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Scientific dlscovery
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Kepler’'s Laws

Orbits are ellipses Equal areas in equal times
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Samuel Brockington ’
@brockingtonian

1/8 We've just lost our “Newton's Apple Tree"” to Storm
Eunice (gravity is such a downer, arf arf). It was planted
in 1954, so has stood at the Brookside entrance

@CUBotanicGarden for 68 years. An iconic tree, and
sad loss. But what does it mean to be “Newton’s Apple

5:54 PM - Feb 19, 2022 ©)

‘ Read the full conversation on Twitter

Q 742 O Reply T, Share

Read 34 replies
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How do we do this?

1. Train a GN to learn the law of physics.

2. Extract the equation from that GN.
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Graph Neural Networks

Global 1
Global 2 NOde 1
mdae 1/ \Edge 3-1

Edge 2- 3
Node 2 Node 3



US

UNIVERSITY
OF SUSSEX

Many Complex Systems are Structured

Molecule Mass-Spring System n-body System
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Many Complex Systems are Structured

Molecule Mass-Spring System n-body System
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Physical systems as graphs

n-body Balls String
Nodes: bodies Nodes: balls Nodes: masses
Edges: gravitational forces Edges: rigid collisions between balls/ Edges: springs and rigid collisions
walls

Battaglia et al., 2016, NeurIPS



True

Model

Balls

US

UNIVERSITY
OF SUSSEX

i

Battaglia et al., 2016, NeurIPS
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How do we do this?

1. Train a GN to learn the law of physics.

2. Extract the equation from that GN.
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ymbolic Regression

Heuristics for Empirical Discovery
Data-Driven Approaches

Pat Langley to Empirical Discovery

Herbert A. Simon
Gary L. Bradshaw Pat Langley
Irvine Computational Intelligence Project
CMU-RI-TR-84-14 Department of Information & Computer Science
University of California, Irvine, CA 92717

Jan M. Zytkowt
Computer Science Department
Wichita State University
Wichita, Kansas 67208
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- “Used for discovering bivariate equations

“Used for finding regularities (constancies
only”

and trends) in data”
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Symbolic Regression

Distilling Free-Form Natural Laws
from Experimental Data

Michael Schmidt® and Hod Lipson®3*

For centuries, scientists have attempted to identify and document analytical laws that underlie
physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems.

20

UNIVERSITY
OF SUSSEX

0 Collect experimental
data from physical system
(e.g. pendulum time series)

f=z+9.8-sin(x)
f=0.5-y*-9.8-cos(x)

© When predictive ability
reaches sufficient
accuracy, return the most
parsimonious equations

A Az
0% oV
o Numerically calculate

partial derivative for every
pair of variables

f=(x=1.12)-cos(y)
S =091-exp(y/z)
[= 0.5')"' -9.8-cos(x)
0 Generate candidate
symbolic functions. Initially
these are random; later they

are small variations of best
equations selected in (5)

&) : Ax
— = y+sin(x)—
/1= 5

?
Ay P Expl.ore
- == Candidate & of /of
Axly,  OXly ) Equations, e =2 /=
ox f(x.y) Ox 6_\'
o Compare predicted 23
partial derivatives (4) with © oerive symbolic partial

numerical partial derivatives
(2). Select best equations.

derivatives of pairs of variables
for each candidate function

B f0,0)=4.771-(3.714 - @°) + cos(0)
+(3.714 — @?)-cos(0)

<= mul
<- sub

)
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) <= cos
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<= load |
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<- load |
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Symbolic Regression

@

Py SR https://github.com/MilesCranmer/PySR

PySR: High-Performance Symbolic Regression in Python

PySR is built on an extremely optimized pure-Julia backend, and uses regularized evolution, simulated annealing,
and gradient-free optimization to search for equations that fit your data.

Docs pip conda Stats

pypi package  0.7.9 conda-forge 'v0.7.9 downloads 110k
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Symbolic Regression
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Symbolic Regression
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Symbolic Regression

f(x) =x—0.32
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Symbolic Regression

f(x) = cos(x — 0.32)
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Symbolic Regression
f(x) = x+ cos(x — 0.32) G
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Symbolic regression

* PySR repeats this process iteratively

* [t comes up with a set of “candidate equations”



Gmimes

(z2—21)%+(y2—y1)2+(22—21)?

Dimensional
analysis

2
L}

1

(b—1)2+g>+h?

Polynomial
fit

©

Yy Y Zz Z
_1)2+ _Q_ﬁ)2+(%_ﬁ)2

Tl

(b—1)2+(c—(:d)2+(e—f)2

Translational
symmetry

v

VR o

Translational
symmetry

Y

a
(B—1)7+97+h2

l
Multiplicative
separability
a
Polynomial

fit

©

US

UNIVERSITY
OF SUSSEX

Symbolic Regression

Al Feynman: a Physics-Inspired Method for Symbolic Regression

Silviu-Marian Udrescu, Max Tegmark*
Dept. of Physics & Center for Brains, Minds & Machines,
Massachusetts Institute of Technology, Cambridge, MA 02139; sudrescu@mit.edu and
Theiss Research, La Jolla, CA 92037, USA

(Dated: Published in Science Advances, 6:eaay2631, April 15, 2020)

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding
a symbolic expression that matches data from an unknown function. Although this problem is
likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, sepa-
rability, compositionality and other simplifying properties. In this spirit, we develop a recursive
multidimensional symbolic regression algorithm that combines neural network fitting with a suite of
physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics,
and it discovers all of them, while previous publicly available software cracks only 71; for a more
difficult physics-based test set, we improve the state of the art success rate from 15% to 90%.
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Summary of the
algorithm
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Analogy to
Graph Network Newtonian Mechanics
Nodes Particles
Pairs of nodes Two interacting particles (i, j)
Edge model (¢°) Compute force F;;
Encourage \ ,
sparsity ~ ': Messages (e},)
E Pool Sum into net force F et 4
: Concatenate with node
: Node model (") Acceleration a; = Fet i /m;
!
: Updated nodes Compute next timestep

N > Approximate with
‘( symbolic regression

Cranmer et al., NeurIPS 2020
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Decoder and update

DECODER

v —

e predict acceleration!

o v =vt+ decode(G)

o x"'=x'+ v \ Xt+ V!

“Acceleration” (Euler integrator with dt=1) xt .
t+1
X

Easy to predict static dynamics

Easy to predict inertial dynamics — Good prior @

See Alvaro’s talk yesterday!

31
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1. Our inputs are the
positions of the
bodies
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1. Our inputs are the

positions of then

" L~ 4
bodies —

2. They are converted
into pairwise

distances \g




Inductive biases

Encoding Graphs

Transform the inputs into a graph

o Edges: Mesh edges (for meshes)
or proximity-based (for particles)

(" — % pes, | vel,
| C
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ENCODER

X —>

_GO.

Spatial
equivariance

pos,=pos.-pos,

type,

O

See Alvaro’s talk yesterday!
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1. Our inputs are the

positions of then

" L~ 4
bodies —

2. They are converted
into pairwise

distances \g
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1. Our inputs are the

positions of the bodies M,
A
]
2. They are converted —ev
into pairwise distances o =\
N 2,

3. Our model tries to
guess a mass for
each body =
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. Our inputs are the
positions of the bodies

. They are converted into M,
pairwise distances

. Our model tries to
guess a mass for each
body

. It then also guesses a
force, that is a
function of distance
and masses




US

UNIVERSITY
OF SUSSEX

. Positions
. Distances

. Mass guess

. It then also guesses a @\
force, that is a function of A
distance and masses

. Using Newton'’s laws of
motion (Z F =Ma)
it converts the forces
into accelerations
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. Positions

. Distances

. Mass guess
. Force guess
. Acceleration

. Finally, it compares this
predicted acceleration,
with the true
acceleration from the
data
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. Positions
. Distances

. Mass guess

. Force guess

. Predicted acceleration

. Minimize

a (pred) — a’(true



Learned Simulator
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Data

We use data from NASA’s Ephymeris system.

We extract orbits for bodies with M > 10'° kg,
leaving 31 bodies.

We use data from Jan 1980 - Jan 2010 for training,
and Jan 2010 - Jan 2013 for validation.

We extract positions and velocities in Cartesian
coordinates, in the solar system barycentre frame.
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Graph Network

e Our GN uses 3 hidden layers of 128 neurons each.
e [t has an extra trainable scalar per node.
e We use “tanh” activation functions.

e Qur loss function is a normalised MSE.

_ - O))2
Loss = Z A g(AVz, £:9)
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Graph Network

 We use data in log scale to deal with large dynamic
ranges.

 We use 3D rotations of the system for data
augmentation.

* We add random noise during training.
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Inductive blases

e Translational symmetry A
L
_ o
e Rotational symmetry - \
N z
e Newton’s second law \
Y F=Ma

. Newton S th|rd law

Fl]=_F

e Choice of reference frame, units, etc.
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Graph Network

Sun
Venus
Earth
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Predicted masses

Predicted
¢

% Truth




Symbolic regression
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Symbolic regression

e We select a dataset of 500 data points, not used
during training.

. Each point contains x = (v,, v, , € ;) (masses and
distance for a pair of points) as inputs.

o It also contains y = f5n(X) the learned interaction
as output.
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Symbolic regression

e The algorithm applies Occam’s Razor by balancing
accuracy and equation complexity.

* |t does so by calculating a “score”

0 Accuracy

Score = .
o Complexity

e We are currently working in a more sophisticated
Occam’s razor method
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Symbolic regression

o Out loss is an MSE between fGN(x) and the
proposed equation fqp(x, 0).

 The allowed operators are
{+, —.,/,* ,pow, log, exp}.

* The maximum complexity is 40.
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Predicted equations
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Predicted equations
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Graph Network

1 4 =
N
1 @
01 / /I
/7
Sun
1A - = Venus
== FEarth
0 1 2 3 4 5)
X [AU] + At
Graph Network + Symbolic Regression
1.0 A
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Final results
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1. Positions
2. Distances

3. Mass guess

Learned
equation

5. Predicted acceleration

4.

6. Minimize

a (pred) — a’(true
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Fig. 4A: Graph network + symbolic regression
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Graph network + symbolic regression + relearned masses
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Fig. 4A: Graph network + symbolic regression
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Graph network + symbolic regression + relearned masses

* Truth
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Predicted equations
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Fig. 2A: Graph Network
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Fig. 2B: Rollout
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Equivalence principle: Your movement does not depend on your own mass

Diagram B
(weak principle of equivilence)

In space far
from any stars

freely falling
towards the Earth

= Masses can only be measured from their influence on other bodies
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Error in log,, (M /Mg)
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-4 Phoebe ° Planets
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Accelerated Expansion

Dark Ages Development of
Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years
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Learning the Univ
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Learning the Universe
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SIMulation Based Inference
of Galies (SIMBIG)

@ survey geometry
e +veto mask
30 - +fiber collisions
20 . 2 )é
O -\l )
O
-
10 1
0 -t
I ot
_40 -20 0 20 40 60 80



SIMONS US
FOUNDAITION

UNIVERSITY
OF SUSSEX

SIMulation Based Inference
of Galaxies (SIMBIG)
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Learning the Universe

® survey geometry
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earning the Universe

Work in progress, led by Lucas Makinen (Imperial) in collaboration with PL, Alan
Heavens (Imperial), Natalia Porqueres (Imperial) & Benjamin Wandelt (IAP, Paris).
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Summary

- We use graph neural networks and
symbolic regression on 30 years of
Solar System data.

- Our algorithm learns the correct
equation for Newtonian gravity, and
the masses of the planets and moons,
directly from the data.

- This is only possible thanks to using
inductive biases, and other prior DeepMind graph nets lbrary
knowledge.

- This shows that Al can be used to
automate scientific discovery.







