
Enabling Empirically & Theoretically Sound
Algorithmic Alignment

Petar Veličković

Learning to Discover
20 April 2022

In this talk:
(Classical) Algorithms

In this talk:
(Classical) Algorithms

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

In this talk:
(Classical) Algorithms

(with a bit of neural spice)

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

Overview

Our aim is to address three key questions: (roughly ~15min for each)

● Why should we, as deep learning practitioners, study algorithms?
○ Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

● How to build neural networks that behave algorithmically?
○ And are there any libraries or resources to facilitate this?

● Are there ways to strengthen the alignment of GNNs and to algorithms?
○ Explore the fascinating connection between GNNs and dynamic programming

Hopefully, also some ideas on where you might be able to apply the ideas above :)

1 Motivation for
studying
algorithms

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

 *though perception itself may also be expressed in the language of algorithms

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode

Why algorithms?

● Essential “pure” forms of combinatorial reasoning
○ ‘Timeless’ principles that will remain regardless of the model of computation
○ Completely decoupled from any form of perception*

● Favourable properties
○ Trivial strong generalisation
○ Compositionality via subroutines
○ Provable correctness and performance guarantees
○ Interpretable operations / pseudocode

● Hits close to home
○ Algorithms and competitive programming are how I got into Computer Science

2 Applying
algorithms in
the wild

A simple example

● “Find the optimal path from A to B”

A simple example

● “Find the optimal path from A to B”
○ The theoretical computer scientist diligently uses the Dijkstra hammer!

What did the theoretical computer scientist subtly assume?

A simple example

● “Find the optimal path from A to B”
○ This kind of question usually hides the real-world problem underneath…

Also, what do we even mean by optimal? Are we sure we mean shortest? Is Dijkstra enough?

A simple example

● Let’s ignore the multiple-algorithms problem for now, and assume optimal == shortest.
○ Can we ever hope to manually / heuristically do the mapping necessary?

Not really… (known since at least 1955)

An important issue for the community

● This “core problem” plagues applications of classical combinatorial algorithms to this day!

● If we manually satisfy algorithm preconditions, this often implies drastic information loss
○ Combinatorial problem no longer accurately portrays the dynamics of the real world.
○ Algorithm will give a perfect solution, but in a useless environment

● The data we need to apply the algorithm may be only partially observable
○ This can often render the algorithm completely inapplicable.

● Typically ignored in the theoretical CS community
○ But of high interest for both combinatorial and operations research communities.

● Here we will attack the core problem by neuralising the algorithm

3 Neuralising an
algorithm

Attacking the core problem

● Whenever we have manual feature engineering of raw data, neural nets are attractive!

● First point of attack: “good old deep learning”
○ Replace human feature extractor with neural network
○ Still apply the same combinatorial algorithm

● First issue: algorithms typically perform discrete optimisation
○ This does not play nicely with gradient-based optimisation that neural nets require.
○ But there exist great proposals for solving this (e.g. Vlastelica et al.)

Algorithmic bottleneck

● Second (more fundamental) issue: data efficiency
○ Real-world data is often incredibly rich
○ We still have to compress it down to scalar values

● The algorithmic solver:
○ Commits to using this scalar
○ Assumes it is perfect!

● If there are insufficient training data to properly estimate the scalars, we hit same issues!
○ Algorithm will give a perfect solution, but in a suboptimal environment

● (Third issue: what if the algorithm doesn’t give us the entire solution?)

Breaking the bottleneck

● Neural networks derive great flexibility from their latent representations
○ They are inherently high-dimensional
○ If any component is poorly predicted, others can step in and compensate!

● To break the bottleneck, we replace the algorithm with a neural network!

(The setting naturally aligns with encode-process-decode (Hamrick et al., CSS’18))

Encoder Decoder

P

● Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
○ An end-to-end neural pipeline which is fully differentiable
○ No scalar-based bottlenecks, hence higher data efficiency.
○ We can add skip connections, if the algorithm is not the whole answer.

● How do we obtain latent-state neural networks that align with algorithms?

Properties of this construction

Encoder Decoder

P

4 Algorithmic
reasoning and
the CLRS
Benchmark

● The desiderata for our processor network P are slightly different than usual:
○ They are required to imitate the steps of the algorithm faithfully
○ This means they must extrapolate!
○ (Related: how to best decide the weights of P to robustly match the algorithm?)

● Neural networks typically struggle in the extrapolation regime!

● Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
○ Primarily through theoretical and empirical prescriptions
○ These guide the neural architectures, inductive biases and featurisations that are

useful for extrapolating combinatorially

● This is a very active research area, with many key papers published only last year!

Algorithmic reasoning

Blueprint of algorithmic reasoning (Veličković & Blundell, Patterns’21)

● GNNs pre-trained on algorithm, then deployed on natural task!

● “...running classical algorithms on inputs previously considered inaccessible to them”

● Proofs-of-concept exist!
○ XLVIN (Deac et al., NeurIPS’21)
○ RMR (Veličković, Bošnjak et al., 2021)
○ CNAP (He et al., 2022)

Blueprint of algorithmic reasoning (Veličković & Blundell, Patterns’21)

Recently also on the cover of Nature!

tl;dr of algorithmic reasoning

● Graph neural networks (GNNs) align well with dynamic programming (Xu et al., ICLR’20)

● Interesting inductive biases explored by Veličković et al. (ICLR’20):
○ Encode-process-decode from abstract inputs to outputs
○ Favour the max aggregation
○ Strong supervision on trajectories

● Further interesting work:
○ IterGNNs (Tang et al., NeurIPS’20)
○ PGN (Veličković et al., NeurIPS’20)
○ PMP (Strathmann et al., ICLR’21 SimDL)

● Linear algorithmic alignment is highly beneficial (Xu et al., ICLR’21)
● Properly handling extrapolation may necessitate causality (Bevilacqua et al., ICML’21)

Critically:
Every paper generates its own dataset,
making progress tracking a nightmare

Our inspiration…

Textbook for algorithms at many universities

Summarises the wealth of knowledge of
many professional computer scientists

Only about ~90 distinct algorithms

(which we initially reduced to 30)

https://github.com/deepmind/clrs

Paper to be released on arXiv soon!

Representation

● Generators provide inputs which fully specify the input, output (and trajectory)
○ Trajectory can tell apart many different algos that implement the same function

● For convenience, provided pre-processors convert it into graphs
○ Node / edge / graph-level inputs, hints, and targets.

Restrictions

● No ambiguity in evaluation (no numerical algorithms output)

● No ambiguity in representation (no auxiliary memory tasks)

● No approximation or NP-hard problems

→ This converted the 90 candidates into a final set of 30 algorithms

Tasks!

Performance in-distribution… (8 tasks out of 30)

It might seem as if our models (MPNN in red) can do quite well…

Performance out-of-distribution (4x larger)

Still a long way to go! Hence CLRS is hopefully a useful source of measuring progress :)

5 Deepening the
theoretical link

Existing results on GNN-DP alignment

● Graph neural networks (GNNs) align well with dynamic programming (Xu et al., ICLR’20)

● However, has this alignment truly been demonstrated and theoretically quantified?
○ It quickly became apparent that not just any GNN will suffice to learn an algorithm
○ Hence, the flurry of follow-up work!

● We believe that this is due to the fact the GNN-DP connection is not sufficiently explored!
○ The original paper merely mentions in-passing the alignment with Bellman-Ford
○ We know of no follow-up work that goes beyond this!

A comment on recent work on this connection

● Rigorously states which DP tasks can be solved using GNNs, when arbitrarily initialised
○ Min-cut works, path-finding doesn’t!
○ It could be interesting to see if this is at all related to WL-style arguments

● We do not focus on this setting; we seek to classify computational power under the
correct initialisation (e.g. for path-finding, one that identifies the source vertex)

GNNs

● Graph: a tuple of nodes and edges, G = (V, E)

● Define one-hop neighbourhoods Nu in the usual way:

● Node feature matrix X; omit graph- and edge-level features for clarity

● Here, ѱ is the message function, and ɸ is an update function.
● ⨁ is a permutation-invariant aggregator (e.g. sum, avg, max)

Dynamic programming

● Solve problems in a divide et impera fashion

● We want to solve a problem instance, x
○ First, identify a set of subproblems, η(x)
○ Recombine the answers:
○ For some subproblems y, f(y) will be trivially known (base case)
○ NB: this induces a graph structure over subproblems!

● Often conveniently expressed programmatically:

● Also, categorically (de Moor, 1994):

Bellman-Ford as a specific instance

● Finding single-source shortest paths in a graph:

with base cases given by ds = 0, and +∞ otherwise.

● Here, the set of subproblems is exactly the set of nodes in the graph
○ And the expansion function yields exactly the one-hop neighbourhoods!

● NB: More general forms of Bellman-Ford exist
○ Rely on specific definitions of + and min (specific semiring)
○ Connection used to motivate several works, e.g. NBFNet (Zhu et al., NeurIPS’21)

The difficulty of connecting GNNs and DP

● The basic technical obstacle to establishing a rigorous correspondence between neural
networks and DP is the vastly different character of the computations they perform
○ Neural networks work through linear algebra over real numbers
○ Algorithms often operate over “tropical” objects like

■ Often studied as “degenerations” of Euclidean space. Hard to reconcile!

● Our attempt: define a latent space R and minimise the assumptions over it!
○ We can then plug the appropriate R to describe both GNNs and DP!

● Behaviours of interest arise by instead studying functions S → R, where S is a finite set
○ Principal objects are the category of finite sets, and “R-valued quantities” over them

● Our aim: find an abstract object capable of representing both GNN and DP equations
○ Our proposal: integral transforms

Spans, Pullback and Pushforward

● In general, we define a gadget called a span
○ Object E equipped with two morphisms s, t
○ When V = W, this can be used to describe the edges of a graph
○ s(e), t(e) give sender and receiver nodes, respectively
○ We are given data f : V → R, and we need to use this span to obtain data on W

● First principal operation: pullback along s, which is trivial:
○ Gives us g : E → R, data sent to the respective edge

● Secondly, pushforward along t to send messages to the receiver.
○ Here the morphism t is not facing the right way!
○ We need the preimage:
○ Now can define pushforward as , but it gives us multisets W → ℕ[R]

● Need to aggregate these multisets to obtain W → R

Illustration of pullback and pushforward

How to aggregate?

● In general, we need an aggregator: ℕ[R] → R to do this final step.
○ First, observe that ℕ[R] are polynomials with integer coefficients over R:

● Given a function f : S → T, one can define ℕ[f] : ℕ[S] → ℕ[T] as follows:

● Note that, for each set S, we can also define two special functions:
○ unit: S → ℕ[S] (x -> {{x}})
○ join: ℕ[ℕ[S]] -> ℕ[S] (collapsing a nested sum over S into a single sum)

● This tells us that the multiset is a monad, and it is well-known that the algebras over such
monads are commutative monoids
○ This imposes our only restriction over R; it must support a commutative monoid.

On the multiset monad

● A commutative monoid structure on R is equivalent to defining our desired aggregator, ⨁!

● We can now relate our discovered aggregator to the pullback and pushforward:

The four arrows of the integral transform

● Finally, we obtain the following four-stage diagram:

● So long as R is a commutative monoid, this diagram works for both GNNs and DP!

● The diagram looks straightforward but hides a lot of constraints on the arrows (cf.
previously shown diagrams)

● Some embarrassingly obvious alignments emerge when one tries to match the choice of
⨁; e.g. using max to represent path-finding DP tasks.

Some thoughts for the future

● The kernel arrow (corresponding to the GNN message function / DP scoring function)
○ We may have to dig deeper into the constraints induced by the kernel…

● We made pullback and pushforward static because we assume a pre-determined graph!
○ In the future, want to formalise GNNs / DP that dynamically alter their computations
○ For GNNs, this corresponds to methods akin to graph rewiring!
○ For DP, it implies not having the expansions precomputed!
○ Could be highly useful to model situations where subproblems need to be inferred

● Lastly, the connections detected here could stretch way deeper!
○ Integral transforms and span used to define Fourier series and Yang-Mills equations
○ Could we properly understand the common ground behind all of these?

See our paper to find out more!

ICLR’22 GroundedML / GTRL

https://arxiv.org/abs/2203.15544

https://arxiv.org/abs/2203.15544

Thank you!

petarv@deepmind.com | https://petar-v.com

In collaboration with Andrew Dudzik, Adrià Puigdomènech Badia, David Budden,
Razvan Pascanu, Andrea Banino, Misha Dashevskiy, Raia Hadsell and Charles Blundell

mailto:petarv@google.com
https://petar-v.com

