Statistical modeling and 🖉 🥪 Systematic uncertainties **High Energy Physics**

Nicolas Berger (LAPP Annecy)

Introduction

Statistical methods play a critical

GeV

Data

Background ZZ(*)

Background Z+jets, tt

ATLAS

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Introduction

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Introduction

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Uncertainties

Many important questions answered by **precision measurements**, **Key point** = determination of **uncertainties**

 $M_W = 80,433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{syst}} = 80,433.5 \pm 9.4 \text{ MeV}/c^2$

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

- \rightarrow **Classical** randomness: detector reponse
- \rightarrow Quantum effects in particle production, decay

7 8 Η_τ [TeV]

Example: measuring the energy of a photon in a calorimeter Calorimeter Readout

Cannot predict the measured value for a given event

⇒ Random process ⇒ Need a probabilistic description

Quantum Randomness: H→ZZ*→4I

Quantum Randomness: H→ZZ*→4I

Rare process: Expect 1 signal event every ~6 days

http://www.phdcomics.com/comics/archive.php?comicid=1489

View online

Quantum Randomness: H→ZZ*→4I

"Will I get an event today ?" \rightarrow only **probabilistic** answer

Performing a measurement

Phys. Lett. B 759 (2016) 601

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$\sigma^{fid} = 0.781 \pm 0.004 \text{ (stat)} \pm 0.018 \text{ (syst) nb}$

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)

"Single bin counting" : only data input is N_{data}.

Example 2: ttH→bb

arXiv:2111.06712

Event counting in different regions: *Multiple-bin counting*

Lots of information available

- \rightarrow Potentially higher sensitivity
- \rightarrow How to make optimal use of it ?

HEP Statistical Modeling

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.

15 / 55

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.

15 / 55

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- → *i.e.* very rare process, but very many trials so still expect to see good events

15 / 55

Collider processes: produce (many) events N, select a (very) small fraction P

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.

Statistical Model for Counting

Observable: number of events n

Typically both **S**ignal and **B**ackground present:

$$P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$$

S : # of events from signal processB : # of events from bkg. process(es)

Model has **parameters S** and **B**.

B can be known a priori or not (S usually not...)

 \rightarrow Example: assume B is known, use measured n to find out about S.

0.22 0.2 0.18 0.16 0.14 0.12 U. 0.08 0.06 0.04 0.02 0 5 10 15 20 25 30

 $\lambda = 3$

Multiple counting bins

Shapes f typically obtained from simulated events (*Monte Carlo*) \rightarrow HEP: typically excellent modeling from simulation, although some uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples **MC stat fluctuations** can create artefacts, especially for $S \ll B$.

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure \rightarrow S, m_w, ...
- Nuisance parameters (NPs) : other parameters needed to define the model
 - \rightarrow Background levels (B)
 - \rightarrow For binned data, f^{sig} , f^{bkg}

NPs must be either:

- → Known a priori (within uncertainties) or
- \rightarrow Constrained by the data

Categories

Multiple analysis regions often used.

 \rightarrow Exploit better sensitivity in some regions

Here 7 regions:

 \rightarrow 4 Signal Regions (SR) split in p_T(Higgs)

Better sensitivity at high p_{T}

 \rightarrow lower B backgrounds, higher S/B

Backgrounds levels obtained from simulation here

 \rightarrow Large uncertainties!

Categories

arXiv:2111.06712

Multiple analysis regions often used.

- \rightarrow Exploit better sensitivity in some regions
- \rightarrow Constrain NPs: **Control regions** for bkgs

Here 7 regions:

- \rightarrow 4 Signal Regions (SR) split in p₁(Higgs)
- \rightarrow 3 Background Control Regions (CR)

Signal + Bkg regions 20 / 55

Categories

arXiv:2111.06712

- Multiple analysis regions often used.
- \rightarrow Exploit better sensitivity in some regions
- \rightarrow Constrain NPs: *Control regions* for bkgs

Here 7 regions:

- \rightarrow 4 Signal Regions (SR) split in p_T(Higgs)
- \rightarrow 3 Background *Control Regions* (**CR**)

No overlaps between categories \Rightarrow No statistical correlations \Rightarrow can simply take product of individual PDFs.

Systematic Errors

The statistical model (PDF) is a way to express **uncertainty** on the outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called **Statistical Uncertainties** – they are the ones encoded in the model PDF.

Systematic Errors

The statistical model (PDF) is a way to express **uncertainty** on the outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called **Statistical Uncertainties** – they are the ones encoded in the model PDF.

However **the model itself may be wrong** : this is a *systematic error* → To account for them, need a set of **Systematic uncertainties**

Systematics

Statistical models include:

- Parameters of interest (POIs) : S, σ×B, m_w, …
- Nuisance parameters (NPs) : other parameters needed to define the model
 - \rightarrow Ideally, constrained by data like the POI

And systematics ?

= Cover what we don't know about the random process.

 \Rightarrow Parameterize using additional NPs

 \rightarrow Can't be constrained by the data \Rightarrow Add constraints in the likelihood

$$L(\mu, \theta; data) = L_{\text{measurement}}(\mu, \theta; data) C(\theta)$$

$$\int \\ Systematics \\ NP \\ NP \\ Likelihood \\ NP \\ Constraint \\ term \\ NP \\ Substant \\ Subst$$

 $C(\theta)$ represents **external knowledge** about the NP

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

-23

Frequentist Systematics

Prototype: Systematics NP \rightarrow measured in a separate *auxiliary* experiment *e.g.* background levels

 \rightarrow Build the combined PDF of the main+auxiliary measurements

 $P(\mu, \theta; \text{data}) = P_{\text{main}}(\mu, \theta; \text{main data}) P_{\text{aux}}(\theta; \text{aux. data})$

Independent measurements: ⇒ just a product

Gaussian form often used by default: $P_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

In the combined likelihood, systematic NPs are constrained \rightarrow now same as NPs constrained in data.

→ Often no clear setup for auxiliary measurements (e.g. theory simulation uncertainties)

→ Define constraints "by hand" ("pseudo-measurement")

Statistical model, the full version

ATLAS Higgs Run 1 Combination Model

W. Verkerke, SOS 2014

F(x,p)

HEP Statistical Inference : Confidence Intervals

Using the PDF

Model describes the distribution of the observable: P(data; parameters)

We want the other direction: use data to get information on parameters

Define likelihood $L(\mu) = P(data; \mu)$ \Rightarrow Implicitly a function of the data

Estimate μ as

 $\hat{\boldsymbol{\mu}} = argmax_{\boldsymbol{\mu}} L(\boldsymbol{\mu})$

"Best fit" of model to data

Several good properties:

- Asymptotically Gaussian
- Asymptotically Unbiased

• Asymptotically **Efficient:** $\sigma_{\hat{u}}$ is the lowest possible

• Always consistent

Contra

$$3$$

 2.5
 2
 1.5
 0.5
 0
 -0.5
 5
 -4
 -3
 -2
 -1
 0
 0
 -1
 0.5
 0
 0
 -1
 0.5
 0
 0
 -1
 0.5
 0
 0
 -1
 0.5
 0
 0
 -1
 0.5
 -1
 0.5
 0
 0
 -1
 0.5
 -1
 0.5
 -1
 0
 0
 -1
 0.5
 -1
 0
 0
 -1
 2
 3
 4
 5
Observed data (n)

$$P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right) \quad \text{for } n \rightarrow \infty$$

$$\hat{\mu} \stackrel{n \to \infty}{\to} \mu$$

29

Define likelihood $L(\mu) = P(data; \mu)$ \Rightarrow Implicitly a function of the data

Estimate μ as

 $\hat{\boldsymbol{\mu}} = argmax_{\boldsymbol{\mu}} L(\boldsymbol{\mu})$

"Best fit" of model to data

Several good properties:

- Asymptotically Gaussian
- Asymptotically **Unbiased**

• Asymptotically **Efficient**: $\sigma_{\hat{\mu}}$ is the lowest possible

• Always consistent

$$P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right) \quad \text{for } n \rightarrow \infty$$

Define likelihood $L(\mu) = P(data; \mu)$ \Rightarrow Implicitly a function of the data

Estimate μ as

 $\hat{\boldsymbol{\mu}} = argmax_{\boldsymbol{\mu}} L(\boldsymbol{\mu})$

"Best fit" of model to data

Several good properties:

- Asymptotically Gaussian
- Asymptotically **Unbiased**

• Asymptotically **Efficient**: σ_{μ} is the lowest possible

 $\hat{\mathbf{u}} \stackrel{n \to \infty}{\to} \mathbf{u}^*$

Always consistent

$$\propto \exp\left[-\frac{(\hat{\mu}-\mu^*)^2}{(\hat{\mu}-\mu^*)^2}\right]$$

$$P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right) \quad \text{for } n \rightarrow \infty$$

Multiple Gaussian bins:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

Maximum likelihood ⇔ Minimum χ² ⇔ Least-squares minimization

However typically need to perform non-linear minimization.

- **MINUIT** (C++ library within ROOT, numerical gradient descent)
- scipy.minimize using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

Multiple Gaussian bins:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

Maximum likelihood ⇔ Minimum χ² ⇔ Least-squares minimization

However typically need to perform non-linear minimization.

- **MINUIT** (C++ library within ROOT, numerical gradient descent)
- scipy.minimize using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

Multiple Gaussian bins:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

Maximum likelihood ⇔ Minimum χ² ⇔ Least-squares minimization

However typically need to perform non-linear minimization.

- **MINUIT** (C++ library within ROOT, numerical gradient descent)
- scipy.minimize using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

Multiple Gaussian bins:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

Maximum likelihood ⇔ Minimum χ² ⇔ Least-squares minimization

However typically need to perform non-linear minimization.

- **MINUIT** (C++ library within ROOT, numerical gradient descent)
- scipy.minimize using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

Uncertainties

 $M_W = 80,433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{syst}} = 80,433.5 \pm 9.4 \text{ MeV}/c^2$

General case: Likelihood Intervals

Confidence intervals from L:

- Test various values µ using the
 Profile Likelihood Ratio t(µ)
- Minimum (=0) for $\mu = \hat{\mu}$
- Likelihood ratio universally most powerful test for simple hypotheses (no NPs, single POI values), also used in other cases

Probability to observe the data for a given μ . Use *conditional best-fit* $\theta(\mu)$ of the NPs for this μ .

$$t(\mu) = -2\log\frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta})}$$

Probability to observe the data for $\hat{\mu}$. Use *best-fit θ* for the NPs.

Gaussian L(µ):

- Parabolic in μ
- Minimum occ=urs at $\mu = \hat{\mu}$
- t(µ) distributed as a χ^2
- 1 σ interval $[\mu_{\mu_{+}}]$ given by $f(\mu_{\pm}) = 1_{34}$

General case: Likelihood Intervals

Confidence intervals from L:

- Test various values µ using the
 Profile Likelihood Ratio t(µ)
- Minimum (=0) for $\mu = \hat{\mu}$
- Likelihood ratio universally most powerful test for simple hypotheses (no NPs, single POI values), also used in other cases

$$t(\boldsymbol{\mu}) = -2\log\frac{L(\boldsymbol{\mu}, \hat{\boldsymbol{\theta}}(\boldsymbol{\mu}))}{L(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}})}$$

General case:

- Generally not a perfect parabola
- Minimum still at $\mu = \hat{\mu}$
- Distribution of $t(\mu)$?

Asymptotic approximation

- Compute t(μ) using the exact L(μ)
- Assume t(μ) ~ χ² as for Gaussian ("Wilks' Theorem")
- 1 σ interval [$\mu_{,}\mu_{+}$] given by $t(\mu_{+})=1$
- Can also obtain exact intervals using pseudo-dataset sampling ("toys"), but generally not needed and rarely done.

2D Example: Higgs $\sigma_{_{VBF}}$ **vs.** $\sigma_{_{ggF}}$

ATLAS-CONF-2017-047

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.) ? \rightarrow just reparameterize the likelihood:

e.g. Higgs couplings: σ_{ggF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .

Example: Gaussian Profiling

Counting experiment with background uncertainty: $\mathbf{n} = \mathbf{S} + \mathbf{B}$:

 $\rightarrow \text{Signal region (SR): } n_{obs} \sim G(S + B, \sigma_{stat}) \\ \rightarrow \text{Control region (CR): } B_{obs} \sim G(B, \sigma_{bkg}) \\ \end{bmatrix} L(S, B) = G(n_{obs}; S + B, \sigma_{stat}) G(B_{obs}; B, \sigma_{bkg})$

$$\hat{\hat{B}}(S) = B_{obs} + \frac{\sigma_{bkg}^2}{\sigma_{stat}^2 + \sigma_{bkg}^2} (\hat{S} - S)$$

 \rightarrow Compute the profile likelihood t_s

 \rightarrow Compute the 1 σ confidence interval on S

$$S = (n_{obs} - B_{obs}) \pm \sqrt{\sigma_{stat}^2 + \sigma_{bkg}^2}$$

$$\sigma_s = \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm bkg}^2}$$

Stat uncertainty (on n) and systematic (on B) add in quadrature

Uncertainty decomposition

ATLAS-CONF-2016-058

Systematics are described by NPs included in the fit. Define **pull** as

$$(\hat{\theta} - \theta_0)$$
 / $\sigma_{ heta}$

Nominally:

- Pull = 0: i.e. the pre-fit expectation
- Pull uncertainty = 1 : from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
 ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue
- → Impact on result of $\pm 1\sigma$ shift of NP allows to gauge which NPs matter most .

40 /

Systematics are described by NPs included in the fit. Define **pull** as

 $(\hat{\theta}\!-\!\theta_{\scriptscriptstyle 0})$ / $\sigma_{\scriptscriptstyle heta}$

Nominally:

- **Pull = 0** : i.e. the pre-fit expectation
- **Pull uncertainty = 1** : from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
 ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue
- \rightarrow Impact on result of $\pm 1\sigma$ shift of NP allows to gauge which NPs matter most .

13 TeV single-t XS (arXiv:1612.07231)

- **Too simple modeling** can have unintended effects
- \rightarrow e.g. single Jet E scale parameter:
- \Rightarrow Low-E jets calibrate high-E jets intended ?

Two-point uncertainties:

- \rightarrow Interpolation may not cover full configuration space
- \Rightarrow Can lead to too-strong constraints

Typical examples: simulation uncertainties ("PYTHIA vs. HERWIG")

θ_{JES} Pre-fit Post-fit Jet E

41

- **Too simple modeling** can have unintended effects
- \rightarrow e.g. single Jet E scale parameter:
- \Rightarrow Low-E jets calibrate high-E jets intended ?

Two-point uncertainties:

- \rightarrow Interpolation may not cover full configuration space
- \Rightarrow Can lead to too-strong constraints

Typical examples: simulation uncertainties ("PYTHIA vs. HERWIG")

θ_{JES} Pre-fit Post-fit Jet E

41

Systematics

Impact of Systematics

Impact of Systematics

Accounting for Systematics

Randomness in High-Energy Physics

- \rightarrow **Classical** randomness: detector reponse
- \rightarrow Quantum effects in particle production, decay

46 / 55

7 8 Η_τ [TeV]

Modeling Systematics

Some distributions not predicted with sufficient accuracy:

- MC modeling
- Detector response
- CR statistics, CR \rightarrow SR extrapolation

Error band: combination of above Typically described by many NPs

Modeling variations typically implemented through event weights:

- Nominal modeling \rightarrow nominal event weight $W^{(0)}_{p}$.
- Each variation $\theta_i = \pm 1 \rightarrow associated$ event weight $w^{(\pm j)}{}_{p}$.

Distributions for each case obtained by applying the appropriate weights.

Ultimately, need impact on yields:

$$N_{S,i}(\boldsymbol{\theta}_{j}) = N_{S,i}^{0} \prod_{j} \left(1 + \boldsymbol{\delta}_{i,j} \boldsymbol{\theta}_{j}\right)$$

Treating ML Systematics

- "Propagate uncertainties through the DNN"
- MC stat uncertainties can be treated similarly using resampling
- → Allows to properly cover for uncertainties, but optimal performance only in nominal case (since used in training).

Training σ

Brute force approach

Generate pseudo-experiments ("toys") and repeat best-fit for each case

- \rightarrow Statistics: resample observed dataset
- \rightarrow Systematics: randomize auxiliary obs. θ_i^{obs}

Obtain intervals from quantiles of the distibution of results

$$\prod_{k=1}^{n_{cat}} P\left[n_i; \mu \epsilon_{i,k}(\vec{\theta}) N_{S,i,k}(\vec{\theta}) + B_{i,k}(\vec{\theta})\right] \prod_{j=1}^{n_{syst}} G\left(\theta_j^{obs}; \theta_j; 1\right)$$

No reliance on asymptotic formulas

- High CPU requirements (need a fit for each of O(1000) toys)
- Θ As before, changing syst NPs \Rightarrow non-optimal classifier performance
- Optimal case: need to retrain classifier for each toy ?

Other approaches

Inference-aware NN (De Castro, Dorigo, Com. Phys. Comm. 244 (2019), 170-179)
 → Design a NN to directly minimize the width of the confidence interval on the target POI

- Likelihood-free inference (Cranmer, Pavez, Louppe, arXiv:506.02169).
 - Typically, trained classifiers asymptotically learn the likelihood ratio p(x| S)/p(x|B), e.g. when using cross-entropy loss.
 - Parameterized classifiers can estimate POIs without computing L.
 - \Rightarrow Bypass the profile likelihood construction, get intervals from toys?

(Further) Discussion, Questions, Comments ?
Backup

Collider processes

HEP : Poisson approximation almost always valid:

ATLAS :

- Event rate ~ 1 GHz (L~10³⁴ cm⁻²s⁻¹~10 nb⁻¹/s, σ_{tot} ~10⁸ nb,)
- Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

A day of data: $N \sim 10^{14} \gg 1$

⇒ Poisson regime! Similarly true in many other physics situations.

Large N = design requirement, to get not-too-small λ =Np...

Bayesian methods

Probability distribution (= likelihood) :

→ Same as frequentist case, but treat systematics by **marginalization**, i.e. **integrating over priors**, instead of profiling:

→ Integrate out θ to get P(μ) : $P(\mu) = \int P(\mu, \theta) C(\theta) d\theta$

 \rightarrow Use probability distribution P(µ) directly for limits & intervals

e.g. 68% CL ("Credibility Level") interval [A, B] is: $\int_{A}^{B} P(\mu)\pi(\mu)d\mu = 68\%$ where $\pi(\mu)$ is the prior on μ . Uses **Bayes' Theorem**: $P(\mu \mid n) = P(n \mid \mu) \frac{P(\mu)}{P(n)}$

- No simple way to test for discovery
- Integration over NPs can be CPU-intensive (but can use MCMC methods)

Priors : most analyses use flat priors in the analysis variable(s)

 \Rightarrow **Parameterization-dependent**: if flat in $\sigma \times B$, them not flat in couplings....

 \rightarrow Can use the Jeffreys' or reference priors, but difficult in practice