### DeepMind

# Highly accurate protein structure prediction with AlphaFold

#### **Tim Green**

Learning to Discover, Paris

John Jumper<sup>1\*</sup> †, Richard Evans<sup>1\*</sup>, Alexander Pritzel<sup>1\*</sup>, Tim Green<sup>1\*</sup>, Michael Figurnov<sup>1\*</sup>, Kathryn Tunyasuvunakool<sup>1\*</sup>, Olaf Ronneberger<sup>1\*</sup>, Russ Bates<sup>1\*</sup>, Augustin Žídek<sup>1\*</sup>, Alex Bridgland<sup>1\*</sup>, Clemens Meyer<sup>1\*</sup>, Simon A A Kohl<sup>1\*</sup>, Anna Potapenko<sup>1\*</sup>, Andrew J Ballard<sup>1\*</sup>, Andrew Cowie<sup>1\*</sup>, Bernardino Romera-Paredes<sup>1\*</sup>, Stanislav Nikolov<sup>1\*</sup>, Rishub Jain<sup>1\*</sup>, Jonas Adler<sup>1</sup>, Trevor Back<sup>1</sup>, Stig Petersen<sup>1</sup>, David Reiman<sup>1</sup>, Martin Steinegger<sup>2</sup>, Michalina Pacholska<sup>1</sup>, David Silver<sup>1</sup>, Oriol Vinyals<sup>1</sup>, Andrew W Senior<sup>1</sup>, Koray Kavukcuoglu<sup>1</sup>, Pushmeet Kohli<sup>1</sup>, Demis Hassabis<sup>1\*</sup> †





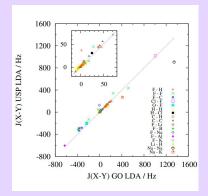
### **About me**

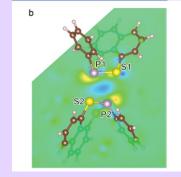
Tim Green - tfgg@deepmind.com

- 2006-2010 MSci at Cambridge Physics
- 2010–2014 DPhil at Oxford Materials (MML)
- 2014–2015 Postdoc at same
- 2016-present DeepMind

Thesis "Prediction of NMR J-coupling in condensed matter" developed DFT predictions with relativistic effects, disorder and temperature.

Work at DeepMind: Computer Vision, Population Based Training, Deep RL, ML infrastructure and protein structure prediction

















# DeepMind and protein folding

A central part of DeepMind's mission is to solve fundamental scientific problems with Al

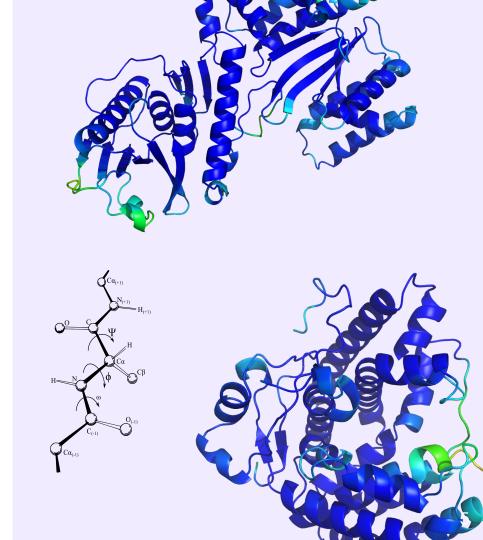
Predicting the 3D structure of a protein from its amino acid sequence is one such challenge

AlphaFold is our model that aims to solve this problem

IAKFGDWINDEVERNVNEDGEPLLIQDVRQDSSKHYFFILKNGER FDLLTREFDSFTSPDLTNEIKEITDQLSYYIYNKHFSSDFEQVEG AKLNIQNEISQFVKEGKAPVQAAYNKLQDPDIKDLLDYYDNIEKH SDEFESEIVKFFSEKKLIIKDAELEDVTQEGLNEGLQGGDLVQAF **EKNSKDNATANVKLMLSFLPKTDNLTGEPALGDYLNKPVFRSFDS** IHSELLEVLSDITTLHVQGEVLDVFSSMYNKIKELADFKKSFKPL LEILDTIDEOKKTEFVOAFYLSKINFYTTTIETLETEDONNTLTT FKVONVSNANNPISSKLTEYYTNFKYKILPGGKLNKGKLKDLOST

# What are proteins?

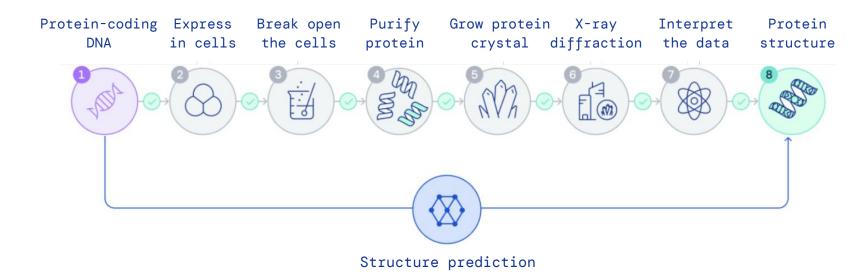
- O Proteins are molecular machines that are **essential to life**
- They have **many functions**: from our hair to our immune system
- Consist of chains of amino acids that fold into a 3D structure
- The exact 3D shape is important for a protein's function
- Understanding protein structures is a fundamental problem in biology



# Why predict protein structures?

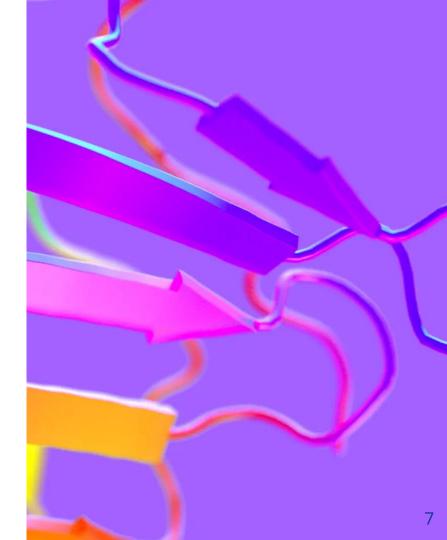
Experimental structure determination takes months to years.

Structure prediction can provide actionable information faster.



# Agenda

- Introduction
- AlphaFold and CASP
- How AlphaFold works
- How AlphaFold builds protein structures
- AlphaFold impact
- AlphaFold-Multimer





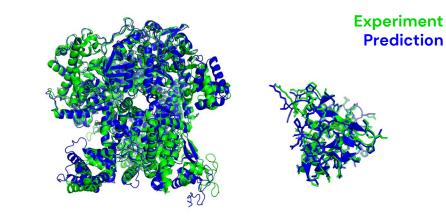
## AlphaFold at CASP

When working on these problems, a clear success metric is crucial

Fortunately, the protein structure prediction community had established CASP

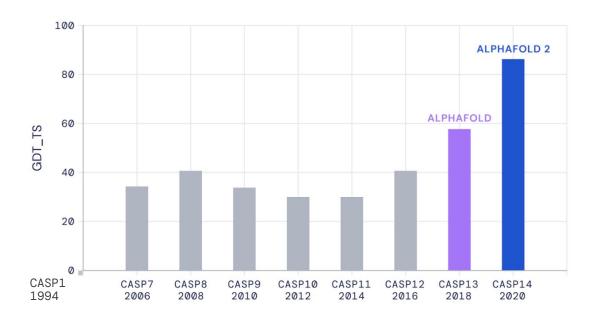
The CASP assessment involves predicting recently solved structures that aren't yet public

At CASP14, AlphaFold was the top ranked method achieving consistently high accuracy





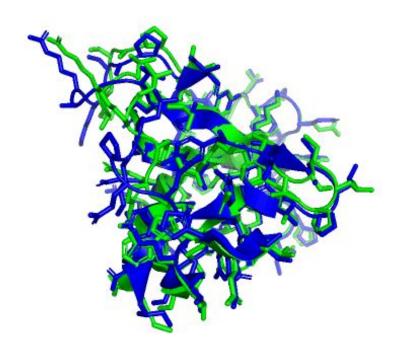
# **CASP:** historical perspective



- CASP has provided a biennial blind assessment of structure prediction methods over the last 25 years
- AlphaFold 2 achieved a median accuracy of 92.4 GDT over all targets in CASP14
- In response, AlphaFold was recognised as a solution to the structure prediction problem by the CASP organizers



# Protein example: T1064 (ORF8)



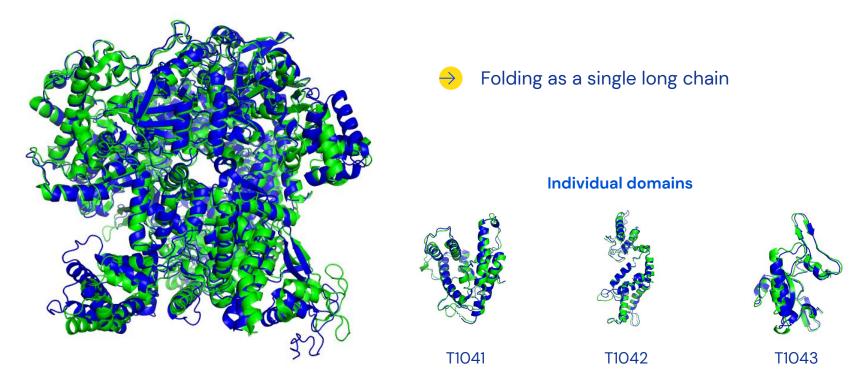
**T1064 / 7jtl** 87.0 GDT (ORF8, SARS-CoV-2)

**Ground truth Prediction** 

7JTL: Flower, T.G., et al. (2020) Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion. Biorxiv.



# Protein example: T1044 (RNA Polymerase)

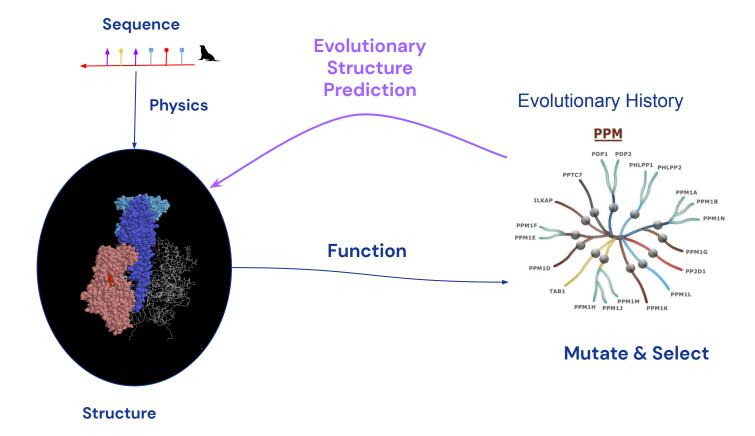


6VR4: Drobysheva, A.V., et al. Structure and function of virion RNA polymerase of a crAss-like phage. Nature (2020). (CASP14 target T1044)

**Ground truth Prediction** 



# **Determining Structure from Evolution - Intuition**



### **Model Inputs and Outputs**

### **Inputs**

- Amino acid sequence (residues) for the protein
- Evolutionary-related sequences (sequences that fold to the same structure, but whose amino acid sequence has diverged due to mutations)

### Training Data

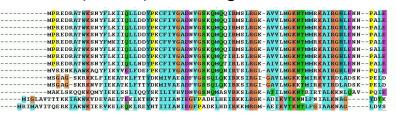
- ◆ Labelled Data 170k structures, 40k after deduplicating
- Unlabelled Data 350k deduplicated sequences

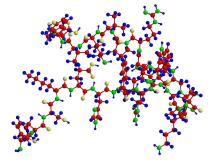
### Output

3D position of every atom in the protein (300 - 50,000 atoms)



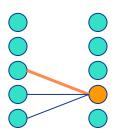
Multiple Sequence Alignment (MSA)





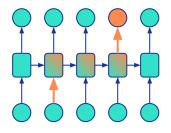


# **Inductive Bias for Deep Learning Models**



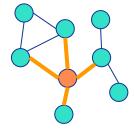
# Convolutional Networks (e.g. computer vision)

- data in regular grid
- information flow to local neighbours
- AlphaFold 1



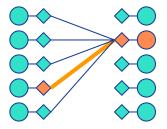
# Recurrent Networks (e.g. language)

- data in ordered sequence
- information flow sequentially



# Graph Networks (e.g. recommender systems or molecules)

- data in fixed graph structure
- information flow along fixed edges



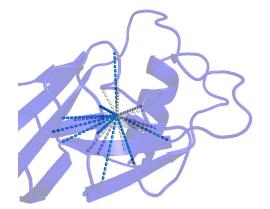
### Attention Module (e.g. language)

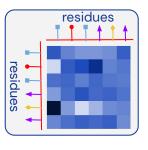
- data in unordered set
- information flow dynamically controlled by the network (via keys and queries)



# Putting our protein knowledge into the model

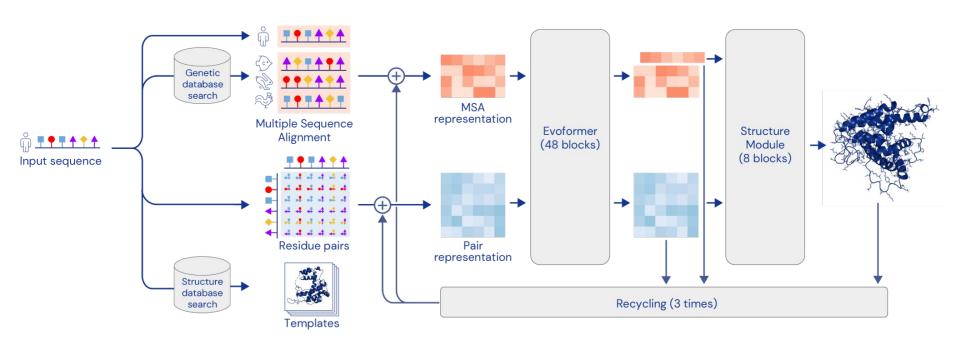
- Physical and geometric insights are built into the network structure, not just a process around it
- End-to-end system directly producing a structure instead of inter-residue distances
- Inductive biases reflect our knowledge of protein physics and geometry
  - The positions of residues in the sequence are de-emphasized
  - o Instead residues that are close in the folded protein need to communicate
  - The network iteratively learns a graph of which residues are close, while reasoning over this implicit graph as it is being built







### **Network**

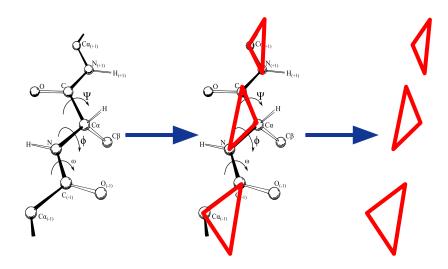


Feeding certain outputs back through the network again improves performance



### Structure module

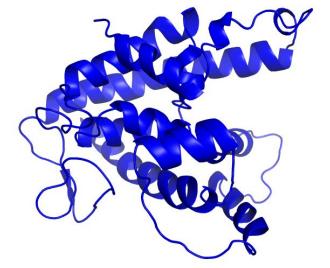
- > End-to-end folding instead of gradient descent
- Protein backbone = gas of 3-D rigid bodies (chain is learned!)





# **3-D equivariant transformer architecture** updates the rigid bodies / backbone

 Also builds the side chains from torsion angles



Iteration 1

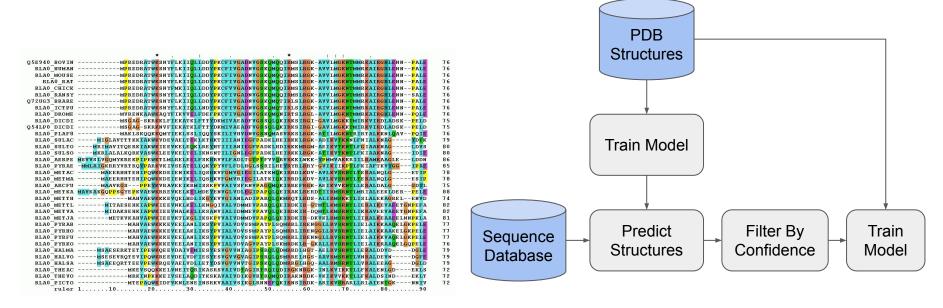




# Using unlabelled sequences in training

We know ~200k protein structures (Protein Data Bank) but several billion protein sequences.

We use these data in two ways.



**MSA BERT** 

(train model to predict masked locations in MSA)

Noisy student self-distillation (train from predictions of same architecture)

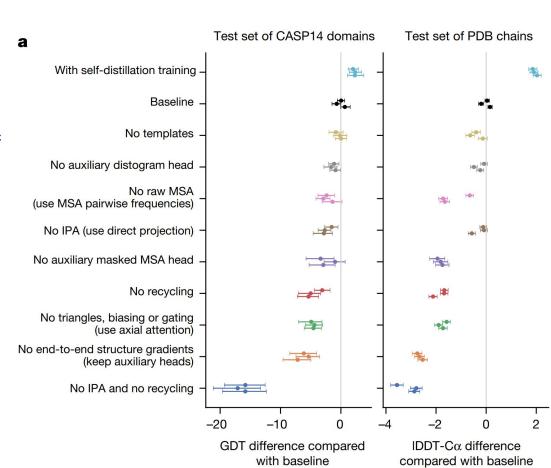


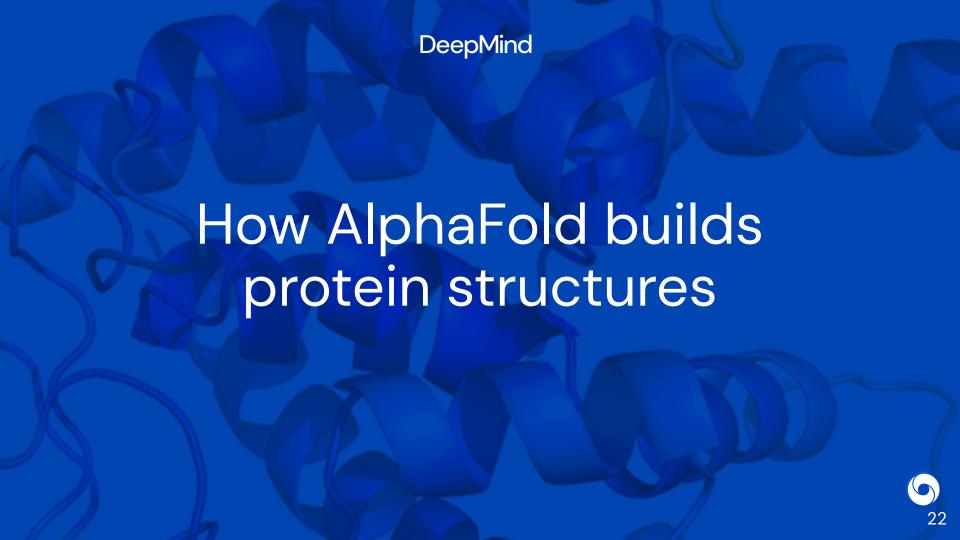
# Which parts mattered? All of it

### No single improvement is dominant

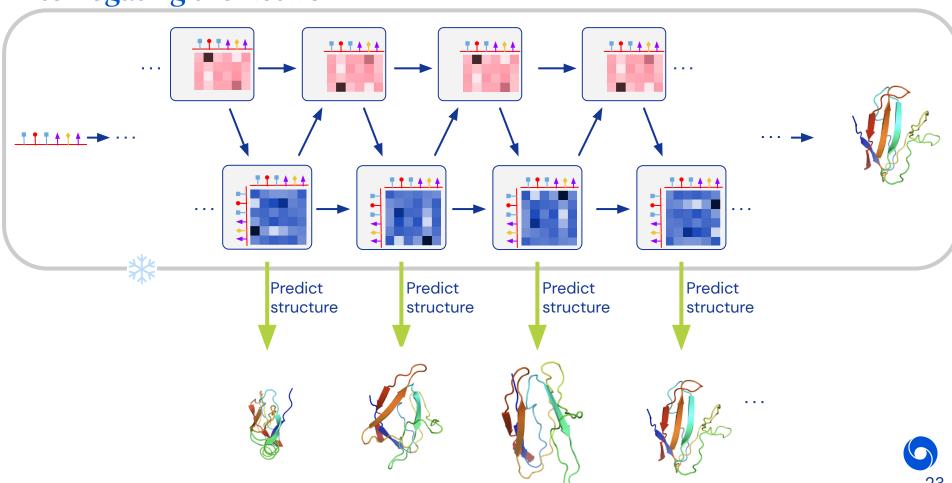
More important was the methodology of building the protein intuition into the model

Multiple ablations suggest strong interactions between many of the components

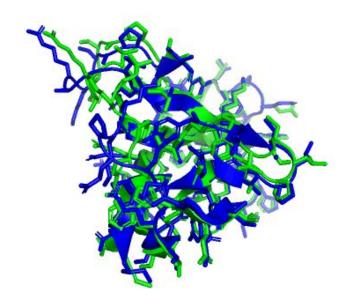


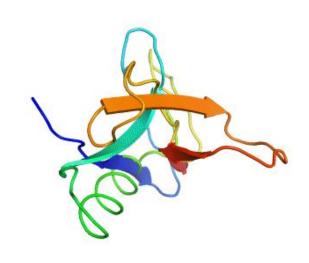


# **Interrogating the Network**



# **Model interpretability - ORF8 - Sars-Cov2**



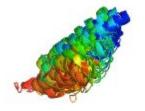


1

7JTL: Flower, T.G., et al. (2020) Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion. Biorxiv.



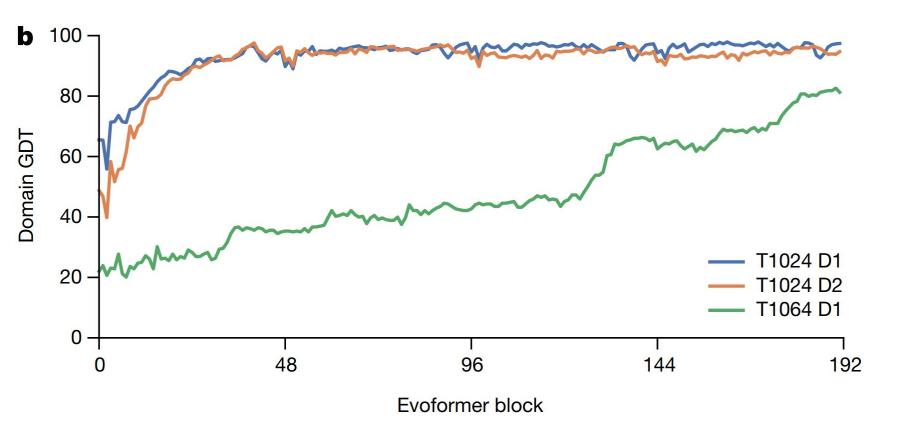
# **Model interpretability - T1044**







# **Model interpretability - Role of depth**







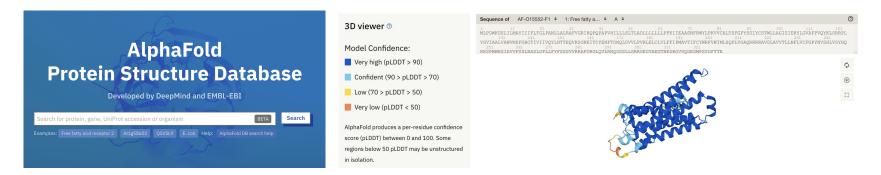
# Open Source & AlphaFold Protein Structure Database

We open sourced the code and model weights to run AlphaFold - github.com/deepmind/alphafold (8.3k 🐈)



Also created AlphaFold Protein Structure Database

- Website developed and hosted by EMBL-EBI
- Contains pre-run predictions for 21 model organisms + SwissProt (>800k structures)
- Plans to expand to **Uniref90** (~135M structures)

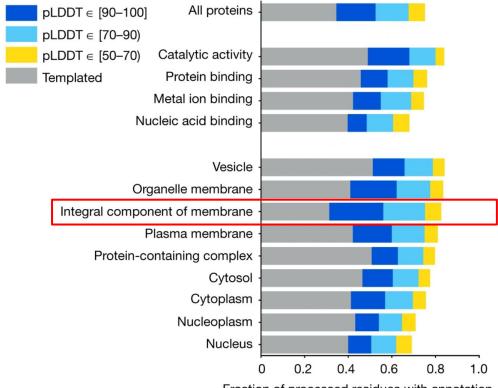




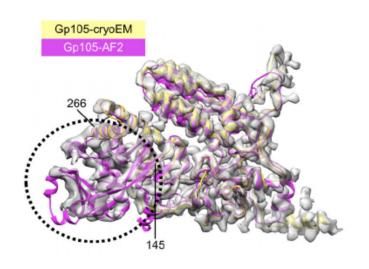


# Increase in coverage of the human proteome

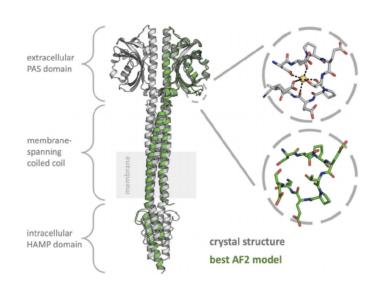
Even when accounting for template-modelling, AlphaFold greatly expands the high-accuracy structural coverage of the human proteome



# AlphaFold as an aid to experimental structure determination



AlphaFold models of AR9 nvRNAP proteins fit the cryo-EM density nearly perfectly

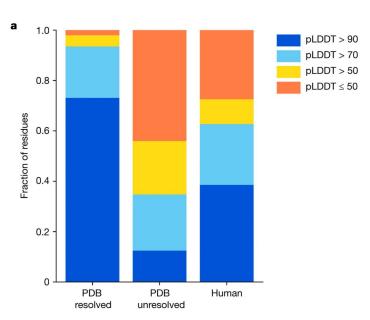


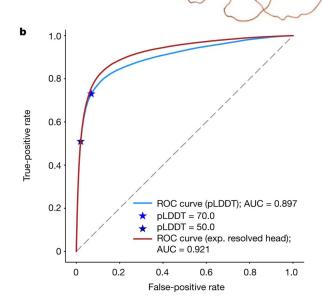
Crystal structure of dimeric Af1503



# AlphaFold confidence and disorder

- In IDRs, there is no fixed structure for AlphaFold to identify
- So AlphaFold produces a boring ribbon and reports very low confidence (pLDDT)
- This make very low confidence a strong signal of disorder or chains that are unstructured in isolation



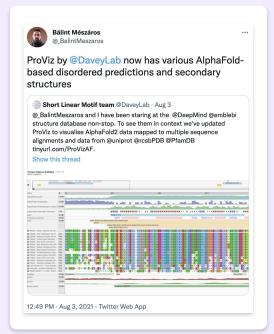


AlphaFold accuracy on CAID disorder benchmark



You really appreciate AlphaFold when you run it on a protein that for a year refused to get expressed and purified...

10:33 pm · 20 Jul 2021 · Twitter for iPhone





Aaaaaaand using an AlphaFold model we just phased some very important X-ray data that we previously couldn't phase using other MR approaches and even SAD methods!!!!!

3:46 PM · Jul 23, 2021 · Twitter Web App





#### Tristan Croll @CrollTristan · Jul 23

Upshot: while AlphaFold clearly isn't a \*replacement\* for experimental structures by any stretch, it's already very clear that it's going to make the task of \*building\* experimental structures both much easier and much less error prone. Welcome to the future! (fin)

Q 3

1 35

♡ 287

⊥

#### Sergey Ovchinnikov @sokrypton

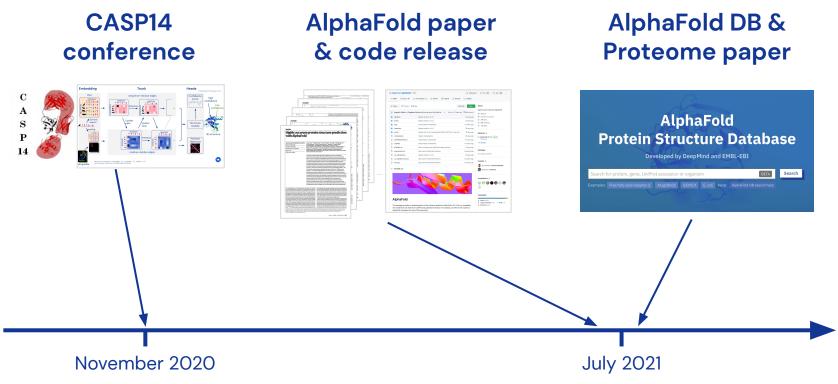
Homooligomeric prediction in #alphafold works a little too good. So far worked on nearly every case we (me & @minkbaek) tried. Going beyond dimers! Seems @DeepMind accidentally "solved" the homooligomeric prediction problem (w/ MSA input) Give it a try: https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb

🏏 Twitter | Jul 21st (159 kB) ▼





# AlphaFold timeline

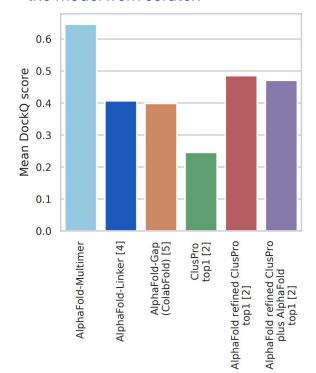


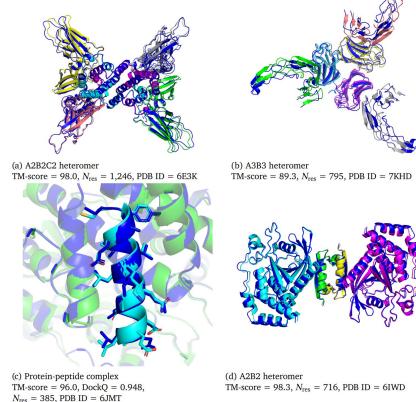




# Training AlphaFold to predict protein complexes (AlphaFold-Multimer)

Adapting the inputs, loss function, and training of AlphaFold to handle multimers and then training the model from scratch





# **Organizing**



- Make it easy to measure your performance one metric, one leaderboard
- Incrementally improve this metric
  - +0.5% per week adds up enough quantitative change adds up to qualitative change!

- How to create research velocity:
  - Enable fast iteration the more ideas you can test, the faster you progress
  - Allow people to build on each other's work you should always be improving SOTA
  - Test your code avoid errors that damage progress



# **DeepMind work in science**

- Protein structure prediction (AlphaFold)
- Quantum chemistry (QMC, DFT)
- Genomics
- Weather prediction
- Fusion reactor control
- Lattice QCD
- Glassy dynamics
- Mathematical discovery





# Thank you to everyone who made AlphaFold possible!

Agata Laydon Alex Bateman Alex Bridgland Alexander Pritzel **Andrew Cowie** Andrew J. Ballard Andrew W. Senior Anna Potapenko Augustin Žídek Bernardino Romera-Paredes Clemens Meyer David Reiman **David Silver** Demis Hassabis Ellen Clancy **Ewan Birney** Gerard J. Kleywegt John Jumper Jonas Adler Kathryn Tunyasuvunakool Koray Kavukcuoglu Martin Steinegger Michael Figurnov Michal Zielinski Michalina Pacholska Olaf Ronneberger **Oriol Vinyals** Pushmeet Kohli **Richard Evans** Rishub Jain

**Russ Bates** Sameer Velankar Sebastian Bodenstein Simon A. A. Kohl Stanislav Nikolov Stig Petersen Tamas Berghammer Tim Green Trevor Back Zachary Wu

#### The wider team at DeepMind and EMBL-EBI











# DeepMind

