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The LHC will need a lot of computing ressources.
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. Slide by Claudius Krause
There was a lot of progress in the last years.

e The immense progress of ML in the past decade led to awesome results for
calorimeter simulation surrogates!

= We have seen the use of GANs, VAEs, Normalizing Flows, and their
derivates on a variety of datasets.

o Examples (biased towards us organizers and non-exhaustive):
CaloGAN: 1712.10321 PRD; 1705.02355 PRL
Erdmann et al.: 1802.03325 CSBS; 1807.01954 CSBS
Belayneh et al.: 1912.06794 EPJC
BIB-AE: 2005.05334 CSBS; 2112.09709
AtlFast3: 2109.02551; FastCaloGAN: ATL-SOFT-PUB-2020-006
CaloFlow: 2106.05285; 2110.11377

= No systematic comparison of methods available!
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Slide by Claudius Krause

Why a Challenge?

o A challenge compares a variety of models on the same dataset.

e The datasets will also be benchmarks in the future, once new models
become available.

o Winners are strong candidates for the new generation of FastSim.
o A challenge creates a survey of existing models with pros and cons.
o A challenge also collects ideas and approaches for preprocessing etc.

o Previous challenges on top tagging and anomaly detection were very
successful.
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. . . . Slide by Claudius Krau
Introducing: Fast Calorimeter Simulation Challenge 2022 © Py udis Rranse

= The main task:
‘ Develop a model that samples from p(shower|Eincident) ‘

(for the dataset(s) you like.)

e Data on Zenodo: Dataset 1 Dataset 2 Dataset 3

o WebpStructureage: https://calochallenge.github.io/homepage/
o Code: https://github.com/CaloChallenge/homepage/tree/main

e Join the ML4Jets Slack workspace, and then the #calochallenge channel.

e Join the Google Mail Group.
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https://doi.org/10.5281/zenodo.6366270
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https://join.slack.com/t/ml4jets/shared_invite/enQtNDc4MjAzODE0NDIyLTU0MGIxNmZlY2E4MzY2YzEwNGI2MGI5MzJmMzEwODVjYWY4MDFhMzcyODYyMDViZTY4MTg2MWM2N2Y1YjBhOWM
https://groups.google.com/g/calochallenge

The Structure of the Data in General

Slide by Claudius Krause

-

o The 3 datasets have the same format, but differ in size/complexity ( “easy”
— “medium” — “hard”).

o The geometry is based on segmented, concentric cylinders.

3d view

front view

A,

Ao

(see .xml files).

o The number of bins in z, r, and « is different for each dataset

~
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. Slide by Claudius Krause
The Structure of the Data in General

e N

o The 3 datasets have the same format, but differ in size/complexity ( “easy”
— “medium” — “hard”).

o The geometry is based on segmented, concentric cylinders.

front view

3d view

o The number of bins in z, r, and « is different for each dataset
(see .xml files).

o In the files, all voxels are flattened,
with counting order r « z.
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The Structure of the Data in General

r

Slide by Claudius Krause

e The datasets come in .hdf5 format.
e Each file has 2 “hdf5-datasets” in it:

incident_energies” of shape (num_events, 1) contains Ej,c in MeV

showers” of shape (num_events, num_voxels) contains the flattened
energy depositions of each voxel in MeV

(can be read with h5py)

~

-

The dataset-specific geometry is stored in binning dataset *.xml:

Bsins>
<in pid="22" x="138" name="photon">

m 30,50, ma 200,400,600" n_bin_alpha="1
4,6, 15,20,30,46,50,70,98,120,150,200" n_bin_alpha="10"/>

,40,50,60,80,100,130,160, 206,250, 300,356,460" n_bin_alpha="16"/>
n_bin_alpha="1" />

" n_bin_alpha:
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. Slide by Claudius Krause
The Structure of the Data in General

Dataset 1 (“easy”):
e comes in 2 “flavors”: photons (368-dim.) and pions (533-dim.)

o uses the ATLAS detector and is based on the dataset of
AtlFast3: 2109.02551; FastCaloGAN: ATL-SOFT-PUB-2020-006

Dataset 2 (“medium”):

electron showers (6480-dim.)

« uses detector made of alternating active (silicon) and passive (tungsten)
layers, based on the Par04 GEANT4 example (with lower granularity).

Dataset 3 (“hard"):
o electron showers (40500-dim.)

e same detector as dataset 2, but voxelization to much higher granularity,
based on the Par04 GEANT4 example



https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
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[ oaaset | cpenhccess |

Fast Calorimeter Simulation Challenge 2022 -
Dataset 1

Michele

Ben Nachmarn; Dal

Anna Zaborowska

This is dataset 1 of the ‘Fast Calorimeter Simulation Challenge 2022 It is based on the ATLAS GEANT4 open datasets that
were published here. There are three files, two for photons and one for charged pions. Each dataset contains the voxelised
shower information obtained from single particles produced at the calorimeter surface in the n range (0.2-0.25) and
simulated in the ATLAS detector. Each file contains “incident_energies” of shape (num_showers, 1) and "showers’ of shape
(num_showers, num_voxels). There are 15 incident energies from 256 MeV up to 4 TeV produced in powers of two. 10k
events are available in each sample with the exception of those at higher energies that have a lower statistics. These
samples were used to train the corresponding two GANS presented in the AtlFast3 paper SIMU-2018-04 and in the
FastCaloGAN note ATL-SOF T-PUB-2020-006. The number of radial and angular bins varies from layer to layer and is also
different for photons and pions, resulting in 368 voxels for photons and 533 for pions

dataset_1_photons_1.ndf5 should be used for training, dataset_1_photons_2.hdf5 for evaluation. An evaluation dataset for
the pions might be added in the future.

More details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are
available at https://calochalle: t

thub.io/homepage;
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Name Size

ataset_1_photons_1.hdf5 1738 MB & Download
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Publication date:
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Dataset 2

March 17,2022 [ Dataset | open access |

Fast Calorimeter Simulation Challenge 2022 -
Dataset 2

62 20

@ views & downloads

nore details.

Krause, Claudius; @

This is dataset 2 of the “Fast Calorimeter Simulation Challenge 2022 It consists of two files with 100k GEANT4-simulated
showers each of electrons with energies sampled from a log-uniform distribution ranging from 1 GeV to 1 TeV. The

Indexed in
detector has a concentric cylinder geometry with 45 layers, where each layer consists of active (silicon) and passive
(tungesten) material. Each layer has 144 readout cells, 9 in radial and 16 in angular direction, yielding a total of 9x16x45 =
pen

dataset_2_1.hdf5 should be used for training, dataset_2_2.ndf5 can be used as reference in the evaluation

More details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are

available at https:/calochallenge. github.io/homepage;

Publication date:

Files (2.7 GB) N March 17,2022
Name size

1468 & Download Keyword(:
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Continues

5 1468 & Download

Dataset)

Continued by
0. 1
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Dataset 3

March 17,2022

Fast Calorimeter Simulation Challenge 2022 -
Dataset 3

Faucci Giannelli, Michele; Kasieczka, Gregor;

yman, Ben; Salamani, Dal Shih, David;

Z ka, Anna

This is dataset 3 of the “Fast Calorimeter Simulation Challenge 2022". It consists of four files with 50k GEANT4-simulated
showers each of electrons with energies sampled from a log-uniform distribution ranging from 1 GeV to 1 TeV. The
detector geometry is similar to dataset 2, but has a much higher granularity. Each of the 45 layer has now 18 radial and 50
angular bins, totalling 18x50x45=40500 voxels. This dataset was produced using the Pa

ant4 example.

dataset_3_1.hdf5 and dataset_3_2.ndf5 should be used for training, dataset_3_3.ndf5 and dataset_3_4.hdf5 can be used as
reference in the evaluation.

More details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are

<) v
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1968 & Download
1968 & Download
1968 & Download

1968 & Download

Lo Lopencs
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@ views & downloads
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Dataset 1

o Based on ATLAS dataset form CERN Opendata
portal
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Dataset 1

o Based on ATLAS dataset form CERN Opendata
portal

o photons and pions item single 1 region (0.2-0.25)

o 15 discrete incident energies from 256 MeV up to 4
TeV

e 10k in each sample
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Dataset 1

o Based on ATLAS dataset form CERN Opendata
portal

o photons and pions item single 1 region (0.2-0.25)

o 15 discrete incident energies from 256 MeV up to 4
TeV

e 10k in each sample

o Number of radial and angular bins varies from layer
to layer and is different for photons and pions,

resulting in 368 voxels for photons and 533 for pions.

Layer r edges [mm)] N bins «
PreSamplerB | 0,5,10,30,50,100,200,400,600 1
EMB1 0,2,4,6,8,10,12,15,20,30,40,50,70,90,120,150,200 10
EMB2 0,2,5,10,15,20,25,30,40,50,60,80,100,130,160,200,250,300,350,400 | 10
EMB3 0,50,100,200,400,600 1
TileBar( 0,100,200,400,1000,2000 1

Nominal binning for photons and electrons with 0 < 7 < 1.3 range. [ATL-SOFT-PUB-2020-006]
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Datasets 2 & 3

o Data simulated with Par04 GEANT4 example released in
Geant4 11.0

o Simplistic geometry, collider-style concentric cylinders
with up to two interchanging materials

par04.web.cern.ch

13/28
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https://par04.web.cern.ch
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e Data simulated with Par04 GEANT4 example released in
Geant4 11.0

e Simplistic geometry, collider-style concentric cylinders
with up to two interchanging materials

o Particle direction and position is measured at the
entrance to calorimeter, so scoring of energy deposits is
done relative to the particle direction
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with up to two interchanging materials

o Particle direction and position is measured at the
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o Similar ‘pictures’ are obtained independently on angle of
the incident particle
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Datasets 2 & 3

e Data simulated with Par04 GEANT4 example released in
Geant4 11.0

e Simplistic geometry, collider-style concentric cylinders
with up to two interchanging materials

o Particle direction and position is measured at the
entrance to calorimeter, so scoring of energy deposits is 2
done relative to the particle direction P segments

R slices

o Similar ‘pictures’ are obtained independently on angle of

the incident particle
N layers

o Granularity of shower deposition is configurable (dataset
2 is less granular than dataset 3)

13/28
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Datasets 2 & 3

e Data simulated with Par04 GEANT4 example released in
Geant4 11.0

e Simplistic geometry, collider-style concentric cylinders
with up to two interchanging materials

o Particle direction and position is measured at the
entrance to calorimeter, so scoring of energy deposits is 2
done relative to the particle direction P segments

R slices

o Similar ‘pictures’ are obtained independently on angle of

the incident particle
N layers

o Granularity of shower deposition is configurable (dataset
2 is less granular than dataset 3)

o Electons with log-uniform energy spectrum, from 1 GeV

to 1 TeV, perpendicular to detector ;for this challenge)


https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04

10 GeV e, dataset 3

Datasets 2 & 3 10 GeV e, dataset 3

P se’g/m'en 5 R slices

N layers

(7777777 7R

e Par04 example defines 0.3 mm Si and 1.4 mm W layers


https://doi.org/10.5281/zenodo.6082201

Datasets 2 & 3 10 GeV e, dataset 3 10 GeV e, dataset 3

N layers

/ =
e Par04 example defines 0.3 mm Si and 1.4 mm W layers
e Dataset 3:
u[m © Readout granularity is Ar x Ap x Az =23 mmx%—’g x 3.4mm (with Ar ~ 0.25 Ry and Az =~ 0.6 Xp)

o Number of readout cells is R x P x N = 18x50x45 aiming for 95% containment of 1 TeV particles
o Open access dataset for different incident angles, for SiW (and scintillator-Pb) available at
10.5281/zenodo.6082201
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Datasets 2 & 3 10 GeV e, dataset 3 10 GeV e, dataset 3

N layers

/ s
e Par04 example defines 0.3 mm Si and 1.4 mm W layers
e Dataset 3:
"E! o Readout granularity is Ar x Ap x Az = 2.3 mmx%—’g x 3.4mm (with Ar ~ 0.25 Ry and Az =~ 0.6 Xp)

o Number of readout cells is R x P x N = 18x50x45 aiming for 95% containment of 1 TeV particles
o Open access dataset for different incident angles, for SiW (and scintillator-Pb) available at
10.5281/zenodo.6082201

e Dataset 2:

o Readout granularity is Ar X Ap X Az = 4.7mmx 2% x 3.4mm (with Ar ~ 0.5 Ry and Az ~ 0.6 Xg)

16
o Number of readout cells is R x P x N = 9x16x45
14/28
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Beyond CaloChallenge: Geant4 Par04 example: inference within C++4 framework

N
[T Inferencelnterface  <—

Runinference()

Energy, Angle

MLFastSimModel ————— InferenceSetup OnnxInterfface ——

Dolt() GetEnergies()
GetPositions()

Lwtnninterface

Inference Library
Path + name of the ML model
Dimension of the latent space
Dimension of the condition vector
Optimization flag

Debug flag

**Inference —

InferenceMessanger

e Fast simulation with ML within Geant4

o Example demonstrates how to incorporate inference libraries (ONNX Runtime,
LWTNN, soon also pyTorch)

o Allows to calculate fairly speed-up of simulation (which will depend on granularity)
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The Structure of the Data and High—Level Features — Code o e e

~ Jupyter HighLevelFeatures Last Checkooint 16.032022 (astosave) A | o

Flo  Edt  Vew st Col Kemel Widgers Hop NoiTuses| | Pyton (pykemel) O

B+ %@ A v rAn[ECH m v (=] 0] s mat

CaloChallenge 2022 - Dataset Loading and Usage

In (1) [# inports
fron HighLevelFeatures inport Highlevelfeatures as HLF
inport numpy as np
inport hspy’
inport matplotlib.pyplot as plt

daa, dataset,

Dataset 1

In (21 [# creating in: Hightevelfeatures class to handle geometry based on binning file
HE 1 phomng e oton:. Tienaace-binning gataset. 1. procons sm
HLF. HLF(‘plon’, filename='binning dataset 1 pions.xal')

w o) [T
photon file = hspy.File("../dataset 1 photons 1.hdf5, *r')
Plontile < napy Fitel".jabe )

In [4]: [# each file contains one dataset for the incident energy and one for the showers.
for dataset in photon file:

., dataset)
 photon_file[dataset] [:].shape)

dataset)
print(“dataset shape:*, pion fileldataset]

shape)

dataset nane: incident energies
dataset shape: (121000, 1)
dataset showers.

Gatoset shape: (121008, 368)

dataset nane: incident encrgies
dataset shape: (120236, 1)
dataset showers.

Gatoset shape: (120336, 533)

In (5): [# incident energies are discrete, starting at 256 NeV and increasing in powers of 2. At high energies,
# there are fewer than 1ok eventé per energy
energies = photon_file[ 'incident energies'](:]
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The Structure of the Data

CaloChallenge 2022 - Dataset Loading and Usage

f£rom HighLevelFeatures import HighlevelFeatures as HLE

import numpy as np

import hSpy

import matplotlib.pyplot as plt
Al 3 datasets have a similar structure and the helper functions are designed to work on all of them. Below are a few examples on how to load and access the data, compute
and plot high-level features, and look at average/individual showers for each dataset.

Dataset 1

on', filename="binninc
filename="'binning.

HLE_1_photons.
HLF_1 pions = &

photon_file as. hoto:
pion_file = hSpy.File ('

set_1_pions_:

for dataset in photon fil

dataset)

photon_file [dataset] [:] .shape)
print ("\n')
for dataset in pion_file:

dataset)

pion_file[dataset]

.shape)

dataset name: incident_energies
dataset shape: (121000, 1)
dataset name: showers

dataset shape: (121000, 368

dataset name: incident_energies
dataset shape: (120230, 1)
dataset name: showers

dataset shape: (120230, 533)

HighLevelFeatures.ipynb
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The Structure of the Data

g at
r energy

r 0k e

energies = photon_file['incident_energies'][:]

bins = np.logspace (8,23,31, base=2)

plt.hist (energies, bins=bins)
plt.xscale('log’)

plt.xlabel ('Energy [MeV]')
plt.ylabel ('Num. showers')
plt.show ()

10000

Num. showers.

8000
6000
4000
2000 I
., ‘ L
10° 10¢ 10° 100 107

Energy [MeV]

HighLevelFeatures.ipynb
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High—Level Features

ted once for a given d;

# High-level features are comp
HLF_1_photons.CalculateFeatures (photon_file["showers"] [
HLF_1_pions.CalculateFeatures (pion_file["showers"] [:])

en out
posited energy in th
otal energy of each photon shower: ", HLF_1 photons.GetEtot())

print ("Average total energy of the pion showers: ", HLF_1_pions.GetEtot ().mean())

and in

9y

umber

e has

ons therefor
for each photon showe
ed in the first lay

: ", HLF_1_photons.GetElayers())
, HLE_1_pions.GetElayers() [0] .mean ())
, HLF_1_pions.GetElayers() [14].mean ())

print ("Energy deposit

print ("Average energy for pion showers:

for pion showers:

than one alpha bin

ction for each photon show

yer with
in eta di

", HLF_1_photons.GetECEtas ())

", HLF_1l_photons.GetWidthEtas ())

than one a bin)

ection for each pion shower: ", HLF_1_pions.GetECPhis())

n shower: ", HLF_1_pions.GetWidthEtas())

HighLevelFeatures.ipynb

posited over incident energies: ", (HLF_1_photons.GetEtot ()/photon_file['incident energies'][:].squeeze()) .mean (})
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High—Level Features

, filename=None, title="Average photon showers")
title="Average pion showers")

‘

ns She ¥ o
ions. DrawAverageshover (pion_file['showers'][:],

Average photon showers

Layer O Layer 1 Layer 2 Layer 3 Layer 4

1072 107! 10° 10! 102 10°
Energy (MeV)
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High—Level Features

Single Electron shower at 2048.0 MeV
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High—Level Features
Work in progress to add:

o shower shape features (profiles, first, second moments),
e cell energy distribution.
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Demonstrator plots, to berimplremenrted for CaloChallenge
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The Structure of the Data and High—Level Features e e

Points for discussion:
o Any other high-level features needed / relevant?

o Any other histograms needed?

o Any other plots / visualizations wished for?

=- Send a pull-request if you have some!
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Evaluating the Models

The surrogates should be fast and faithful!

We will be looking at:
= Sampling time, (training time, memory usage)
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We will be looking at:
= Sampling time, (training time, memory usage)

= Histograms of high-level features, and their separation power:

(52) = Z s te)t Diefenbacher et al. 2009.03796

= Interpolatlon capabilities of datasets 1: (S2) at an E,c left out in training.

=- A binary classifier to distinguish samples from GEANT4, based on high-level
features.
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Evaluating the Models

The surrogates should be fast and faithful!

We will be looking at:
= Sampling time, (training time, memory usage)

= Histograms of high-level features, and their separation power:

(52) = Z s te)t Diefenbacher et al. 2009.03796

= Interpolatlon capabilities of datasets 1: (S2) at an E,c left out in training.

=- A binary classifier to distinguish samples from GEANT4, based on high-level
features.

= A binary classifier to distinguish samples from GEANT4, based on voxel
information.
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Evaluating the Models

(The surrogates should be fast and faithful! )

We will be looking at:
= Sampling time, (training time, memory usage)

= Histograms of high-level features, and their separation power:

(S?) = z (’;,11';’;32'1) Diefenbacher et al. 2009.03796

= Interpolatlon capabilities of datasets 1: (S2) at an E,c left out in training.

= A binary classifier to distinguish samples from GEANT4, based on high-level
features.

= A binary classifier to distinguish samples from GEANT4, based on voxel

L information.

(Note: )
o Almost all of these require the distributions of E;,. to agree.

= Data needs to be written in the same .hdf5 format as the training data.



https://indico.cern.ch/event/1140563/

. Slide by Claudius Krause
Evaluating the Models — Code

A o

~ Jupyter Evaluation-visualization Last Gheckpoirt: 18032022 (autosavec)

Flo  Edt  Vew st Col Kemel Widgers Hop NoiTuses| | Pyton (pykemel) O
B+ (%@ B Av A0 B CH wmee @] O g bat
ion of showers i to the Fast Calori Challenge 2022

thefle evaluate.py
python evaluate.py -1 INPUT_FILE -r REFERENCE_FILE -n MODE -d DATASET --output_dir OUTPUT DIR --source dir SO
URCE
where the arguments are

« INPUT._FILE isthe a5 fie that contins the showers (o be evalualed.

+ REFERENCE_FILE is either the orthe e
it time. ntme.

« MODE s one offal, avg, avg-E, ist, histp, histchi, and defaults 10 al. avg agE

file and the histogram of a  DIR, info a fle: ist Tistohi only saves the

separalion power and alf does al o he above,

« DATASET ns. 2,31

UTPUT O 1o it m i ot an oo e il s ot i vl el

- SOURCE inthe fuure, vl s fles for

In (1): | import
inport evaluate
inport argparse
inport hspy
inport numpy as np

inport Highlevelfeatures as HLF

eeds.

In (21: [# specify to your
# REPLACE THIS WITH YOUR GENERATED EVENTS
¢ These are the GEAT evatuation vents that are provided on terodo

is computed n the First run of the notebook. It can be used instea

INPUT FILE = °../dataset

22
ST e teost S eedialie o serafe oo v
2

“evaluation_results/

g the argunent parser of evaluate.py.
parser vep\acemelvl 0
fnput

INPUT FILE, 'reference file': REFERENCE FILE, ‘mode’: MODE, 'dataset’: DATASET,
ou DIR, “source dir DIR, ¥
args = argparse. Noncspace(+-parser reptacement)

In [5]: # reading in source
Sourea Th1e = apy-File args.toput_file, *r')
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Evaluating the Models

We don't expect to have a single clear winner!

Instead, we are looking forward to a diver-
sity of approaches with a plethora of new ideas.

Points for discussion:
o Any other high-level features for histograms / classifier?

o What kind of preprocessing should be used for low-level classifier?

e Any other metrics?



https://indico.cern.ch/event/1140563/

Slide by Claudius Krause

Looking Ahead

o We will add more plot features.
o We will add the code for the classifiers and other missing metrics.

e There will be a dedicated session at ML4Jets @ Rutgers in
October/November this year. Please send us your samples ahead of time
(tbd when), so we can run them through our common pipeline.

o There will be a summary paper at the very end.



https://indico.cern.ch/event/1140563/
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Fast Calorimeter Simulation Challenge 2022 e by Claudius Krause

o Webpage: https://calochallenge.github.io/homepage/
o Code: https://github.com/CaloChallenge/homepage/tree/main

e Data on Zenodo: Dataset 1 Dataset 2 Dataset 3

e Join the ML4Jets Slack workspace, and then the #calochallenge channel.

e Join the Google Mail Group.

o CERN EP-RD fast sim group organizes (probably monthly) in-person
discussion group @ CERN. Join mattermost channel for announcements:
EP-RD Software team's Mattermost channel “calochallengecern”.



https://calochallenge.github.io/homepage/
https://github.com/CaloChallenge/homepage/tree/main
https://doi.org/10.5281/zenodo.6234054
https://doi.org/10.5281/zenodo.6366270
https://doi.org/10.5281/zenodo.6366323
https://join.slack.com/t/ml4jets/shared_invite/enQtNDc4MjAzODE0NDIyLTU0MGIxNmZlY2E4MzY2YzEwNGI2MGI5MzJmMzEwODVjYWY4MDFhMzcyODYyMDViZTY4MTg2MWM2N2Y1YjBhOWM
https://groups.google.com/g/calochallenge
https://mattermost.web.cern.ch/signup_user_complete/?id=yjfne5fbzff9z8wcd6u97m9urr
https://indico.cern.ch/event/1140563/

Calorimeter in the Open
Data Detector

Erica Brondolin, Dalila Salamani, and
Anna Zaborowska

Learning to Discover, Workshop on Generative Models, Cﬁw
April 26th 2022 )

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments (CERN-OPEN-2018-006)



https://cds.cern.ch/record/2649646/

Open Data Detector & GitLab

Implementation of tracking system:

1200

OpenDataDetector (ODD)

e N
E

is attempted to provide a template ool | ‘ ||- H—] B
(HL-)LHC style particle detector for soof | _ | | | 3
algorithm research and development. ool o ]
ool | =
£ | |
D = =
[ofE=0] - e
PH ZR ¥ 0 =3000 -2000 -1000 0 1000 2000 3000
display z [mm]
45 Innermost Pixel barrel layer Stave with sensors pointing inwards

Figures from ACAT 2021 poster (Paul Gessinger, Andreas Salzburger, Joana Niermann)


https://doi.org/10.5281/zenodo.6445359
https://gitlab.cern.ch/acts/OpenDataDetector
http://cern.ch/go/Q897
https://indico.cern.ch/event/855454/contributions/4596738/attachments/2352091/4013627/740_poster.pdf

Open Data Detector - why?

\ \
o Experiment independent \
. cern.ch/go/Q897
o Free (and easy!) to use, open access, public data
e Software benchmark detector
o Can be used to set up challenges (fast simulation, reconstruction, ...)

e Implemented tracking system is an evolution of detector used for Tracking Machine
Learning Challenges

o Kick-off meeting to discuss calorimeter system is tomorrow i (please register via
indico to get informed of updates)


https://indico.cern.ch/event/1147195/
http://cern.ch/go/Q897

How do we want to use calorimeter in ODD?

Fast simulation:

e Study and benchmarking of fast
simulation techniques (classical and
machine-learning based)

o Follow-up of Calo Challenge with ODD
calorimeter data

Reconstruction:

e Study and benchmarking of
reconstruction algorithms

We would like to get to know your ideas!

o Tracker + calorimeter = particle flow techniques


http://calochallenge.github.io/homepage/
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Step-by-step plan

1. Collect ideas how to use it, design ideas and requirements

2. Gather information on available manpower

3. Design the calorimeter (EM and H part)

4. Implement it in DD4hep

5. Run simulation

6. Once satisfying - freeze and document versions, produce high stat data

7. Publish and use!



Kick-off meeting about Calorimeter in Open Data Detecto

Description  Open Data Detector (ODD) is a collider-like template detector, designed for algorithm research and development. Tracking sub-detector is an
evolution of the successful detector employed in the Tracking Machine Learning Challenge. The calorimeter part of the ODD is not implemented
yet

The kick-off of this effort is a short discussion including several communities for future calorimeters to understand possible use-cases, interest
and person power. Depending on the engagement and interest, a short series of discussion oriented meetings could follow which would lead to
actual implementation. This common effort could then potentially also translate into a long(er) term community of people interested in
discussing and exchange of experience on software for future calorimeters with particular emphasis on calorimeters with high granularity.

Registration

& Youare registered for this event.

1510 Kick-off ®1om | 2~
Speakers: Anna Zaborowska (¢

, Dalila Salamani (cern), Erica Brondolin (cerx

—-15:30 Introduction to Open Data Detector ®20m | 2~
Speaker: Paul Gessinger (CERN)

- 1550 Introduction to key4hep and interface with ODD ©20m | 2~
Speaker: Valentin Volkl (cer

~1630 Discussion @aom | £~
Speaker: Sanmay Ganguly ersity of Tokyo (JP)]

indico.cern.ch/event/1147195/
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