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1 Problem
statement and

data



Precipitation Nowcasting

High-resolution (Tkm x 1km) rainfall estimates in
the short term (5-90 minutes)

Used by expert meteorologists to:
e Issue flood warnings
e Perform air traffic control
e Marine services

Important statistical questions:
e Prediction
at multiple temporal
and spatial scales
e Accounting for uncertainty
e Capturing rare events

NWPs perform poorly here
e Data-driven approaches

Dennis continues to
batter Britain -in

ShOUId be Strong “ pictures




Precipitation Data from the UK

Very large radar fields

ImageNet

e Met Office RadarNet4 Data Sample

e Every 5 minutes, 288/day
e 1536 x 1280 pixels

e Tkm x Tkm grids

e Data from 2016-

e Data agreement through MO ; @ ,.
data provisioning team MNIST /} P

Sample : x




Multi-resolution Multi-scale Data (US)

e Data over continental United States from 2017-2019
e 0.01°(lat, long) grids of 3584 x 7168

e Asynchronous updating and poor radar on West Coast.




Additional data sources? Wind Speed Temperature

Numerical Weather Prediction (NWP)

e UKV model

e Work on lead time > 3h

e Rainflux used
as baseline

Rain gauges

e [or calibration

Orography, land cover

e Investigated..
e .. butnot used

Did not use satellite data either! 1
Precipitation

20180801 Too:30




Baseline
Modaels...



A Quote

“All models are wrong, but
some are useful”

- George Box (Statistician)



Useful Physics-Inspired Baselines: Lagrangian

Persistence & PySTEPS

Optical Flow

Input

7/

//////j Extrapolate [
// ///

Advection . v “‘
Field <
Prediction

e Stationary optical flow (e.g., Lucas Kanade) (Bowler et al, 2004)
e Future obtained with Semi-Lagrangian extrapolation (Germann et al, 2002)
e What's wrong: advection only, struggles with orography

Bowler et al., 2004. Development of a precipitation nowcasting algorithm based upon optical flow techniques. Journal of Hydrology.
Germann et al., 2002. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly

Weather Review.



Neuralizing: Extending Optical Flow with PWC-Nets

Differentiable approach
to optical flow estimation
(Sun et al, 2017)

p0($t|$<t) F= f(51?<t; 9)

Feature Feature T om0 g o 1 Upsampled flow
pyramid 1 pyramid 2 :__.i E |
oy B O Eedesiiesesavedansd
l - Warping layer
| I I
:““'l """" f""“ Cost volume layer I

.....................

Optical flow estimator
Refined flow v

1 «——  Contextnetwork i

Ground truth

Sun et al.,, 2017, PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. CVPR 2018

Prediction (PWC-Net)




A Purely Data-Driven Baseline: UNet (Regression and Classification)
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Ayzel et al., 2020. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting Geosci. Model Dev.
Agrawal et al., 2019, Machine Learning for Precipitation Nowcasting from Radar Images, NeurlPS Climate Change Al workshop
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A Purely Data-Driven Baseline: UNet (Regression and Classification)
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Ayzel et al., 2020. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting Geosci. Model Dev.
Agrawal et al., 2019, Machine Learning for Precipitation Nowcasting from Radar Images, NeurlPS Climate Change Al workshop.



A Purely Data-Driven Baseline: UNet (Regression and Classification)
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Ayzel et al., 2020. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting Geosci. Model Dev.
Agrawal et al., 2019, Machine Learning for Precipitation Nowcasting from Radar Images, NeurlPS Climate Change Al workshop.

Good metrics...
and blurred
predictions

What's wrong in
these models?
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Beware of Simplistic Modeling Assumptions in the Loss!

How are we modeling Pg (iUt |$<t)°

e Regression: = H H HN CUt h w|-Tt haws O ) - 1_[ H HPO(xt,h,w|x<tﬂ

exp(afiy ™) —
e Classification: H H H @ 1&) [H r Hpg (Tt,hw \x<t)J
t  CXP(T t,h, w t h w

e Be careful about the objective, especially if the data has underlying stochasticity

.. as there may be some poor conditional independence assumptions!

" L "4
y ’

<
CSl-2: 0.52 CSI-2: 0.50

CS1-8: 0.02 Csl-8: 0.00
CRPS: D.B1 CRPS: 0.74

CSi-2: 0.57
CSI-8: 0.13
CRPS: 0.57}




Beware of Simplistic Modeling Assumptions in the Loss!

e Conditional independence assumption:
Given the input, two predicted grid cells are independent

Prediction

Input (| £

p(Te |$<ta wo) = p(Te ‘97<t>




A Thought Experiment

40 km wide

-

30 mm/h'localised

Observation at T+30min: Ditation f Posterior at T+30min:
Rain in City W! precipitation front No rain in City E
P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5
f(London, T+30min) =15 mm/h Regressi on f(Brighton, T+30min) = 15 mm/h
CSl = 0.5 at 15 mm/h (good metric value)
p(London, 30 mm/h, T+30min) = 0.5 Classification p(Brighton, 30 mm/h, T+30min) = 0.5

CSl = 0.5 at 30 mm/h (good metric value)

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



A Thought Experiment

40 km wide

30 mm/h localised
precipitation front

P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5

But what about questions we care about?

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



A Thought Experiment

40 km wide

30 mm/h localised
precipitation front

P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5
What is the probability of rain at both cities simultaneously at T+30min?

Truth Regression Classification
P(Rain in City E and City W) = 0.0 P(Rain in City E and City W) =1.0 P(Rain in City E and City W) = 0.25

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



A Thought Experiment

40 km wide

= = = = = -
30 mm/h localised
precipitation front

P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5
What is the probability of no rain at City E over the next hour?

Truth Regression Classification
P(No Rain in City E) = 0.5 P(No Rain in City E) = 0.0 P(No Rain in City E) = 0.5*

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



A Thought Experiment

40 km wide

= = = = = -
30 mm/h localised
precipitation front

P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5
What is the probability of 20mm of rain at City E over the next hour?

Truth Regression Classification
P(20mm in City E) = 0.5 P(20mm in City E) = 0.0 P(20mm in City E) = 0.5*

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



A Thought Experiment

40 km wide

== = - = w
30 mm/h localised
« precipitation front »

P(Rain in City W | T+30min) = 0.5 P(Rain in City E | T+30min) = 0.5

Forecast quality (scores on metrics) is strong,
but forecast value (ability to make better decisions) is poor!

Image credits: Peter Greenhalgh, User:Colin, Wikimedia, Jeff J Mitchell, Getty Images



From Discriminative to Generative Modeling

e What went wrong?
o Baseline models directly predict grid cell-wise rain-rate probability
o These are discriminative models

e We want generative models
Discriminative Model Generative Model Realization

Input

Pixelwise f
Prediction Realization
)

H,

e But how to model pg(x¢|T<s)?



Deep
Generative
Models

of Radar



A Neural Sampler: Take Inspiration from Ensemble NWPs

N Realizations

Input Sampler Dg (xt]x<t)

e Would like a model that is 1) consistent across spatial and temporal
scales, 2) captures rare events, and 3) properly accounts for uncertainty

e From realizations, calculate relevant probabilities (such as accumulation
rain over catchment area)

e Generative Adversarial Network seems like a good fit

Goodfellow et al., “Generative Adversarial Networks.” NeurlPS 2014.



A Neural Sampler: Take Inspiration from Ensemble NWPs

*‘}‘}.\ N Realizations
4 ) U R
&
Generator .
K
99(Z7x<t) ”;a‘;j w -
k J e
¢ e
v
Input Sampler pg(x¢|r<t)

e Would like a model that is 1) consistent across spatial and temporal
scales, 2) captures rare events, and 3) properly accounts for uncertainty

e From realizations, calculate relevant probabilities (such as accumulation
rain over catchment area)

e Use models inspired by BigGAN and DVD-GAN

[5] Brock, Donahue, and Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019
[6] Clark, Donahue, and Simonyan. Adversarial Video Generation on Complex Datasets. Arxiv 2019
[7] Luc et al., Transformation-based Adversarial Video Prediction on Large-Scale Data. Arxiv 2020.



BigGAN and DVD-GAN

Adversarial Training

BigGAN DVD-GAN
y ~ Cat(Butter fly, ..., Dog) 2~ N(0,1)
Z Y z Xt Real/Fake?
) ) ) ) (it
a h a h . N (O D
Generator Generator Generator Discriminator
96(2,y) 96(2,y) g0(2)
\ J _

a
Real Data
's«;‘ 1 ‘?"i ;h_,-




Nowcasting model: conceptual diagram
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Nowcasting model: conceptual diagram

Temporal Discriminator
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Nowcasting model: conceptual diagram

Observation

Rand. Ensures that each frame
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Nowcasting model: conceptual diagram

Observation

Rand. Temporal

_p| Crop | | Discriminator We can also think of this as the

primary prediction objective,
where the two GAN losses are the
actual regularisation

Real / Fake
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Generator
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Generator
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Met Office RadarNet4 Data

Bias sampling towards high average precipitation for training.

Cropped satellite data 2018/11/10 09:05




Fully convolutional architecture, enables full-frame evaluation
Test on full 1536 x 1280 UK radar frames (2019) - (for US data: 3584 x 7168 frames)

Cropped satellite data 2018/10/29 22:30




5 Quantitative

Verificati
and its Limi



Critical Success Index (CSI)

Precipitation [mm/h] >= 1.0 Precipitation [mm/h] >= 4.0 Precipitation [mm/h] >= 8.0

0.0 - | | | 1 = 1 1 | [ e
20 40 60 80 20 40 60 80 20 40 60 80
Prediction interval [min] Prediction interval [min] Prediction interval [min]
e PYSTEPS s UNet === Axial Attention ===« = Axial Attention Mode === DGMR

e Deep learning methods outperform PySTEPS.

e (Sl does not account for blurry predictions.



Power Spectral Density (PSD)

T+30 min

1024 512 256 128 64 32 16
Wavelength [km]

1024 512 256 128 64 32 16 8 4
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30 minute prediction from other DL models has the same resolution as 8kmx8km observations
90 minute prediction from other DL models has the same resolution as 32kmx32km observations

DGMR/PySTEPS has roughly the same resolution as the original Ilkmxlkm observations



Avg-Pooled CRPS

Continuous Ranked Probability Score (CRPS)

Pooling Scale [km] =1 Pooling Scale [km] = 4
0.10 - —
0.08 -
0.06 -
0.04 =¥
0.02 -
0.00 - 1 1 1 1 = 1 1 1 1

20 40 60 80 20 40 60 80
Prediction interval [min] Prediction interval [min]
- PySTEPS UNet Axial Attention  =s==== Axial Attention Temp.

Probabilistic verification using CRPS

e Show CRPS aggregated over different scales (like FSS).
e Discriminative deep learning methods lack spatial consistency.
e Generative methods are spatially consistent.

Opt.

Pooling Scale [km] = 16

1
20 40 60
Prediction interval [min]

DGMR

80



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

Observations

Important (and difficult) to predict
convective cells

Difficult case chosen by the Chief Forecaster
(independent of the project team)

0 5 10 15 20 25 30
Precip (mm/h)



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

Observations

csl-2:022
CSI-8: 0,00 |
(CRPS: 055

0 5 10 15 20 25 30
Precip (mm/h)



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

Observations

B : .\"‘\ T y
2 N o F R
CS1-2: 0.57 | CSI-2:0.52 | CSl-2:0.50 | ¢
CsI-8:0.13 CSI-8: 0.02 | Csl-8:0.00 |
_CRPS: 057} (CRPS: 0.81 (CRPS: 0.74

0 5 10 15 20 25 30
Precip (mm/h)



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

ﬂ i

Observations

o

. r—

E -

Q -

o

<

=

é C51-2: 0.58 C51-2: 054
CSI-B: 0.11 CS1-8: 0.02
CRPS: 0.60 CRPS: 0.76

-0 5 10 15 20 25 30
Sonderby et al., MetNetPER&UT&) Weather Model for Precipitation Forecasting. arXiv 2020.



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

Observations

-

CS1-2:0.50 |
CS1-8:0.00 |
_CRPS: 0.54

CS1-2:0.54 |
Csl-8: 0.02 |
(CRPS: 0.58

Csl-2: 0.581)
CSI-8:0.11
(CRPS: 0431

Axial Attention

. 0 5 10 15 20 25 30
Sonderby et al., MetNetPER&UT&) Weather Model for Precipitation Forecasting. arXiv 2020.



Intercomparison case study

24/06/2019 at 16:15

T+30min T+60min T+90min

Observations

4

DGMR

CSI-2: 0.49 |
CSI-8: 0.00 |
(CRPS: 0.54

Cs1-2:052 |
CSI-8: 0,037 -
CRPS: 059

CSl-:
CslI-8: 0.
_CRPS: 0.4

0 5 10 15 20 25 30
Precip (mm/h)



Limitation of quantitative verification

T + 30min T + 60min T + 90min

Observations

Existing metrics do not capture

We showed these nowcasts . .
all the salient properties of a nowcast.

to expert forecasters...

PySTEPS

e ML methods do not incorporate
physical knowledge

e ML methods are much more flexible
and can game the metrics

e  Existing metrics do not give us the
ability to detect the differences
between different approaches.

e Expert meteorologists
have this knowledge

Axial attention
PySTEPS
DGMR

|
0 0.5 1.0
Proportion selected




6 Expert
Evaluation




Experimental psychology for operational meteorology

e Controlled study of expert judgments to assess performance of ML models.

e Worked with the Met Office Chief Forecaster to design the study and to adjust the
type of assessments made.

e 56 UK Met Office professional meteorologists (anonymised)
participated in this study.

e Insight:
o Are our approaches useful in an operational setting?

o Can they inform decisions on the development of new ML approaches?



Protocol Design

e Our experiment protocol consisted of two phases

o Phase One: a browser based preference rating of images depicting real and
simulated radar data.

o Phase Two: a retrospective recall and justification of decisions made. Of all
participants to complete Phase One, 20% were selected at random to
complete Phase Two.

e Due to current circumstances, the protocol was completed remotely

o Phase One via a browser based form that was generated uniquely for each
participant.

e We worked with the Chief Forecaster to design the study and to adjust the type of
assessments made.



Protocol (phase one): preference ranking

Observation t+0

Prediction B Prediction A Observation

Prediction C

t+30

t+90

15
Precip (mm/h)

20

25 30

Please provide your ranking. *

Most preferred (Ranked ... 2nd Least preferred (Ranke...
Prediction A
Prediction B

Prediction C

[OPTIONAL] Please type any notes about your observations or reasoning below.

Long-answer text

Design decision to limit
additional information
to control variables.



Case Selection

Participants were shown a total of 23 cases. Comprising
e 10 cases where precipitation levels were >5mm/hour.
e 10 cases where precipitation levels were >I0mm/hour.

e 3'’special cases, selected by an expert meteorologist. These
cases featured severe or unusual weather events during the
past year. (Included in the paper)

Prediction B Prediction A Observation

Prediction C

10

15
Precip (mm/h)

20




Design Decisions

e Question phrasing: The language used within the preference ranking question can
influence the way in which participants interact with the study. We opted to
phrase the question in terms of ‘preference is based on [their] opinion of accuracy
and value’.

e Additional Information: In an operational setting, forecasters would often use
multiple sources of information to make decisions. We opt to show radar based
plots only, with limited additional information, to ensure we can limit and control
variables.

e Participant Selection Criteria: Participants were selected based on the following
criteria; must be a professional UK meteorologist, qualified for 6+ months



Results

e Key factor: ability to capture well the extent of rain.
e Results contrast with the qualitative verification scores:
o that did not differentiate between competing approaches

o that often favoured models that blur the forecast over time

Most preferred 5 mm h™ Most preferred 10 mm h™"
Axial attention % 0.03 0.02
PySTEPS - = 0.08 = 0.08
DGMR 0.89 - 0.90 -
| I I | | | I I
0 025 050 0.75 0 0.25 050 0.75

Proportion selected Proportion selected



Transcript Extracts

e “| would prefer the model to underdo intensities but get a much better spatial
variation.”



Transcript Extracts

o “llike things to look slightly realistic even if they're not in the right place so that |
can put some of my own physics knowledge into it.”



Transcript Extracts

e “Lower resolution and unrealistic ones can still be useful, but a lot of the time (Axial
Attention) didn’t even get the shape right”



Transcript Extracts

e “Anything close to reality is really useful, any that track movement is good.”



Transcript Extracts

e “This looks much higher detail (sic) compared to what we're used to at the
moment. I've been really impressed with the shapes compared with reality. | think
they’re probably better than what we're currently using. The shapes in particular,
some of them do look really high resolution (sic).”



Future for expert assessments

e Successful study and insight on:

o how we run experimental psychology studies in Atmospheric Sciences
o how we gain insight into meteorological decision mechanisms

e Operational-driven design

e Ensure that ML based products deliver value in an operational context



7 Conclusion



Final Thoughts

> Nowcasting fills a gap in performance of NWPs in the first 2 forecast hours,
highlighting a role for ML fill gaps in existing physics-driven/simulation-based
approaches.

= Deep Generative models that improves upon the currently used nowcasting
methods.
It is suitable for high-intensity events and is also able to provide the
probabilistic ensembles required to estimate the evolution of chaotic systems.

= Provides genuine decision-making value for use by real-world experts.
First deep learning model significantly preferred to an operational system by
professional forecasters.

5 Interest to the many sectors and the public. Many key environment and
climate meetings this year, and we hope to add to those opportunities.



Thank you! Reach out: ravuris@deepmind.com

¥ master +  deepmind-research / nowcasting / Go to file

’ ravurisDM and diegolascasas Added journal information to the citation info. ... 3257aa3 on Sep 30 O History
@ Open_sourced_dataset_and_model_snapshot_for_pr... Adding nowcasting to deepmind-research repo. last month
[ README.md Added journal information to the citation info. last month
= README.md

Skillful Precipitation Nowcasting Using Deep Generative Models of
Radar

This repository is a supplement to "Skillful Precipitation Nowcasting using Deep Generative Models of Radar" and provides necessary code
for loading data from a large scale nowcasting dataset and obtaining predictions with the pretrained model.

Please see the Colab notebook for further details:

ZC Open in Colab

UK model, data, and Colab available at:
https://github.com/deepmind/deepmind-research/tree/master/nowcastin


https://github.com/deepmind/deepmind-research/tree/master/nowcasting

Parting Thought

“All models are wrong, but
some are useful”

- George Box (Statistician)



Parting Thought

“All mmedels forecasts are
wrong, but some are useful”

e We should think about how to better measure data-driven approaches!



