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Introduction

Key part of an analyses is to have a reference

● Does data fit Hypothesis 1 or Hypothesis 2?
○ Amount of signal on top of background
○ Deviation away from expectation
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Introduction

Key part of an analyses is to have a reference

● Does data fit Hypothesis 1 or Hypothesis 2?
○ Amount of signal on top of background
○ Deviation away from expectation

● Sometimes can use data to build your own 
expectation

● But other times background and analysis 
requires more detailed description

○ Multiple backgrounds, complex observables…
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https://arxiv.org/abs/2111.06712


In most cases rely on detailed simulation techniques to get our predictions

● Experiments simulate thousands of millions of collision events
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Introduction

In most cases rely on detailed simulation techniques to get our predictions

● Experiments simulate thousands of millions of collision events
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In most cases rely on detailed simulation techniques to get our predictions

● Experiments simulate thousands of millions of collision events
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What happens in a particle collision
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What happens in a particle collision
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Tracking Calorimetry

MC Event Generation

Stable particles

Colision, production, decay 
chains, parton shower and 

hadronisation…

p

p

Detector Simulation

Computationally intensive

Stochastic shower 
development



● Simply lots of material and interactions!
● Designed to capture energy of particles by 

“splitting” and “showering”
○ Try and “stop” the particle, record deposited energy
○ Dense material to shower
○ Scintillator to record energy

● Different calorimeters target different 
particles

○ Electromagnetic (e,y) and Hadronic (e.g. pions)
● Two “philosophies” of calorimeter

○ Sampling and homogenous
○ Both result in a lot of particles and interactions

What makes a calorimeter so slow to simulate

13High multiplicity of secondary particles in shower

[3]

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSExperiment


Example - ATLAS EM Calorimeter

● Sampling calorimeter - alternating between materials
● Plus completely non-trivial geometry!

○ Assortment of many layers each covering only subrange
○ Varying cell (read pixel) size, shape, and depth
○ Constantly changing over detector volume

● ~190k readout channels
● Precise simulation takes O(minutes)

○ Simulate all particle interactions with material
○ Difficult accordion shape
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[4]

https://cds.cern.ch/record/2285582


GEANT - The gold standard for simulation

Traditional simulation uses GEANT to get detailed simulation of detector

● Used in particle physics, nuclear physics, accelerator design, space engineering and 
medical physics

● Very detailed and highly accurate

Build whole model of detector - every piece of material (active and inactive)

● Every detector system and complete geometry
● Specific composition of materials
● Describe down to the cabling and readout

Simulate interactions of every particle with the whole material inside detector

● Step by step each interaction as particle propagates through detector
● Calculate EM, hadronic and optical interactions 15

https://geant4.web.cern.ch/


Calorimeter Output

Although lot of material and showering particles, don’t read-out all particles

● Readout channels measure energy deposited in sub-volume of calorimeter
● Granularity and shape determined by chosen detector material and philosophy
● Can use layers of detector for depth

Particles interacting with calorimeter don’t interact with each other!

● Don’t need to simulate everything all at once
● Can overlay simulation of individual particles

16



Calorimeter Output

● Individual particle traverses detector
● Energy deposited in many cells from 

secondary particles in shower
● Can build an “image” but

○ High dynamic range of “pixels”
○ Often very sparse
○ Stochastic - same incoming 

particle results in different 
shower
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https://arxiv.org/abs/1712.10321


Fast Simulation

GEANT is CPU intensive and too slow for future LHC conditions

● Need to speed this up with approximative approaches
● Several fast approaches in use at experiments, but none are perfect
● Replace extensive calculations with “jump to the finish” approach

○ From particle properties (type, energy,...), predict energy depositions
○ Don’t need to consider full detector, just window around particle

Perfect fertile ground for applying generative modelling!
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Fast Simulation

        Fast Simulation       Extract
       Representation

Single particle events:
Detailed Simulation

Parametrisation

Machine Learning

Parametrise in Energy, position, particle
PCA+Sampling and PDF+Sampling

Use generative models for each particle
Sample from latent space
Condition on position, energy

19

Look up Tables



Generative Modelling for Calorimeter Simulation

Many efforts now ongoing for calorimeter simulation with generative modelling

● A lot of design choice comes down to the detector at hand!
○ How many layers, granularity of readout, consistent between layers?

● Wide range of architectures under study
○ GANs, Autoencoders and Flows all represented!

A lot of approaches need to make some simplifications

● Detector geometry, particle energies/types, incidence angles…
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Non-exhaustive Examples
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CaloGAN

● ATLAS inspired detector geometry
○ Three layers; different depth and cell size
○ No accordion shape, predefined window

● Trained to generate energies in cells
○ Layer0: 3x96
○ Layer1: 12x12
○ Layer2: 12x6

● Particle incident perpendicular to the 
centre of calorimeter

● Uniform energies between 1 and 100 
GeV for three particle types

○ Separate model per particle (e, y, 𝜋±)
22

Paganini et al (2017)

https://arxiv.org/abs/1712.10321


CaloGAN

● LAGAN architecture with a stream per layer, conditioned on particle E
○ Forced by different granularities per layer! Can’t use the same Conv kernels
○ Learned attention to propagate previous layer into next

23

Paganini et al (2017)

Convolutional and linear combination layers

https://arxiv.org/abs/1712.10321


CaloGAN

● LAGAN architecture with a stream per layer, conditioned on particle E
○ Auxiliary targets in critic - calculate layer energies, total energies
○ Address sparsity by augmenting input with sparsity percentage, using minibatch discr.

● Add MSE term to loss - keep reco energy close to requested E

24

Paganini et al (2017)

https://arxiv.org/abs/1712.10321


● Individual showers look pretty similar
● Key focus for physics is distributions over 

many events
○ Can be seen as a large number of metrics!
○ Model correlations between cells/layers
○ i.e. layer energies, ratios, weighted depth
○ Sparsity and shower width harder task

CaloGAN

25

Paganini et al (2017)

https://arxiv.org/abs/1712.10321


CaloFlow

● Using CaloGAN dataset
● Two stage flow approach

○ First: Flow to get energies per layer
○ Second: Flow to get shower shape
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Krause, Shih (2021)

● Masked autoregressive flow
○ Conditioned on Etot (+Elayers in 2nd 

flow)
○ Rational Quadratic splines for transform

● Use standard flow MLE loss

https://arxiv.org/abs/2106.05285


CaloFlow

Improved performance over CaloGAN seen

● More accurate generation of underlying 
distributions 

● Flows trained to learn densities over all events
○ Should lead to better modelling here

However, slower to generate new showers
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Krause, Shih (2021)

https://arxiv.org/abs/2106.05285


ATLAS Cell based

● Using ATLAS detector and simulation to train generative models
○ Simplified by selecting narrow window of detector, only photons (E in 1 to 262 GeV)
○ Photons generated on calo surface without spread

● Windows of cells selected around trajectory
○ 266 (GAN) or 276 (VAE) across four layers

● WGAN-GP and VAE studied with simple generator architectures
○ Only dense layers used
○ Focus on solving shortcomings observed in reproducing shower energies

28

ATLAS Collaboration (2018, 2019, 2019)

https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007


ATLAS Cell based - GAN

● Deep but simple generator using Swish activation
● WGAN-GP architecture with two critics

○ Standard critic for cell energies (GP=10)
○ Additional critic on sum of cell energies (GP=10-8)
○ Gradient penalties differ by 9 orders of magnitude!

● Two critics balanced in final loss
○ Energy critic has 10-6x smaller weight

● Without the second critic resolution was factor 
2-4 too large at high energies

29

ATLAS Collaboration (2018, 2019)

https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004


ATLAS Cell based - VAE
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ATLAS Collaboration (2018, 2019)

Cell Energy / Total Energy in Layer

 Layer Energy / Total Energy in Shower

Total Energy in Shower / Truth Energy

Truth Energy

x

x

x

Simple architecture but reparametrisation of inputs to help learn what is important
● Weighted MSE loss - prioritise reconstruction of inputs with small range of values

276

4

1

1

5

Z = 𝜇 + 𝜀·𝜎

4x
Dense layers

4x
Dense layers

https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007


ATLAS Cell based - VAE
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ATLAS Collaboration (2018, 2019)

Reparametrisation of inputs
● Reduced underestimation 
● More accurate spread

Weighted MSE
● Prioritises total/layer energies
● Help improved shower shapes

Performance competitive with GAN but 
much faster to train and simpler arch!
● Only 5D latent space

https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007


HGCAL with WGAN

CMS HGCal prototype inspired geometry

● Hexagonal readout over 7 layers approximated to be square
● Resulting image with 12x15x7 pixels

Train WGAN-GP for electrons with E in 20-90 GeV

● Conditioned on energy, impact position
● 7 Parallel “towers” of 2D convolution layers and linear layers
● 2D conv layers for critic

Additional constrainer networks to improve generation

● Regressors to predict E, (x,y) from generated showers
● Use 3D convolution layers on shower image
● Included as MSE term on predicted and conditioned value 32

Erdmann et al (2018)

https://arxiv.org/abs/1807.01954


HGCAL with WGAN

Generally good reconstruction of energies and correlations across cells/layers

Shift in total E

33

Erdmann et al (2018)

https://arxiv.org/abs/1807.01954


3DGAN

Higher granularity calorimeter based on Linear Collider Detector

● Covers barrel region with 25 layers
○ Incidence angles from 60° to 120° (|eta| < 0.55)
○ Electrons with E from 2-500 GeV
○ Condition on both energy and incidence angle

● Select area around incident particle for 3D grid
○ Upscale all layers to same granularity as innermost layer
○ 51x51x25 sparse image per shower
○ Use 3D convolutional layers in generator and discriminator
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Khattak et al (2017, 2019, 2021)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi_wfj_3qL3AhVzlf0HHYs7BwgQFnoECAcQAQ&url=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8451587&usg=AOvVaw28lyiklG48uLUuweg2eP82
https://arxiv.org/abs/1912.06794
https://arxiv.org/abs/2109.07388


3DGAN
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Khattak et al (2017, 2019, 2021)

Residual from true energy for showers from GAN and Geant

● Preprocessing cell energies to handle high 
dynamic range

○ Log transform lead to distorted results
○ Use power function, energy0.85

● Makes use of additional targets in critic
○ Discriminator predicts true energy in addition
○ Additional losses from predicted E and angle

● Over all events reproduces cell energy 
depositions in X, Y and Z

● Total energy very close but narrower 
spread

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi_wfj_3qL3AhVzlf0HHYs7BwgQFnoECAcQAQ&url=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8451587&usg=AOvVaw28lyiklG48uLUuweg2eP82
https://arxiv.org/abs/1912.06794
https://arxiv.org/abs/2109.07388


BIB-AE for High Granularity

High granularity detector based on ILD design using homogenous 30x30x30 grid

● Leverage additional loss terms in architecture marrying GANs and AEs

36

Buhman et al (2020, 2021)

https://arxiv.org/abs/2005.05334
https://arxiv.org/abs/2102.12491


BIB-AE for High Granularity

Encoder with 3DConv and Dense layers into 
24D latent space using reparam. trick

Latent encoding concatenated with extra 
488 values from normal distribution

Decoder takes 512 inputs, reconstructs 
input shower

Additional Postprocessing Network to 
correct the per hit energies uses 1x1x1 
convolutions

Three critics for loss terms
37

Buhman et al (2020, 2021)

https://arxiv.org/abs/2005.05334
https://arxiv.org/abs/2102.12491


BIB-AE for High Granularity

38

Buhman et al (2020, 2021)

Multiple loss terms control how the network learns to generate showers

Latent space losses
KLD - standard VAE loss term

● Preserves relationship between mu, sigma and x
CriticL - like in an AAE

● Penalises if overall distribution doesn’t match prior
● Better for ensuring all LS dimensions Gaussian 

Reconstruction space losses
CriticDiff - replaces MSE term in VAE

● MSE lead to smeared output: instead critic between 
an input of all 0s and |reco-input| of all cells

Critic - like in an GAN
● Can a discriminator differentiate between real/false

https://arxiv.org/abs/2005.05334
https://arxiv.org/abs/2102.12491


ILD with BIB-AE
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Buhman et al (2020)

Thanks to Postprocessing can recover hard edge in energies

Can see non-gaussianity of encoded LS (blue) of final model

https://arxiv.org/abs/2005.05334


ILD with BIB-AE

Fitting posterior LS distribution with KDE 
for sampling

● Reduces mismodelling substantially
● For physics purposes nothing says 

our LS needs to be Gaussian, just 
sampleable! 40

Buhman et al (2020)

https://arxiv.org/abs/2005.05334


Most approaches produce showers using detector geometry as starting point

● Cell energies have correlation to where the impact particle hits
● Simplify by moving to “particle centred” approach
● Exploit prior knowledge of “conical” shower development in polar coordinates
● Map energy from polar voxels centred on particle to cells using detector geometry

ATLAS FCS

ATLAS Collaboration (2021)

41

Front layer

Middle layer

Front layer

Middle layer

https://arxiv.org/abs/2109.02551


Covering wide energy range 
for pions

ATLAS FCS

ATLAS Collaboration (2021)

Covers full detector range in |η|

Each eta slice is a separate GAN

Evaluate performance 
downstream in ATLAS simulation

i.e. Jet mass reconstruction

https://arxiv.org/abs/2109.02551


Challenges
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Assessing Performance

On two accounts very hard to draw quantitative statements

● Hard to compare different published methods
○ All optimised with different detectors and geometries - introduce their own challenges!
○ No clear way to compare all models on a standardised dataset

● But even within a single method hard to evaluate performance

One thing that is noticeable in most papers - no ratios!

● Modelling of core distributions does well, but disagreements still observed
● Most models still in development phases, how can we improve modelling?

Accurate particle simulation is one task - but how does it impact all physics objects!

● Individual jets contain many photons, electrons, pions, …
44



Assessing Performance

Output of generative models is energy depositions

● But individual showers don’t tell us much
● Inherently stochastic, not easy to read

Which of these is a real shower, which is generated?

● Both look like showers! 
● But for physics we need to have the right statistical 

properties for all showers -> distributions!
● Instead of looking directly output, focussing on 

complex correlations
45



Assessing Performance

Large number of distributions are interesting!

● Which of these are the most important?
● How to “weight” better modelling of one 

versus another
● How to combine modelling of many 

observables into a single “score”
○ Necessary for epoch picking!
○ Classifiers can help but aren’t a final solution
○ A lot of final choice comes down to by-eye model 

selecting, or “physicists intuition” 46



Input data challenges

Sparsity of deposits and reproducing high dynamic range still a tough ask!

Getting tails of distributions hard

● Less common events in training
● But often key descriptors of physics

Need to accurately learn the PDF of showers including the stochasticity

● How to enhance focus on reconstruction of tails but keep this property
● Only a handful of conditional parameters - particle four vector

47



Input data challenges

Detector geometries aren’t consistent

● Changing granularity of readout
● Changing materials
● Angles of incidence for particles have different traversal lengths!

Not limited to designing methods around readout geometry

● But implicitly will impact shower development!

48



Future Directions
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Point Clouds

Not restricted to using readout or detector 

● Use more natural representation?

50

Map hits to cells Map hits to polar grid

Doesn’t generalise with 
consistent geometry

Shower evolution cone shaped

To remove edge effects need fine, 
sparse, binning

Point cloud

Direct translation of input data
Use graph networks!

Preserve natural symmetries

Showers produce

● Variable number of energy deposits
● Correlated spatial ordering but no natural ordering



Point Clouds

But! - Don’t record history of shower development

● Each point (E, x) is end of a branch!
● Multiplicity can be incredibly high
● Points aren’t directly connected
● Density of points between layers correlated 

but cannot easily build a physical graph
● Typically no time information, just layer depth 

And for sampling calorimeters dead material

● Low sampling fraction - lots of missed hits!
51

[6]

Layer 0 Layer 1

Current point cloud models aren’t designed to learn underlying structure - they focus on learning surfaces or connected structure!
Difficult to use standard benchmarks!

https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS


Not the whole hog

Instead of wholesale replacement with generative models

● Replace individual parts of Geant4 with ML
● Use ML for reweighting/resampling on top of current fast methods

52



Conclusions

A lot of great promise from generative modelling to speed up detector simulation

Unique playground for developing new models

● Challenges in HEP very different to computer vision

Focus on modelling complex underlying correlations and distributions with highly 
stochastic, sparse, data with high dynamic range

● Even getting the total energy correct not straightforward

By no means a closed book! Lots of room for improvement - Exciting times lie ahead!
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