodes)

# iterations
used at training

Better generalization than explicit models!



Learned Coarse Models for Efficient Turbulence Simulation
ICLR 2022
arxiv.org/pdf/2112.15275.pdf
sites.google.com/view/learning-to-simulate

https://arxiv.org/pdf/2112.15275.pdf
https://sites.google.com/view/learning-to-simulate


Turbulence Simulation

Engineering Science

Classical numerical solvers are powerful but computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence 
accurately at faster speeds?

Forecasting



1. Use classical physics solvers to produce high-resolution trajectories

2. Downsample these trajectories in space and time to produce training data

3. Train a neural network to do next-step prediction on low-resolution frames

Our Approach



1D Kuramoto-Sivashinsky (KS) Equation

X Velocity Y Velocity PressureZ VelocityDensity

3D Mixing Layer Turbulence with Radiative Cooling
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X Velocity Y Velocity PressureZ VelocityDensity

3D Uniform Compressible Decaying Turbulence
X Velocity

X Velocity Y Velocity Vorticity
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2D Incompressible Turbulence
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Domain Generality

One model → 4 different domains
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Frequency

Spatial Coarsening

1283

Initial 
condition 

&
training 

data

Athena++ 
at 1283 

Down 
sample

Athena++ 
at 643 

643

Athena++ 
at 323 

323

Down 
sample

En
er

gy

Better RMSE than Athena at 323

Model 
at 323 

Better spectrum than Athena at 643



Temporal Coarsening

Rollout

Energy RMS error 
(trained with noise) 

One-stepLearned simulators can be trained on 
larger timesteps.

Learned model timestep

1x 2x 4x 8x 16x 32x 64x 128x

Ground 
Truth

256x



Running time

Simulator Time (s)

Athena++ 323 ~4

Athena++ 643 ~60

Athena++ 1283 ~1000

Model 1283 → 323 ~20-30

Model 1283 → 323 (GPU) ~1

● Athena++
○ Scales O(resolution4)
○ CPU only

● Learned model:
○ Up to 1000x faster than 

Athena at 128



Learned Model Comparison

Ground 
Truth

Dil-ResNet U-Net TF-Net Con-TF-NetCon-Dil-ResNet FNO (k=8) FNO

However, most learned models do qualitatively pretty well

Our models quantitatively outperform other, more specialized, parameterized models



Constraints satisfaction as function of time

1D KS 
total momentum 

consevation 

2D Incompressible 
velocity field 
divergence

3D turbulence 
mass, energy, 

momentum 
conservation



Generalization out of the training distribution

Generalization to longer trajectories:

Does not generalize to more developed turbulence

Generalization to different initial conditions:

Generalizes to higher solenoidal components

Fails to generalize to higher compressive components



Generalization to different box lengths

Trained on a 
single box size

L = 0.75
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Generalization to different box lengths

Trained on a 
single box size

L = 0.75
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Trained on 
multiple box 
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         L =  0.5  0.75      1.       1.25
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 0
.7

5,
 1

.0
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5) Quantitative 

generalization remains a 
challenge



1. Learning reusable knowledge and inductive biases are key to 
generalization

2. Graph & Mesh representations for ML do scale, and are worth 
considering

3. Learned simulators can bring unique advantages

a. Accelerated predictions

b. Gradients and inverse design.

c. Interpretability

d. …

Conclusions
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Thanks for your attention!

Question time?


