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Overview
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Three long talks, two shorter talks, two breakout 
sessions, one happy hour



Topics
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1. Detector simulation
2. Four-vector simulation
3. Molecules
4. PDE Solving



Detector 
Simulation
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https://indico.ijclab.in2p3.fr/event/5999/timetable/#66-overview-of-generator-model
https://indico.ijclab.in2p3.fr/event/5999/timetable/#67-the-calorimeter-challenge-a
https://indico.ijclab.in2p3.fr/event/5999/timetable/#98-meta-learning-for-fast-simu


Introduction

Key part of a physics analyses is to have a 
reference

● Does data fit Hypothesis 1 or Hypothesis 2?
○ Amount of signal on top of background
○ Deviation away from expectation

● Need accurate simulation of underlying 
processes->recorded data in most settings
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[1]

https://arxiv.org/abs/2111.06712


What happens in a particle collision
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Tracking Calorimetry

MC Event Generation

Stable particles

Colision, production, decay 
chains, parton shower and 

hadronisation…

p

p

Detector Simulation

Computationally intensive

Stochastic shower 
development



Calorimeter Output

● Individual particle traverses detector
● Energy deposited in many cells from 

secondary particles in shower
● Can build an “image” but

○ High dynamic range of “pixels”
○ Often very sparse
○ Stochastic - same incoming 

particle results in different 
shower

● Assess performance with complex 
distributions over many events
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[2]Detector specific!

https://arxiv.org/abs/1712.10321


Wide range of models
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GANs

Autoencoders

Flows

Performance measured over lots of distributions
● Impossible to judge individual showers

Paganini et al (2017), Krause, Shih (2021), 
ATLAS Collaboration (2019, 2019), 

Erdmann et al (2018)

https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2106.05285
https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007
https://arxiv.org/abs/1807.01954


Wide range of models of varying complexity
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But lots of common themes

● Focus on better modelling of total energy
○ Additional critic/constrainer networks
○ Auxilliary term in loss

● Widths and sparsity of data is a challenge!



Calorimeter Challenge

Lots of models but not easy to compare - different detectors, different datasets
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● Challenge: 3 datasets for benchmarking
● Same format, different granularity
● Increasing complexity through granularity

○ Dim. O(500), O(6000), O(40k)

Dataset 1: ATLAS open data, detector, layers

Dataset 2+3: Simplistic geometry, but 45 layers

Adapted from A Zaborowska

https://calochallenge.github.io/homepage/

https://indico.ijclab.in2p3.fr/event/5999/timetable/#67-the-calorimeter-challenge-a
https://calochallenge.github.io/homepage/


Calorimeter Challenge

Lots of models but not easy to compare - different detectors, different datasets
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● Provide common code for 
evaluating metrics, plots

● Inference framework for fair 
timing comparison

● Three granularities, additional 
slices of detector available

Adapted from A Zaborowska

https://indico.ijclab.in2p3.fr/event/5999/timetable/#67-the-calorimeter-challenge-a


Input data challenges

Sparsity of deposits and reproducing high dynamic range still a tough ask!

Getting tails of distributions hard

● But often key descriptors for underlying physics

Need to accurately learn the PDF of showers including the stochasticity

● How to enhance focus on reconstruction of tails but keep this property
● Only a handful of conditional parameters - particle four vector

Detectors not designed to be easy to simulate!
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Data format

Not restricted to using readout or detector 

● Use more natural representation?
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Work with detector cells Map hits to polar grid

Doesn’t generalise with 
consistent geometry

Geometry often nontrivial

Shower evolution cone shaped

To remove edge effects need fine, 
sparse, binning

Point cloud

Direct translation of input data
Use graph networks!

Preserve natural symmetries

Showers produce

● Variable number of energy deposits
● Correlated spatial ordering but no natural ordering

Learn in needed domain, granularity



Brainstorming discussion - Data

● Are we hiding information from the 
networks?
○ Don’t utilise shower development
○ Only look at energy in active 

material
● How to use low level information

○ Inspiration from molecules?
○ Project into higher/lower dim 

space?
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[3]

Layer 0 Layer 1
Dead 

material

https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS


Brainstorming discussion - Data

● Why not exploit underlying physics 
development in model design

● Characteristic of shower depends on 
particle and energy
○ Not what happened before
○ Could somehow exploit in 

development of shower?
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[3]

https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS


Brainstorming - Getting into production

● What do we need to generate - can focus too much on one thing!
○ Different particles, regions, physics of interest mandate differences
○ Avoid being fooled you’re doing well looking just at one distribution

● Scalability
○ Can we handle higher dimensions, validation
○ Can overshoot needed granularity - more margin for error

● Aim instead to fix faster simulation, don’t replace
○ Multi-fidelity simulation

● How to transfer to more regions/particles/detectors
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Meta-Learning

How easily can we adapt for different 
detector materials?

Autoencoder model, fixed input/output 
description

● Generalised description of a shower

Train on one composition, apply to another

● Provide initial general solution
● Can it save training time with 

adaptation?
17

Adapted from D Salamani

https://indico.ijclab.in2p3.fr/event/5999/timetable/#98-meta-learning-for-fast-simu


Meta-Learning

Compare

● Transfer learning w/ 400 epochs
● 400 epochs from scratch
● 3900 epochs from scratch

In generalised shower representation 
much faster convergence
  (order seconds!)
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Adapted from D Salamani

https://indico.ijclab.in2p3.fr/event/5999/timetable/#98-meta-learning-for-fast-simu


Four-vector 
Simulation
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Four vector simulation

● Look to replace MC generation of underlying physics processes
● Output four momenta of particles
● Studied with

○ GANs
○ Flows
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Adapted from S Diefenbacher

https://indico.ijclab.in2p3.fr/event/5999/timetable/#95-generator-model-for-4-momen


GANs

Using GANs gets direct targets well modelled but building correlated 
distributions too wide! Add MMD term
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+MMD

Adapted from S Diefenbacher

https://indico.ijclab.in2p3.fr/event/5999/timetable/#95-generator-model-for-4-momen


Flows

Well suited to low dimensionality, good at learning density dist. (read correlations!)

Flows have fixed dimensionality

● Want to Generate processes with
variable multiplicities

● Be clever with architecture
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Adapted from S Diefenbacher

https://indico.ijclab.in2p3.fr/event/5999/timetable/#95-generator-model-for-4-momen


Flows

Well suited to low dimensionality, good at learning density dist. (read correlations!)

● Much better performance than
GANs, but some residuals

● Correct with ML reweighting

Using Bayesian NNs doesn’t capture
mismodelling with an uncertainty!

23

Adapted from S Diefenbacher

https://indico.ijclab.in2p3.fr/event/5999/timetable/#95-generator-model-for-4-momen


Brainstorming

Many similarities across detector simulation and event generation

● Focus on wide range of distributions constructed from outputs
● Need to be smart with architecture design and losses!

How much do we need to replace, where can we speed up current implementations 
with ML

● Getting final closure with reweighting seen already with Flows, PDEs
● Speed up and replace slow components e.g. Vegas integration
● MCMC with generative modelling shown to be powerful

24



Molecule 
Generation
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Equivariances in Networks

26

Adapted from M Welling

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


Equivariances in Networks
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Adapted from M Welling

Updating nodes and rotating are equivarient operations
Need to make sure updates in GNN are equivariant

GNNs can be used as blocks in many network architectures

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


Molecule generation with equivariant flows

Apply normalising flows to 
molecule generation

Transformation parametrised 
with equivariant operations
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Adapted from M Welling

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


Molecule generation with equivariant flows
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Adapted from M Welling

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul
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Adapted from M Welling

VAE

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


PDEs

Describe evolution of systems

Great talk from Max Welling
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Adapted from M Welling

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


PDEs

Great predictions for time 
evolution of systems

● Smoke with 2D Navier Stokes
● Shock waves with Burgers 

equation
● Modelling waves with KdV 

equation
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Adapted from M Welling

https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul


Summary
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Summary

Great workshop with lots of discussion - big focus on detector simulation

● Very active area in HEP with generative modelling
● By no means a solved problem, but moving to deployment

Success in wide range of physical sciences and applications

Room for lots more synergy and inspiration between models across physics 
domains, leveraging symmetries and invariances
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Backup
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Point Clouds

But! - Don’t record history of shower development

● Each point (E, x) is end of a branch!
● Multiplicity can be incredibly high
● Points aren’t directly connected
● Density of points between layers correlated 

but cannot easily build a physical graph
● Typically no time information, just layer depth 

And for sampling calorimeters dead material

● Low sampling fraction - lots of missed hits!
36

[3]

Layer 0 Layer 1

Current point cloud models aren’t designed to learn underlying structure - they focus on learning surfaces or connected structure!
Difficult to use standard benchmarks!

https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS

