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Introduction
Statistical methods play a critical 
role in many areas of physics

Higgs discovery :  “We have 5σ” !

“5s”

Phys. Lett. B 716 (2012) 1-29
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http://www.sciencedirect.com/science/article/pii/S037026931200857X


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery 
from a  background fluctuation…

New Physics ? 
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery 
from a  background fluctuation…

New Physics ? 

A few months later...
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Uncertainties
Many important questions answered by precision measurements,
Key point = determination of uncertainties
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https://www.science.org/doi/10.1126/science.abk1781


Randomness in High-Energy Physics
Experimental data is produced by incredibly complex processes
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Randomness in High-Energy Physics

Randomness involved in all stages
→ Classical randomness: detector reponse
→ Quantum effects in particle production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

Reconstruction
Image Credits: 
S. Höche, 
SLAC-PUB-16160

Experimental data is produced by incredibly complex processes
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https://arxiv.org/abs/1411.4085


Measurement Errors: Energy measurement
Example: measuring the energy 
                 of a photon in a calorimeter

g

Calorimeter Readout
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Measurement Errors: Energy measurement
Example: measuring the energy 
                 of a photon in a calorimeter

Calorimeter Readout

g

Measure leakage 
into neighboring cells

Measure leakage behind calorimeter

Real 
life

Perfect
case

Cannot predict the measured value for a given event
⇒ Random process ⇒ Need a probabilistic description

8 / 55



Quantum Randomness: H®ZZ*®4l
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Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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View online 
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https://cds.cern.ch/record/2230893/files/Higgs4l.gif?download=1



Quantum Randomness: H®ZZ*®4l
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“Will I get an event today ?” → only probabilistic answer

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Performing a measurement
Measure the cross-section (event rate) of 
the Z→ ee process

σ
fid
=
ndata−N bkg

C fid L

35000 ± 187

Phys. Lett. B 759 (2016) 601

175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfid = 0.781  ± 0.004 (stat)  ± 0.018 (syst) nb

“Single bin counting” : only data input is Ndata.

Fluctuations in the 
data counts

Other uncertainties (assumptions, 
parameter values)
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http://dx.doi.org/10.1016/j.physletb.2016.06.023


Example 2: ttH→bb 

Event counting in different regions: 
Multiple-bin counting

Lots of information available
→ Potentially higher sensitivity
→ How to make optimal use of it ?

arXiv:2111.06712
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https://arxiv.org/abs/2111.06712


HEP Statistical Modeling 
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How to count
Collider processes: produce (many) events N, select a (very) small fraction P
→ In principle, binomial process
→ In practice, P ≪ 1, N ≫ 1, ⇒ Poisson approximation.
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution: P (n ;λ)=e−λ λ
n

n!
(1−P)N−n ∼

n≪N

(1−
λ
N )

N

∼
N≫1

e−λ

Mean = λ
Variance = λ
σ = √λ

Central limit theorem :
becomes Gaussian for large λ : 

P (λ) →
λ → ∞

G(λ , √λ )
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Statistical Model for Counting
Observable: number of events n
Typically both Signal and Background present:

Model has parameters S and B.
B can be known a priori or not (S usually not...)
→ Example: assume B is known, use measured n to find out about S.

P (n ;S , B)=e−(S + B)
(S + B) n

n!
S : # of events from signal process
B : # of events from bkg. process(es)

16 / 55



Multiple counting bins
Count in bins of a variable ⇒ histogram n1 ... nN. 
(N : number of bins)
 

Shapes f typically obtained from simulated events (Monte Carlo)
→ HEP: typically excellent modeling from simulation, although some 
uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples
MC stat fluctuations can create artefacts, especially for S ≪ B.

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i)
(S f S , i+B f B , i)

ni

ni !

Per-bin fractions (=shapes)
of Signal and Background

Poisson distribution in each bin

17 / 55



Model typically includes:

• Parameters of interest (POIs) : what we want to measure
→ S, mW, …

• Nuisance parameters (NPs) : other parameters needed to define the model
→ Background levels (B)
→ For binned data, fsig

i , fbkg
i

NPs must be either:
→ Known a priori (within uncertainties) or
→ Constrained by the data

Model Parameters

18 / 55



Categories arXiv:2111.06712

Better sensitivity at high pT

→ lower B backgrounds, higher S/B

Backgrounds levels obtained from 
simulation here 
→ Large uncertainties!

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)

19 / 55

https://arxiv.org/abs/2111.06712


Categories arXiv:2111.06712

Signal regions only

Signal + Bkg regions

Include 
Background CRs

Backgrounds from 
simulation (large 
uncertainties!)

Backgrounds 
from control 
regions

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)

20 / 55

https://arxiv.org/abs/2111.06712


Þ Combined PDF : 

No overlaps between categories  ⇒ No statistical correlations 
Þ can simply take product of individual PDFs.

Categories

P (S ;{ni
(k )
}
i=1... nevts

(k )

k=1...ncats) =∏
k=1

ncats

Pk ( S;{ni
(k)
}
i=1...nevts

(k ) )

PDF for category k

arXiv:2111.06712

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)

21 / 55

https://arxiv.org/abs/2111.06712


Systematic Errors
The statistical model (PDF) is a way to express uncertainty on the 
outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are 
the ones encoded in the model PDF. 

22 
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Systematic Errors
The statistical model (PDF) is a way to express uncertainty on the 
outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are 
the ones encoded in the model PDF. 

However the model itself may be wrong : this is a systematic error
→ To account for them, need a set of Systematic uncertainties
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Systematics
Statistical models include:
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to define the model
→ Ideally, constrained by data like the POI

And systematics ?
= Cover what we don’t know about the random process.
Þ Parameterize using additional NPs

→ Can’t be constrained by the data ⇒ Add constraints in the likelihood

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

POI
Systematics 

NP
Measurement

Likelihood
NP Constraint 

term 

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

C(θ) represents external knowledge about the NP 23 
/ 
55

https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps


Frequentist Systematics
Prototype: Systematics NP → measured in a separate auxiliary experiment 
e.g. background levels

→ Build the combined PDF of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as NPs constrained in data.

→ Often no clear setup for auxiliary measurements
    (e.g. theory simulation uncertainties) 
→ Define constraints “by hand” (“pseudo-measurement”)

P (μ ,θ ;data) = Pmain(μ ,θ ;main data) Paux (θ ;aux. data)

Paux (θ ;aux. data) = G (θobs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product

24 
/ 
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Statistical model, the full version

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

P (μ ,{θ j } j=1... nNP
;{ni

(k)
}
i=1... ndata

( k )

k=1...ncat ,{θ j
obs
} j=1. .nNP

)=

∏
k=1

ncats

P [ ni ;μ ϵi , k( θ⃗ ) N S , i , k( θ⃗ ) + Bi , k ( θ⃗) ] ∏
j=1

n syst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories! 25 
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ATLAS Higgs Run 1 Combination Model

W. Verkerke, SOS 2014 26 / 55

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf


HEP Statistical Inference : 
Confidence Intervals 

27 / 55



Using the PDF
Model describes the distribution of the observable: P(data; parameters)

Generate 

P (S=5) 2, 5, 3, 7, 4, 9, ….
Each entry = a separate 
pseudo-data “experiment”

We want the other direction: use data to get information on parameters

Estimate

P (S=?) 2

provide parameter 
values

THE observed data

28 
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Maximum Likelihood

Define likelihood L(μ) = P(data; μ)
⇒ Implicitly a function of the data

Estimate μ as

“Best fit” of model to data

Several good properties:
• Asymptotically Gaussian
• Asymptotically Unbiased 

• Asymptotically Efficient:    σμ̂ is the lowest possible

• Always consistent

μ̂=argmaxμ L(μ )

data

P (μ̂ ) ∝ exp (−
(μ̂−μ

*
)

2

2σ μ̂
2 )     for n → ∞

μ̂ →
n→∞

μ
*

29 
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Maximum Likelihood

Multiple Gaussian bins:

Maximum likelihood
⇔ Minimum χ2

⇔ Least-squares minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i
σ i )

2

However typically need to perform non-linear minimization.

HEP practice:
● MINUIT (C++ library within ROOT, numerical gradient descent)
● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Usual methods – gradient-based, etc.
30 
/ 
55



Maximum Likelihood

Multiple Gaussian bins:

Maximum likelihood
⇔ Minimum χ2

⇔ Least-squares minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i
σ i )

2

However typically need to perform non-linear minimization.

HEP practice:
● MINUIT (C++ library within ROOT, numerical gradient descent)
● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Usual methods – gradient-based, etc.
30 
/ 
55



Maximum Likelihood

Multiple Gaussian bins:

Maximum likelihood
⇔ Minimum χ2

⇔ Least-squares minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i
σ i )

2

However typically need to perform non-linear minimization.

HEP practice:
● MINUIT (C++ library within ROOT, numerical gradient descent)
● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Usual methods – gradient-based, etc.
30 
/ 
55



Maximum Likelihood

Multiple Gaussian bins:

Maximum likelihood
⇔ Minimum χ2

⇔ Least-squares minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i
σ i )

2

However typically need to perform non-linear minimization.

HEP practice:
● MINUIT (C++ library within ROOT, numerical gradient descent)
● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Usual methods – gradient-based, etc.
30 
/ 
55



Uncertainties  Science 376, 170–176 (2022), 8

31 
/ 
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https://www.science.org/doi/10.1126/science.abk1781


Gaussian confidence intervals

P (μ − σ < n < μ + σ ) ≥ 68.3 %

P (n− σ < μ < n + σ) ≥ 68.3 %

This interval will contain the true μ value 68.3% of the time (“1σ”)

Consider a Gaussian 
likelihood:

L(μ) = exp [− 1
2
( n−μσ )

2

]

Still a statement on n!

μ = n± σ at 68.3 %  CL(1σ)

32 
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Gaussian confidence intervals

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

This interval will contain the true μ value 68.3% of the time (“1σ”)

μ = n± σ at 68.3 %  CL(1σ)For each experiment, get the interval 

Frequentist interpretation

If we would repeat the same 
experiment multiple times,  
with true value μ*, then 68.3% 
of the 1σ intervals would 
contain μ*.

→ Crucially, this works even if 
we do not know μ* ! 

33 
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General case: Likelihood Intervals
Confidence intervals from L:
• Test various values μ using the 

Profile Likelihood Ratio t(μ)
• Minimum (=0) for μ=μ̂
• Likelihood ratio universally most

powerful test for simple hypotheses 
(no NPs, single POI values), also 
used in other cases

t (μ ) =−2 log
L(μ , θ̂ (μ))

L(μ̂ , θ̂ )

Probability to observe the data for a 
given μ. Use conditional best-fit θ̂(μ) 
of the NPs for this μ.

Probability to observe the data 
for μ̂. Use best-fit θ ̂ for the NPs.

ATLAS-CONF-2017-047 

Gaussian L(μ):
● Parabolic in μ
● Minimum occ=urs at μ = μ̂
● t(μ) distributed as a χ2

● 1σ interval [μ-,μ+] given by t(μ±)= 1 34 
/ 
55

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


General case: Likelihood Intervals
Confidence intervals from L:
• Test various values μ using the 

Profile Likelihood Ratio t(μ)
• Minimum (=0) for μ=μ̂
• Likelihood ratio universally most

powerful test for simple hypotheses 
(no NPs, single POI values), also 
used in other cases

t (μ ) =−2 log
L(μ , θ̂ (μ))

L(μ̂ , θ̂ )

ATLAS-CONF-2017-047 

General case:
● Generally not a perfect parabola
● Minimum still at μ = μ̂
● Distribution of t(μ) ?

Asymptotic approximation
● Compute t(μ) using the exact L(μ)
● Assume t(μ) ~ χ2 as for Gaussian 

(”Wilks’ Theorem”)
● 1σ interval [μ-,μ+] given by t(μ±)= 1
● Can also obtain exact intervals using 

pseudo-dataset sampling (“toys”), 
but generally not needed and rarely 
done. 35 

/ 
55

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


2D Example: Higgs σVBF vs. σggF
ATLAS-CONF-2017-047 
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6tggF,VBF

ggF

VBF

CL 68% (1σ) 95% 95.5% (2σ)
1D Z2 1 3.84 4
2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure derived quantities (couplings, parameters in some theory 
model, etc.) ?  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensitive to Higgs coupling modifiers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF ( κV ,κF)) ≡ L'( κV ,κF)
σ ggF→σ ggF (κV , κF)

σVBF→σVBF (κV , κF)

37 
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Example: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + B :
→ Signal region (SR): nobs ~ G(S + B, σstat)
→ Control region (CR): Bobs ~ G(B, σbkg)

Recall: Signal region only (fixed B): 

→ Compute the best-fit (MLEs) for S and B
→ Show that the conditional MLE for B is
 

→ Compute the profile likelihood tS

→ Compute the 1σ confidence interval on S

σ S = √ σ stat
2
+ σ bkg

2

L (S , B) = G (nobs ;S + B ,σ stat) G (Bobs ;B ,σ bkg)

S = (nobs−Bobs) ± √ σ stat
2
+ σ bkg

2

Stat uncertainty (on n) and systematic (on B) add in quadrature

t S= (
S− nobs

σ stat )
2

S= (nobs − B) ± σ stat

SR CR

nobs

Signal

Bkg Bkg^̂
B(S) = Bobs +

σ bkg
2

σ stat
2
+σ bkg

2
( Ŝ− S)

Bobs

38 
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Uncertainty decomposition
No systematics NPs included : statistical uncertainty only

1σ intervals

All systematics NPs included: stat+syst uncertaintes

σ syst,tot = √σ total
2
− σ stat

2

Subtraction in quadrature

μ = 0.99± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
39 
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Profiling issues
Systematics are described by NPs 
included in the fit. Define pull as

Nominally:
• Pull = 0 : i.e. the pre-fit expectation
• Pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-058

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ

40 
/ 
55

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/


Profiling issues
Systematics are described by NPs 
included in the fit. Define pull as

Nominally:
• Pull = 0 : i.e. the pre-fit expectation
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ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ
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Profiling issues
Too simple modeling can have unintended effects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full configuration space
⇒ Can lead to too-strong constraints

Typical examples: simulation uncertainties (“PYTHIA vs. HERWIG”)

Jet E

JE
S θJES Pre-fit

Post-fit

Pre -fit constraint Post -fit constraint

W. Verkerke, SOS 2014 41 
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Systematics
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Impact of Systematics

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1. ..ndata

(k )

k=1. ..ncat , {θ j
obs
} j=1. . nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k ( θ⃗ ) N S , i , k( θ⃗ ) + Bi , k ( θ⃗) ] ∏
j=1

n syst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs
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Impact of Systematics

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{c ni

(k)
}
i=1. ..ndata

(k )

k=1. ..ncat ,{eθ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k ( θ⃗ ) N S , i , k( θ⃗ ) + Bi , k ( θ⃗) ] ∏
j=1

n syst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories!

Key ingredient: impact of systematics 
on signal and background yields
N S , i , k(θ j) = N S , i , k

0 ∏
j

(1 + δ i , j , kθ j)
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Accounting for Systematics

Multivariate
Classifier

Training “data” 
(typically MC or CR)

Test “data”
(typically MC 

or CR)

Real data

Nominal event 
yields

Measured 
yields

Effects to account for:
● Training/test data not representative of real data (mismodeling)

→ Typically covered by MC systematics: variations in the MC sample 
describing a range of possible models.

● Limited size of training dataset → Covered by “MC stat” uncertainties

SciPost Phys. 8, 090 (2020)

Issues here ⇒ bias
⇒ Need to cover 
with uncertainties

Issues here ⇒ inefficiency
⇒ Less problematic, but 
reduce performance
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https://scipost.org/SciPostPhys.8.6.090


Randomness in High-Energy Physics

Randomness involved in all stages
→ Classical randomness: detector reponse
→ Quantum effects in particle production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

Reconstruction
Image Credits: 
S. Höche, 
SLAC-PUB-16160

Experimental data is produced by incredibly complex processes
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Modeling Systematics
Some distributions not predicted with 
sufficient accuracy:
● MC modeling
● Detector response
● CR statistics, CR→SR extrapolation

NS , i (θ j) = NS , i
0 ∏

j

(1 + δ i , jθ j)

Modeling variations typically implemented through event weights:
● Nominal modeling → nominal event weight w(0)

p.
● Each variation θj = ±1  → associated event weight w(±j)

p.
Distributions for each case obtained by applying the appropriate weights.

Ultimately, need impact on yields:

Error band: combination of above
Typically described by many NPs
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Treating ML Systematics

Multivariate
Classifier

Nominal training data

Nominal Test data
(w(0)

p weights)

Real data

Nominal yields (N0)

Measured yields

Varied Test data
(w(±j)

pweights)  Yield variations (δj)

● “Propagate uncertainties through the DNN”
● MC stat uncertainties can be treated similarly using resampling
→ Allows to properly cover for uncertainties, but optimal performance
    only in nominal case (since used in training). 48 

/ 
55



Parameterized classifiers Eur. Phys. J. C (2016) 76:235

DNN(θj=0)

DNN(θj=±1)

DNN(θ̂)

Training data (θ)

Nominal Test data
(w(0)

p weights)

Real data

Nominal yields (N0)

Measured yields

Varied Test data
(w(±j)

pweights)  Yield variations (δj)

Optimize a classifier for 
each value of a model 
parameters (e.g. a syst NP) 

⊕ Use the optimal classifier for each NP value
    ⇒ Retain optimal performance in each case

⊖ Scaling with  with |θ| ?
   (in practice |θ| can be 102-3...) Sc

iPo
st 

Ph
ys

. 8
, 0

90
 (2

02
0)

49 
/ 
55

http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
https://scipost.org/SciPostPhys.8.6.090


Brute force approach

Best-fit Value

95% of toys

68% of toys

Nu
m

be
r o

f T
oy

s

Generate pseudo-experiments (“toys”) and 
repeat best-fit for each case
→ Statistics: resample observed dataset
→ Systematics: randomize auxiliary obs. θj

obs

Obtain intervals from quantiles of the 
distibution of results

∏
k=1

ncat

P [ ni ;μ ϵi ,k ( θ⃗ ) N S , i ,k ( θ⃗ ) + Bi ,k ( θ⃗ ) ] ∏
j=1

nsyst

G (θ j
obs ;θ j ;1)

EP
JC

 71
 (2

01
1)

 15
54

⊕ No reliance on asymptotic formulas

⊖ High CPU requirements (need a fit for each of O(1000) toys)
⊖ As before, changing syst NPs ⇒ non-optimal classifier performance
⊖ Optimal case: need to retrain classifier for each toy ?
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https://arxiv.org/abs/1007.1727


Other approaches

• Inference-aware NN (De Castro, Dorigo, Com. Phys. Comm. 244 (2019), 170-179) 
→ Design a NN to directly minimize the width of the confidence interval on 
the target POI 

• Likelihood-free inference (Cranmer, Pavez, Louppe, arXiv:506.02169).
– Typically, trained classifiers asymptotically learn the likelihood ratio p(x|

S)/p(x|B), e.g. when using cross-entropy loss.
– Parameterized classifiers can estimate POIs without computing L.

⇒ Bypass the profile likelihood construction, get intervals from toys ?

• … ?
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https://doi.org/10.1016/j.cpc.2019.06.007
http://arxiv.org/abs/1506.02169v2


(Further) Discussion,
Questions, Comments ?
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Backup
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Collider processes
HEP : Poisson approximation almost 
always valid:

ATLAS : 
• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, stot~108 nb, )
• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)
⇒ p ~ 10-6 ≪ 1 (pH→γγ ~ 10-13)
A day of data: N ~ 1014 ≫ 1 

Þ Poisson regime! Similarly true in many 
other physics situations.
Large N = design requirement, to get 
not-too-small l=Np...

W.J. Stirling, private 
communication
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Bayesian methods
Probability distribution (= likelihood) :
→ Same as frequentist case, but treat systematics by marginalization, i.e. 
integrating over priors, instead of profiling:

→ Integrate out θ to get P(μ) : 

→ Use probability distribution P(μ) directly for limits & intervals

e.g. 68% CL (“Credibility Level”) interval [A, B] is: 

where π(μ) is the prior on μ. Uses  Bayes’ Theorem:

⊖ No simple way to test for discovery
⊖ Integration over NPs can be CPU-intensive (but can use MCMC methods)

Priors : most analyses use flat priors in the analysis variable(s)
Þ Parameterization-dependent: if flat in σ´B , them not flat in couplings….
→ Can use the Jeffreys’ or reference priors, but difficult in practice

P (μ) =∫ P (μ ,θ)C (θ ) d θ

∫
A

B

P (μ) π (μ ) dμ = 68 %

P (μ | n) = P (n |μ )
P (μ )

P (n)

→ → 
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