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Physics and ML are concerned
with characterizing the true
probability distributions of

nature, how do we represent
truth, data, and models to best
enable learning these
distributions?
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Geometric Deep
Learning



Representation Priors

The Curse of Dimensionality Geometric Priors
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Graph Neural Networks

Adjacency Feature . /
matrix nxn matrix nxd graph function f(X, A)’ =
RN
PAPT PX
4

~ arbitrary ordering of nodes
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Graph Neural Networks

Adjacency Feature . /
matrix nxn matrix nxd graph function f (X’ A)i N
RN
PAPT PX

arbitrary ordering of nodes

n! permutations

multiset of = local function 0
neighbour features EEEE x;
i E

Xy, = {xje »; } permutation invariant
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Graph Neural Networks

graph function f(X, A) {

Adjacency Feature

matrix nxXn matrix nXxd
T
PAPT PX

arbitrary ordering of nodes

n! permutations

multiset of = local function 0
neighbour features EEEE x;
i E

Xy, = {xje »; } permutation invariant

permutation-tnvariant
aggregation operator, €.9. sum

| £ = (x Clegblx)) 700 = (xe O] W)
JEN; EWN;
f (Xi) — (I) (Xii o llJ(X])) “convolutional” “message passing”
! JEN; !
“ F&x) =& (xi ] alxux)w(x))

/ j € V;
\_ learnable / J ¢

" functions “attentional”
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Extensions of GNNs

Graph Substructure Network

Transformers
1 triangle
0 4-cliques
2 triangles
1 4-clique
O
n
¢(Xi: a (X, X;, pi, pj)lll(xj)) ¢ (Xi’ : w(xi’xf’l?i))
j=1 % JEN; |
positional encoding structural encoding
Equivariant Graph Neural Networks — . 3
Graph Rewiring -
Graph G = (V,E) Node features X (G) functions F(X(Q))

Decouple input graph from information propagation graph (at the expense of link to WL)

+ Neighbourhood sampling (GraphSAGE)'

* Multi-hop filters (SIGN)*
— F — ~ Complete graph
Topology diffusion (DIGL)’

Learnable graph (Dynamic Graph CNN)°

Permutation matrix P Equivariant message passing

Rotation R )=

Permutation group X,
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GDL for Physics
Tasks
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Tracking

High luminosity: how ? Cannot reduce distance between bunches any further. More protons/bunch !

e e o oo v 9o @0 = o @& PP OG> v oo >

Represent the data using a Goal:

Charged particles leave hits in the
graph classify the edges of the graph

detector

High classification
score

=> high probability
that the edge is part of
a track

Low classification score
=> low probability that
the edge is part of a
track

!
=




GNNs for Tracking

Particles leaving hits Module map creation Graph creation
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Done once Y m For event reconstruction
[Z]- —>

= -
S
Nt -]
R e
: A EN =
Embed into learned  Connect all spacepoints  All spacepoint connections
latent space within radius r
4—"“ \‘\‘A /7_,« \\\A
/ ‘_,‘/,';«,;.:;\\ \
1 1]
SR
Input graph N; Edge scores

r @ z

3 ) e | S

=D Hyvy = = M1

Nodges | ¢ Block Block
A\ i
'
Interaction
N
gde 2oty Network Transforms the D-dimensional space
Encoder Encoder i T
of each edge into a classification
ﬂ score for each edge
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a D-dimensional parameter space




GNNs for Tracking
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Reconstruction

Multilayered detectors Simulation to reconstruction

Simulation Reconstruction
Om 1 m 2m 3m dm Sm

Key: model model

Muon

Electron

Charged Hadron (e.g. Pion)

= = = - Neutral Hadron (e.g. Neutron)
---- Photon

simulation input : reconstructed
particles ; particles
) :
Hadron Superconducting Clusters Of
Calorimet id : B
alorimeter Solenoi decay hits
Iron return yoke interspersed ducts
Transverse slice with Muon chambers ro
through CMS See the excellent talk by Jan Stark e P e t|o i
. etector nits
earlier today.




Clustering

e Segment the energy deposits (hits)
according to the originator particles

1000 [

| Set-to-set problem

. Each particle is described by a multi-class label, and is
1 embedded in a complex, problem-dependent feature space.

500 7+
e The hits are embedded in a ;

complicated feature space

(Cartesian position, energy, signal £ . L T n
significance, timing, layer B ; = @ o &
information, ...) mell 1 PY @
. . -500 \ . - ground truth prediction
* Showers from different particles I LA X . simulation input reconstructed
may overlap Spatlally /(&T. ! ” 4 particles particles
* Standard heuristic approaches 1000 30 1000 e s T

based on seeding & collecting x/mm
neighbors, typically iterative



Clustering

e Segment the energy deposits (hits)
according to the originator particles

1000 (-

P T [ |

Set-to-set problem

Each particle is described by a multi-class label, and is
embedded in a complex, problem-dependent feature space.

1

500 [+
¢ The hits are embedded in a

complicated feature space

(Cartesian position, energy, signal £ N °
significance, timing, layer > : B o °
information, ...) 1 PY ®
 Showers from different particles S0 ] Rchrorihid s
may overlap spatially - e Bartices
 Standard heuristic approaches gLy o T660 e P R T
based on seeding & collecting x/mm . .
neighbors, typically iterative Object condensation
> 1=
§ b ——t, Boundedness: the number of truth particles usually cannot be
g 0.95F - Ry = larger than the number of inputs (typically it's much smaller).
° - —._‘——'—- _.——.——-—
09K e S ground truth particles k
o o S S .
0.85 "_ ! I | simulation information
s input hits j
0.8} _
” — Condensation
- example assignment @ @& @ @
0.75}
L — Baseline PF . . . . . L
- Each input represents exactly one truth particle, with attractive/repulsive potentials in
0.7 a learned space x; between correct/incorrect assignments.
| I EMEPEP EMIEPE SPEPEPE PPN BT SPEPIPE B B | Lyv=—=) qj M Vi(z;) + (1 — M) Vie(z;)) -
0655""24"6 & 10 12 14 16 18 20 22 o= Rt (M i)

particles per event attractive repulsive
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Particle Flow

Machine learned
particle flow (MLPF) E—

Machine-learned
particle-flow

' Graph neural network

Baseline PF, adapted from
B. Mangano for CMS. 2013

L
A muon |
neutral“ '
hadron | /
\ - Particle Particle-flow
st reconstruction
& detection
::‘d"g:: " photon

“True” or
generated particles

Detector
measurements PF candidates
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Particle Flow A
e L
s -
O 1.0 -
oo} sm—_— |
Event as input set Event as graph Transformed inputs 0'8:_ B
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P - Graph building Message passing 4 [ .. ]
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1000f « |- _0.048 0=0.014
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Reconstructed particles / event
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Truth particles / event



Applicability

In a realistic environment

CMS Simulation Preliminary ~ Run 3 (14 TeV)
L2k AL R L

Computational scalability

PFElements per event

CMS Simulation Preliminary ~ Run 3 (14 TeV)
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Primary track when correctly reconstructed as a charged hadron Primary cluster when correctly reconstructed as a neutral hadron
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Interpretability L oy | -
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o
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a particular model output? =
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Adding Physics In



Modeling Physical Systems

Input parameters Magical NN High-dim output

Al ML & DATA ENGINEERING |

OCon Plus (May 17-28); Stay Ahead of Emerging Software Trends

< X ot
| fdecd] o |

2

Deep Learning Accelerates Scientific
Simulations up to Two Billion Times

oy UKE  [Fyoiscuss ]

MAR 10,2020 « 3 MIN READ

by

Anthony Alford [Fotiow | Training

1. Neural networks are good at interpolation,

bad at extrapolation ) =
2. Learned physics models often don’t learn anything close to Testing i \j g
the underlying physical equations ‘\Q\\f\)\
3. There’s no way we can build a dataset that covers the input Stalbng Angle of Attack \;//

space of a general-purpose simulator @
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Physics Inspired Priors/Inductive Biases

A simple inductive bias: Inertial dynamics

t+1 =N N(X Vt)

Has to learn to predict
static motion

Static prior Trivial to predict static
motion
=5t NN(xt, vt) Has to learn to predict

inertial motion

Position: x(t)

. Inertial prior o .
Velocity: v(t) Trivial to predict

. : e
Xt+1 = %t + Atevi+ NN(Xt, Vt) inertial motion!

dt? @
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Physics Inspired Priors/Inductive Biases

X'to Xto Xtk XtK

Learned simulator, sy

G-

do —1
ENcobﬁR 1 PROCESSOR M DEE)ODER
l: GN |'> GN ;\
X—» — G° é—»(,‘l ses GM_l :\4—/ GM—> —» Y
- : Pairwise Superposition .
Spatial Local Universal Differential

B e : : interactions principle
equivariance interactions rules

equations@

Permutation equivariance
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Learning Physical Simulators

same model, same hyperparameters can simulate many systems

Compressible Incompressible
aerodynamics fluid simulation

Liquids/granular Cloth simulation Structural mechanics
materials

actuator

wind —> [cloth L \._'/

- metal plate

7 s /
\ \ e Lagrangian <l \ Eulerian,
Lagrangian, 3d Bdtelaitedd 2d triangular
particle based triangular L dynamic
adaptive qyas:-stFatlc siruilation @
simulation

- And many ways to improve:
- Adding noise, ask update function to remove, improves stability
- Remeshing (scale prior) improves precision/speed
- Adaptive remeshing improves precision/compute utilization
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Learning System Design

Inner loop: forward model rollout

fp fu fum Ir
fm?or:‘ T Simulator — ... — ...—> Simulator Reward

function

Optimiser

Design Simulation b!

Prediction
Training domain Can we use a GNN based model
» pre-trained on physical
\ E dynamics for inverse design?
X fumr fumr
: : &, = &
Gradient-based with o’

M mOdels Sanchez-Gonzalez*, Godwin®, Pfaff*, Ying", et al, ICML 2020 / Pfaff®, Fortunato®, et al, ICLR 2021;
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Constraint-Based GNNs

Run gradient descent on f¢ to find
Invalid state:
bounced too far

Xi+1

fo(X<t, Xt41)

, O
X4
X Valid next
t+lstate
Invalid state:

Two ball overlap
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Constraint-Based GNNs

Run gradient descent on f¢ to find Xt+1

Invalid state:
bounced too far fo(X<t, Xiv1)
, O
X4
X Valid next
t+1gtate
Invalid state:

Two ball overlap

At test time optimize fo (X<, X¢41) + fobstacle(Xt+1)

a learned constraint a user-defined constraint
(e.g. new obstacle)

No collisions were ever
observed at training time!

Ground Truth C-GNS C-GNS with additional spatial constraints

— B e e
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Getting Physics
Back Out
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Symbolic Regression

Distilling Free-Form Natural Laws
from Experimental Data

Michael Schmidt® and Hod Lipson®**

For centuries, scientists have attempted to identify and document analytical laws that underlie
physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems,

J=2+98 sin(x)

S =(x=1.12)-cos(y)
S =091 -exp(y/z)
S =05 ~9.8.cos(x)

f=05-y" -9.8-cos(x) symbolic functions. Initially
these are random; later they
are small variations of best
© When predictive ability wsafient selastnd n 0
reaches sufficient
accuracy, return the most 2 Ax
parsimonious equations =[] x4 sintx) =
oy Ay
.\_,\J o
acly &g, ﬁ :Ly of
&, O Y
Ommm .
":‘:::‘}"*" © Derive symbolic partial
ol of pairs of
(2)- Select best equations. u-me-u:nm
NOun) = 477143714 - ”) + cos( ) —”®‘\
B +(3.714 - @' ycos(#) o K
) <= load [3.714
1) <= load [m) & \
2) <= mul (1), (1) m Q
i) <= load (@]
) <= cos i)
6) <= mul 3. (S
') <= load [4.771 ‘@
j) <= mul )o (3) 3.714 \ m
}) <= add ), (S5
(10) <= add 9. (6)
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Symbolic Regression

Jx) i =3 f(x) = cos(x — 0.32)
X)=X )

Q

f(x) = x+ cos(x — 0.32) °

Py SR https://github.com/MilesCranmer/PySR

PySR: High-Performance Symbolic Regression in Python

X PySR is built on an extremely optimized pure-Julia backend, and uses regularized evoluti i

and gradient-free optimization to search for equations that fit your data.

Repeats process iteratively to
yield set of candidate equations
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Learning Astrophysics u,, z,

1. Our inputs are the
positions of the bodies

2. They are converted
into pairwise distances

3. Our model tries to
guess a mass for
each body

4. It then also guesses a
force, that is a

function of distance o —
and masses M2’ an M3, aj
5. Using Newton’s laws of 6. Finally, it compares this
motion F=Ma predicted acceleration,
, (Z ) with the true Mﬂm'zed _ )1/
it converts the forces acceleration from the a(pred) — a'(true

into accelerations data
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Inductive Biases

e Translational symmetry sl

e Rotational symmetry

e Newton’s second law

Z F=Ma
U Newton S th|rd law
T = — F

)

e Choice of reference frame, units, etc.
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Extracting the Physics

3.0 R
z [
5 9.5 ("+(;1) f:_,.:
_g ¥ [ | r(r+C1)] NH:
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Il ) x
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8 0.5 a
75! I l 10™*H — NN + SR
Newtonian gravity
0-0 1 ' 1 10_7 1 1 1l I I I I
3 D 7 7 11 13 17 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Complexity Time (years)

- Apply symbolic regression with a constraint to balance accuracy and
equation complexity

- Can substitute learned equation for the force guess to improve the
simulator
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Discussion
Highlights



How Can We Make This Usable?

- Graph construction is critical for effective learning and
meeting computing constraints
- Are there ways to do effective segmentation or hierarchical graphs
- How do we balance information sharing with size

- Incorporating inductive biases can improve stability,
generalizability, and model efficiency
- Equivariant GNNs could reduce training resources, generalize
- Attention mechanisms weight physically important information
- Are there other types of (intermediate) functions we could model
- Constrained problems may be harder to solve in some cases

- We need to ensure the problem is truly physical
- In high pileup overlapping tracks can share hits and even segments
- How do we handle noise, missing information, detector effects

- Hardware-based acceleration is likely necessary



Does This Help Us Do Physics?

- Graphs seem to be the most effective representation of
particle physics experiment data
- Reduced information loss, allows hierarchical representations
- But are we fully exploiting this

- Symbolic regression can help understand if a model is
learning the true physics of the universe
- Potentially help us refine physical laws

- Interpretability of GNNs is extremely under-studied in physics

- Attention mechanisms and relevance propagation are proxies but are
not precise

- Other methods like black box methods, disentangle representation
learning have not been studied

- Central debate in ML for physics: do we care about getting the physics
back (data-driven science)



Are There New Directions to Explore?

- Transformers are effective on many problem types
- positional encoding/graph substructure models
- Study graph rewiring/nonphysical graphs/message passing only
edges/information aggregating nodes
- Incorporate additional priors/inductive biases

- Loss function constraints (number of decay products, consistency with true
tracks)

- Constraint-based GNNs
- Graph level conservation laws
« Apply these methods to more physics tasks
- Underexplored for simulation
- Full hierarchical reconstruction

- Experimental design optimization (trigger operations, detector/accelerator
design)

- Represent existing problems in new ways
- Tracking as denoising VAE or mesh generation



A Note on Datasets

- The TrackML dataset is not realistic for several reasons
- A new open data detector is nearly ready

- Can we create other benchmark/open datasets
- Particularly that are designed for GDL
- Even benchmark GNN models

- Always the concern of mismatch between data and simulation
- Are there ways we can train directly on data

Full tracker view
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Thank you to all participants!




