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The LHC will need a lot of computing ressources.
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There was a lot of progress in the last years.
Slide by Claudius Krause

• The immense progress of ML in the past decade led to awesome results for
calorimeter simulation surrogates!

⇒ We have seen the use of GANs, VAEs, Normalizing Flows, and their
derivates on a variety of datasets.

• Examples (biased towards us organizers and non-exhaustive):
CaloGAN: 1712.10321 PRD; 1705.02355 PRL
Erdmann et al.: 1802.03325 CSBS; 1807.01954 CSBS
Belayneh et al.: 1912.06794 EPJC
BIB-AE: 2005.05334 CSBS; 2112.09709
AtlFast3: 2109.02551; FastCaloGAN: ATL-SOFT-PUB-2020-006
CaloFlow: 2106.05285; 2110.11377

⇒ No systematic comparison of methods available!
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Why a Challenge?
Slide by Claudius Krause

• A challenge compares a variety of models on the same dataset.

• The datasets will also be benchmarks in the future, once new models
become available.

• Winners are strong candidates for the new generation of FastSim.

• A challenge creates a survey of existing models with pros and cons.

• A challenge also collects ideas and approaches for preprocessing etc.

• Previous challenges on top tagging and anomaly detection were very
successful.
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Introducing: Fast Calorimeter Simulation Challenge 2022
Slide by Claudius Krause

⇒ The main task:
Develop a model that samples from p(shower|Eincident)

(for the dataset(s) you like.)

• Data on Zenodo: Dataset 1 Dataset 2 Dataset 3

• WebpStructureage: https://calochallenge.github.io/homepage/

• Code: https://github.com/CaloChallenge/homepage/tree/main

• Join the ML4Jets Slack workspace, and then the #calochallenge channel.

• Join the Google Mail Group.
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The Structure of the Data in General

• The 3 datasets have the same format, but differ in size/complexity (“easy”
→“medium” →“hard”).

• The geometry is based on segmented, concentric cylinders.

• The number of bins in z , r , and α is different for each dataset
(see .xml files).

• In the files, all voxels are flattened,
with counting order r α z .
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The Structure of the Data in General

• The datasets come in .hdf5 format. (can be read with h5py)

• Each file has 2 “hdf5-datasets” in it:
“incident energies” of shape (num events, 1) contains Einc in MeV
“showers” of shape (num events, num voxels) contains the flattened
energy depositions of each voxel in MeV

The dataset-specific geometry is stored in binning dataset *.xml:

Slide by Claudius Krause
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The Structure of the Data in General

Dataset 1 (“easy”):
• comes in 2 “flavors”: photons (368-dim.) and pions (533-dim.)

• uses the ATLAS detector and is based on the dataset of
AtlFast3: 2109.02551; FastCaloGAN: ATL-SOFT-PUB-2020-006

Dataset 2 (“medium”):

• electron showers (6480-dim.)

• uses detector made of alternating active (silicon) and passive (tungsten)
layers, based on the Par04 Geant4 example (with lower granularity).

Dataset 3 (“hard”):

• electron showers (40500-dim.)

• same detector as dataset 2, but voxelization to much higher granularity,
based on the Par04 Geant4 example

Slide by Claudius Krause
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Dataset 1
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Dataset 2

10/28



Dataset 3
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Dataset 1

• Based on ATLAS dataset form CERN Opendata
portal

• photons and pions item single η region (0.2–0.25)

• 15 discrete incident energies from 256 MeV up to 4
TeV

• 10k in each sample

• Number of radial and angular bins varies from layer
to layer and is different for photons and pions,
resulting in 368 voxels for photons and 533 for pions.

Layer r edges [mm] N bins α
PreSamplerB 0,5,10,30,50,100,200,400,600 1
EMB1 0,2,4,6,8,10,12,15,20,30,40,50,70,90,120,150,200 10
EMB2 0,2,5,10,15,20,25,30,40,50,60,80,100,130,160,200,250,300,350,400 10
EMB3 0,50,100,200,400,600 1
TileBar0 0,100,200,400,1000,2000 1

Nominal binning for photons and electrons with 0 < η < 1.3 range. [ATL-SOFT-PUB-2020-006]
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Datasets 2 & 3

• Data simulated with Par04 Geant4 example released in
Geant4 11.0

• Simplistic geometry, collider-style concentric cylinders
with up to two interchanging materials

• Particle direction and position is measured at the
entrance to calorimeter, so scoring of energy deposits is
done relative to the particle direction

• Similar ‘pictures’ are obtained independently on angle of
the incident particle

• Granularity of shower deposition is configurable (dataset
2 is less granular than dataset 3)

• Electons with log-uniform energy spectrum, from 1GeV
to 1TeV, perpendicular to detector (for this challenge)

par04.web.cern.ch

r
φ

P segments

z

R slices

N layers
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Datasets 2 & 3

r
φ

P segments

z

R slices

N layers

xy

z

10GeV e−, dataset 3

x

z

10GeV e−, dataset 3

x

y

• Par04 example defines 0.3mm Si and 1.4mm W layers

• Dataset 3:

◦ Readout granularity is ∆r ×∆φ×∆z = 2.3mm× 2π
50

× 3.4mm (with ∆r ≈ 0.25RM and ∆z ≈ 0.6X0)
◦ Number of readout cells is R × P × N = 18x50x45 aiming for 95% containment of 1TeV particles
◦ Open access dataset for different incident angles, for SiW (and scintillator-Pb) available at

10.5281/zenodo.6082201

• Dataset 2:

◦ Readout granularity is ∆r ×∆φ×∆z = 4.7mm× 2π
16

× 3.4mm (with ∆r ≈ 0.5RM and ∆z ≈ 0.6X0)
◦ Number of readout cells is R × P × N = 9x16x45
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Beyond CaloChallenge: Geant4 Par04 example: inference within C++ framework

• Fast simulation with ML within Geant4

• Example demonstrates how to incorporate inference libraries (ONNX Runtime,
LWTNN, soon also pyTorch)

• Allows to calculate fairly speed-up of simulation (which will depend on granularity)
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The Structure of the Data and High–Level Features — Code
Slide by Claudius Krause
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The Structure of the Data

HighLevelFeatures.ipynb
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High–Level Features

HighLevelFeatures.ipynb

19/28

https://github.com/CaloChallenge/homepage/blob/main/code/HighLevelFeatures.ipynb


High–Level Features

HighLevelFeatures.ipynb
20/28

https://github.com/CaloChallenge/homepage/blob/main/code/HighLevelFeatures.ipynb


High–Level Features

HighLevelFeatures.ipynb
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High–Level Features
Work in progress to add:

• shower shape features (profiles, first, second moments),

• cell energy distribution.

Demonstrator plots, to be implemented for CaloChallenge
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The Structure of the Data and High–Level Features

Points for discussion:
• Any other high-level features needed / relevant?

• Any other histograms needed?

• Any other plots / visualizations wished for?

⇒ Send a pull-request if you have some!

Slide by Claudius Krause
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Evaluating the Models

The surrogates should be fast and faithful!

We will be looking at:
⇒ Sampling time, (training time, memory usage)

⇒ Histograms of high-level features, and their separation power:

⟨S2⟩ = 1
2

nbins∑
i=1

(h1,i−h2,i )
2

h1,i+h2,i
Diefenbacher et al. 2009.03796

⇒ Interpolation capabilities of datasets 1: ⟨S2⟩ at an Einc left out in training.

⇒ A binary classifier to distinguish samples from Geant4, based on high-level
features.

⇒ A binary classifier to distinguish samples from Geant4, based on voxel
information.

Note:
• Almost all of these require the distributions of Einc to agree.

• Data needs to be written in the same .hdf5 format as the training data.

Slide by Claudius Krause
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We will be looking at:
⇒ Sampling time, (training time, memory usage)

⇒ Histograms of high-level features, and their separation power:

⟨S2⟩ = 1
2

nbins∑
i=1

(h1,i−h2,i )
2

h1,i+h2,i
Diefenbacher et al. 2009.03796

⇒ Interpolation capabilities of datasets 1: ⟨S2⟩ at an Einc left out in training.

⇒ A binary classifier to distinguish samples from Geant4, based on high-level
features.

⇒ A binary classifier to distinguish samples from Geant4, based on voxel
information.

Note:
• Almost all of these require the distributions of Einc to agree.

• Data needs to be written in the same .hdf5 format as the training data.
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Evaluating the Models — Code
Slide by Claudius Krause
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Evaluating the Models

Points for discussion:
• Any other high-level features for histograms / classifier?

• What kind of preprocessing should be used for low-level classifier?

• Any other metrics?

We don’t expect to have a single clear winner!

Instead, we are looking forward to a diver-
sity of approaches with a plethora of new ideas.
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Looking Ahead

• We will add more plot features.

• We will add the code for the classifiers and other missing metrics.

• There will be a dedicated session at ML4Jets @ Rutgers in
October/November this year. Please send us your samples ahead of time
(tbd when), so we can run them through our common pipeline.

• There will be a summary paper at the very end.

Slide by Claudius Krause
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Fast Calorimeter Simulation Challenge 2022

• Webpage: https://calochallenge.github.io/homepage/

• Code: https://github.com/CaloChallenge/homepage/tree/main

• Data on Zenodo: Dataset 1 Dataset 2 Dataset 3

• Join the ML4Jets Slack workspace, and then the #calochallenge channel.

• Join the Google Mail Group.

• CERN EP-RD fast sim group organizes (probably monthly) in-person
discussion group @ CERN. Join mattermost channel for announcements:
EP-RD Software team’s Mattermost channel “calochallengecern”.
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Calorimeter in the Open
Data Detector

Erica Brondolin, Dalila Salamani, and
Anna Zaborowska

Learning to Discover, Workshop on Generative Models,
April 26th 2022

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments (CERN-OPEN-2018-006)

https://cds.cern.ch/record/2649646/


Open Data Detector « GitLab

OpenDataDetector (ODD)

is attempted to provide a template
(HL-)LHC style particle detector for
algorithm research and development.

cern.ch/go/Q897

Implementation of tracking system:

Figures from ACAT 2021 poster (Paul Gessinger, Andreas Salzburger, Joana Niermann)
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Open Data Detector - why?

• Experiment independent

• Free (and easy!) to use, open access, public data

• Software benchmark detector

• Can be used to set up challenges (fast simulation, reconstruction, . . . )

• Implemented tracking system is an evolution of detector used for Tracking Machine
Learning Challenges

• Kick-off meeting to discuss calorimeter system is tomorrow z (please register via
indico to get informed of updates)

cern.ch/go/Q897
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How do we want to use calorimeter in ODD?

Fast simulation:

• Study and benchmarking of fast
simulation techniques (classical and
machine-learning based)

• Follow-up of Calo Challenge with ODD
calorimeter data

Reconstruction:

• Study and benchmarking of
reconstruction algorithms

We would like to get to know your ideas!

• Tracker + calorimeter ⇒ particle flow techniques

• . . .
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Step-by-step plan

1. Collect ideas how to use it, design ideas and requirements

2. Gather information on available manpower

3. Design the calorimeter (EM and H part)

4. Implement it in DD4hep

5. Run simulation

6. Once satisfying - freeze and document versions, produce high stat data

7. Publish and use!
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indico.cern.ch/event/1147195/
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