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Overview

Our aim is to address three key questions: (roughly ~15min for each)

e Why should we, as deep learning practitioners, study algorithms?
o Further, why might it be beneficial to make ‘algorithm-inspired’ neural networks?

e How to build neural networks that behave algorithmically?
o And are there any libraries or resources to facilitate this?

e Are there ways to strengthen the alignment of GNNs and to algorithms?
o Explore the fascinating connection between GNNs and dynamic programming

Hopefully, also some ideas on where you might be able to apply the ideas above :)
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Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

*though perception itself may also be expressed in the language of algorithms
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Why algorithms?

Essential “pure” forms of combinatorial reasoning
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‘Timeless’ principles that will remain regardless of the model of computation
Completely decoupled from any form of perception*

Favourable properties
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Trivial strong generalisation

Compositionality via subroutines

Provable correctness and performance guarantees
Interpretable operations / pseudocode
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Why algorithms?

e Essential “pure” forms of combinatorial reasoning
o ‘Timeless’ principles that will remain regardless of the model of computation
o Completely decoupled from any form of perception*

e Favourable properties
o  Trivial strong generalisation
o Compositionality via subroutines
o Provable correctness and performance guarantees
o Interpretable operations / pseudocode

e Hits close to home
o  Algorithms and competitive programming are how | got into Computer Science
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A simple example

e “Find the optimal path from A to B”
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A simple example

e “Find the optimal path from A to B”
o The theoretical computer scientist diligently uses the Dijkstra hammer!

X > U

Abstract inputs Abstract outputs

What did the theoretical computer scientist subtly assume? @



A simple example

e “Find the optimal path from A to B”
o This kind of question usually hides the real-world problem underneath...
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Also, what do we even mean by optimal? Are we sure we mean shortest? Is Dijkstra enough? @



A simple example

e Let's ignore the multiple-algorithms problem for now, and assume optimal == shortest.
o Can we ever hope to manually / heuristically do the mapping necessary?
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Not really... (known since at least 1955)
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An important issue for the community

This “core problem” plagues applications of classical combinatorial algorithms to this day!

If we manually satisfy algorithm preconditions, this often implies drastic information loss

o Combinatorial problem no longer accurately portrays the dynamics of the real world.

o Algorithm will give a perfect solution, but in a useless environment

The data we need to apply the algorithm may be only partially observable
o This can often render the algorithm completely inapplicable.

Typically ignored in the theoretical CS community
o  But of high interest for both combinatorial and operations research communities.

Here we will attack the core problem by neuralising the algorithm

O
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Attacking the core problem

e Whenever we have manual feature engineering of raw data, neural nets are attractive!

e First point of attack: “good old deep learning”
o Replace human feature extractor with neural network
o Still apply the same combinatorial algorithm

x > T > 1

Natural inputs Abstract inputs Abstract outputs

e Firstissue: algorithms typically perform discrete optimisation
o This does not play nicely with gradient-based optimisation that neural nets require. @
o  But there exist great proposals for solving this (e.g. Vlastelica et al.)



Algorithmic bottleneck

Second (more fundamental) issue: data efficiency
o Real-world data is often incredibly rich
o  We still have to compress it down to scalar values

The algorithmic solver:
o Commits to using this scalar
o Assumes it is perfect!

e If there are insufficient training data to properly estimate the scalars, we hit same issues!
o Algorithm will give a perfect solution, but in a suboptimal environment

(Third issue: what if the algorithm doesn't give us the entire solution?)
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Breaking the bottleneck

e Neural networks derive great flexibility from their latent representations
o They are inherently high-dimensional
o If any component is poorly predicted, others can step in and compensate!

e To break the bottleneck, we replace the algorithm with a neural network!

i —> Y

Encoder Decoder

Natural inputs Latent state Natural outputs @

(The setting naturally aligns with encode-process-decode (Hamrick et al, CSS'18))



Properties of this construction

e Assuming our latent-state NN aligns with the steps of an algorithm, we now have:
o An end-to-end neural pipeline which is fully differentiable
o No scalar-based bottlenecks, hence higher data efficiency.
o  We can add skip connections, if the algorithm is not the whole answer.

e How do we obtain latent-state neural networks that align with algorithms?

—> Y
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Encoder Decoder

Natural inputs Latent state Natural outputs @
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Algorithmic reasoning

The desiderata for our processor network P are slightly different than usual:
o They are required to imitate the steps of the algorithm faithfully
o This means they must extrapolate!
o (Related: how to best decide the weights of P to robustly match the algorithm?)

Neural networks typically struggle in the extrapolation regime!

Algorithmic reasoning is an emerging area that seeks to ameliorate this issue
o  Primarily through theoretical and empirical prescriptions
o These guide the neural architectures, inductive biases and featurisations that are
useful for extrapolating combinatorially

This is a very active research area, with many key papers published only last year!
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Blueprint of algorithmic reasoning (Velickovi¢ & Blundell, Patterns’21)
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Blueprint of algorithmic reasoning (Velickovi¢ & Blundell, Patterns’21)

GNNs pre-trained on algorithm, then deployed on natural task!

“..running classical algorithms on inputs previously considered inaccessible to them”

Proofs-of-concept exist!
o XLVIN (Deac et al., NeurlPS'21)
o  RMR (Velickovié, Bosnjak et al.,, 2021)
o CNAP (He et al, 2022)
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Model and training procedure

For modelling the Bruhat intervals, we used a particular GraphNet architecture called a

Re Cently al SO On the Cove r Of N ature ! message-passing neural network (MPNN)8, The design of the model architecture (in terms of

activation functions and directionality) was motivated by the algorithms for computing KL
polynomials from labelled Bruhat intervals. While labelled Bruhat intervals contain privileged
information, these algorithms hinted at the kind of computation that may be useful for
computing KL polynomial coefficients. Accordingly, we designed our MPNN to
algorithmically align to this computation®2, The model is bi-directional, with a hidden layer
width of 128, four propagation steps and skip connections. We treat the prediction of each
coefficient of the KL polynomial as a separate classification problem.
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DeepMind Al collaborates with
humans on two mathematical
breakthroughs

Humans and Al working together can reveal new areas of mathematics where
data sets are too large to be comprehended by mathematicians
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tl;dr of algorithmic reasoning

Graph neural networks (GNNs) align well with dynamic programming (Xu et al,, ICLR'20)

Interesting inductive biases explored by Velickovié et al. (ICLR'20):
o Encode-process-decode from abstract inputs to outputs
o Favour the max aggregation T'l’
o  Strong supervision on trajectories

Further interesting work:
o IterGNNs (Tang et al, NeurlPS'20)
o PGN (Velickovié et al, NeurlPS'20)
o PMP (Strathmann et al.,, ICLR'21 SimDL)

Linear algorithmic alignment is highly beneficial (Xu et al,, ICLR21)
Properly handling extrapolation may necessitate causality (Bevilacqua et al, ICML'21) @
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Critically:
Every paper generates its own dataset,
making progress tracking a nightmare
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Our inspiration...
THOMAS HJCODRMEN
. . .. CHARLES EJLHISERSON
Textbook for algorithms at many universities semiLs Llmles

CLIFFORD EIN

Summarises the wealth of knowledge of
many professional computer scientists

Only about ~90 distinct algorithms
(which we initially reduced to 30)

THIRD EDITION




https://github.com/deepmind/clrs

The CLRS Algorithmic Reasoning Benchmark

Petar Velickovic Adria Puigdoménech Badia David Budden
DeepMind DeepMind DeepMind
petarv@deepmind. com adriap@deepmind.com budden@deepmind.com

Razvan Pascanu Andrea Banino Misha Dashevskiy
DeepMind DeepMind DeepMind
razp@deepmind.com abanino@deepmind.com dashevskiy@deepmind.com
Raia Hadsell Charles Blundell
DeepMind DeepMind
cblundell@deepmind. com

raia@deepmind.com

Paper to be released on arXiv soon!
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Representation

e Generators provide inputs which fully specify the input, output (and trajectory)
o Trajectory can tell apart many different algos that implement the same function

e For convenience, provided pre-processors convert it into graphs
o Node / edge / graph-level inputs, hints, and targets.
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Restrictions

e No ambiguity in evaluation (no numerical algorithms output)

e No ambiguity in representation (no auxiliary memory tasks)

e No approximation or NP-hard problems

— This converted the 90 candidates into a final set of 30 algorithms

o



Tasks!

Sorting: Insertion sort, bubble sort, heapsort (Williams,
1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare,
1961).

Divide and Conquer (D&C):
(Kadane’s variant (Bentley, 1984)).

Maximum subarray

Greedy: Activity selection (Gavril, 1972), task scheduling
(Lawler, 1985).

Dynamic Programming: Matrix chain multiplication,

longest common subsequence, optimal binary search tree
(Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore,
1959), topological sorting (Knuth, 1973), articulation points,
bridges, Kosaraju’s strongly-connected components algo-
rithm (Aho et al., 1974), Kruskal’s and Prim’s algorithms
for minimum spanning trees (Kruskal, 1956; Prim, 1957),
Bellman-Ford and Dijkstra’s algorithms for single-source
shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ di-
rected acyclic graphs version), Floyd-Warshall algorithm
for all-pairs shortest paths (Floyd, 1962).

Strings: Naive string matching, Knuth-Morris-Pratt (KMP)
string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
Graham scan (Graham, 1972), Jarvis’ march (Jarvis, 1973).

O



Performance in-distribution... (8 tasks out of 30)

It might seem as if our models (MPNN in red) can do quite well...
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Performance out-of-distribution (4x larger)

Still a long way to go! Hence CLRS is hopefully a useful source of measuring progress :)

Table 1. Average test micro-F; score of all models on all algorithm classes.

Algorithm DeepSets

GAT

Memnet

MPNN

PGN

Divide & Conquer 8.85%:1.13
Dynamic programming 57.68% + 0.62
Geometric algorithms 33.73% £:1.61
Graph algorithms 13.42% + 2.51
Greedy algorithms 62.26% =+ 7.88
Search algorithms 34.03% £+ 9.74
Sorting algorithms 9.51% +1.19
String algorithms 1.04% =+ 0.60

20.31% + 5.56
55.03% + 1.58
41.27% + 5.06
18.54% =+ 3.51
66.72% + 7.31
26.39% + 9.40

7.72% + 0.48
4.17% +2.17

13.02% + 0.43
54.28% + 1.57
40.94% + 4.77
11.65% + 1.95
60.77% + 9.02

25.35% =+ 10.08
13.32% £ 0.77

3.12% = 1.04

6.25% = 2.21
56.14% + 0.62

44.01% + 4.48

28.33% + 3.23

86.20% + 1.42
36.11% + 9.02

6.07% + 1.29
2.60% + 1.15

57.81% + 3.21

53.19% + 2.12
34.58% + 1.88

30.00% +4.12

72.39% £ 4.70
29.51% + 7.97

4.60% £ 0.75
4.17% + 2.29

Overall average 27.57%

30.02%

27.81%

33.22%

35.78%
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Existing results on GNN-DP alignment

e Graph neural networks (GNNs) align well with dynamic programming (Xu et al,, ICLR'20)

e However, has this alignment truly been demonstrated and theoretically quantified?
o It quickly became apparent that not just any GNN will suffice to learn an algorithm
o Hence, the flurry of follow-up work!

e We believe that this is due to the fact the GNN-DP connection is not sufficiently explored!
o The original paper merely mentions in-passing the alignment with Bellman-Ford
o  We know of no follow-up work that goes beyond this!

Graph Neural Network Bellman-Ford algorithm
|_for k =1...GNNiter: | fork =1..1SI-1:
m No need to learn for-loops m

hy® = Z, MLP(hy(, hyD) d[k][u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step

O



A comment on recent work on this connection

The Exact Class of Graph Functions Generated by
Graph Neural Networks

Mohammad Fereydounian*  Hamed Hassani*  Javid Dadashkarimi =~ Amin Karbasif

e Rigorously states which DP tasks can be solved using GNNs, when arbitrarily initialised
o  Min-cut works, path-finding doesn’t!
o It could be interesting to see if this is at all related to WL-style arguments

e We do not focus on this setting; we seek to classify computational power under the
correct initialisation (e.g. for path-finding, one that identifies the source vertex)

O



GNNs

Graph: a tuple of nodes and edges, G = (V, E)
Define one-hop neighbourhoods N, in the usual way: {’U eV | ('U u) = E}
Node feature matrix X; omit graph- and edge-level features for clarity
@ Y (X, Xo)
vEN,

Here, y is the message function, and ¢ is an update function.
@ is a permutation-invariant aggregator (e.g. sum, avg, max)

O



Dynamic programming

e Solve problems in a divide et impera fashion

e We want to solve a problem instance, x

(@)

(@)
(@)
(@)

First, identify a set of subproblems, n(x)

Recombine the answers: f(x) = p({f(y) | y € n(x)})
For some subproblems y, f(y) will be trivially known (base case)

NB: this induces a graph structure over subproblems!

e Often conveniently expressed programmatically:

e Also, categorically (de Moor, 1994): dp

dp[x| - recombine(score(dp|y],dp[x]) for y in expand(x))

= p o000 7
e i

recombine SCOT€ expand

O



Bellman-Ford as a specific instance

e Finding single-source shortest paths in a graph:

d, < min (du, min d, + wv_m)

UeENy
with base cases given by d_= 0, and +e otherwise.

e Here, the set of subproblems is exactly the set of nodes in the graph
o And the expansion function yields exactly the one-hop neighbourhoods!

e NB: More general forms of Bellman-Ford exist
o Rely on specific definitions of + and min (specific semiring)
o Connection used to motivate several works, e.g. NBFNet (Zhu et al, NeurlPS'21)

O



The difficulty of connecting GNNs and DP

e The basic technical obstacle to establishing a rigorous correspondence between neural
networks and DP is the vastly different character of the computations they perform
o Neural networks work through linear algebra over real numbers
o Algorithms often operate over “tropical” objects like (NU {oco}, min, +)
m Often studied as “degenerations” of Euclidean space. Hard to reconcile!

e Our attempt: define a latent space R and minimise the assumptions over it!
o We can then plug the appropriate R to describe both GNNs and DP!

e Behaviours of interest arise by instead studying functions S — R, where S is a finite set
o Principal objects are the category of finite sets, and “R-valued quantities” over them

e Our aim: find an abstract object capable of representing both GNN and DP equations
o  Our proposal: integral transforms



Spans, Pullback and Pushforward

In general, we define a gadget called a span V < s E t 11,74
Object E equipped with two morphisms s, t

When V = W, this can be used to describe the edges of a graph

s(e), t(e) give sender and receiver nodes, respectively

We are given data f: V — R, and we need to use this span to obtain data on W

~

o O O O

First principal operation: pullback along s, which is trivial:
o Gives us g:E — R, data sent to the respective edge s*f := fo s

Secondly, pushforward along t to send messages to the receiver.
o Here the morphism t is not facing the right way!
o We need the preimage: t~!(w) = {e | t(e) = w}
o Now can define pushforward as t,g := got~!, butit gives us multisets W — N[R]

Need to aggregate these multisets to obtain W — R

O



[llustration of pullback and pushforward

eba \ pushforward
Q(Gba r 9(eve)
ebc
ebd/p‘ - ’
g(eba) €be g(Ebe)
d s
fld) = ¥
Q €

o



How to aggregate?

In general, we need an aggregator: N[R] — R to do this final step.
o First, observe that N[R] are polynomials with integer coefficients over R: ZSES ngs

Given a function f: S — T, one can define N[f] : N[S] — N[T] as follows:

NIf1(Xseg nss) =Y cg nsf(5)

Note that, for each set S, we can also define two special functions:
o unit: S — N[S] (x -> {{x}})
o join: N[N[S]] -> N[S] (collapsing a nested sum over S into a single sum)

This tells us that the multiset is a monad, and it is well-known that the algebras over such
monads are commutative monoids
o This imposes our only restriction over R; it must support a commutative monoid.

O



On the multiset monad

e A commutative monoid structure on R is equivalent to defining our desired aggregator, ®!

R — wit —s N[R] N[N[R]] — N@] — N[R]
AN | | |
id (2>) join (&)
N | |
R N[R] ®—— R

e We can now relate our discovered aggregator to the pullback and pushforward:

V +—3 E t s W
| i i
i s*f t*sl*f
! i :
R+ R < 5 N[R]

o



The four arrows of the integral transform

e Finally, we obtain the following four-stage diagram:

D

tx

[V, R] s, [E,R] t__, [E,R]

> [V,N[R]]

> [V, R]
e Solong as R is a commutative monoid, this diagram works for both GNNs and DP!

e The diagram looks straightforward but hides a lot of constraints on the arrows (cf.
previously shown diagrams)

e Some embarrassingly obvious alignments emerge when one tries to match the choice of
@®; e.g. using max to represent path-finding DP tasks.

O



Some thoughts for the future

e The kernel arrow (corresponding to the GNN message function / DP scoring function)

(@)

We may have to dig deeper into the constraints induced by the kernel...

e We made pullback and pushforward static because we assume a pre-determined graph!

(@)

(@)
(@)
(@)

In the future, want to formalise GNNs / DP that dynamically alter their computations
For GNNSs, this corresponds to methods akin to graph rewiring!

For DP, it implies not having the expansions precomputed!

Could be highly useful to model situations where subproblems need to be inferred

e Lastly, the connections detected here could stretch way deeper!

(@)

(@)

Integral transforms and span used to define Fourier series and Yang-Mills equations
Could we properly understand the common ground behind all of these?

O



See our paper to find out more!

GRAPH NEURAL NETWORKS ICLR'22 GroundedML / GTRL
ARE DYNAMIC PROGRAMMERS https://arxiv.org/abs/2203.15544
Andrew Dudzik* Petar Velickovic¢*
DeepMind DeepMind
adudzik@deepmind.com petarv@deepmind.com
ABSTRACT

Recent advances in neural algorithmic reasoning with graph neural networks
(GNNss) are propped up by the notion of algorithmic alignment. Broadly, a neural
network will be better at learning to execute a reasoning task (in terms of sam-
ple complexity) if its individual components align well with the target algorithm.
Specifically, GNNs are claimed to align with dynamic programming (DP), a gen-
eral problem-solving strategy which expresses many polynomial-time algorithms.
However, has this alignment truly been demonstrated and theoretically quantified?
Here we show, using methods from category theory and abstract algebra, that there
exists an intricate connection between GNNs and DP, going well beyond the ini-
tial observations over individual algorithms such as Bellman-Ford. Exposing this
connection, we easily verify several prior findings in the literature, and hope it
will serve as a foundation for building stronger algorithmically aligned GNNs.


https://arxiv.org/abs/2203.15544
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Thank you!

petarv@deepmind.com | https://petar-v.com

In collaboration with Andrew Dudzik, Adria Puigdomenech Badia, David Budden,
Razvan Pascanu, Andrea Banino, Misha Dashevskiy, Raia Hadsell and Charles Blundell
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