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Introduction

Key part of a physics analyses is to have a
reference

e Does data fit Hypothesis 1 or Hypothesis 2?

o  Amount of signal on top of background
o Deviation away from expectation

e Need accurate simulation of underlying
processes->recorded data in most settings
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https://arxiv.org/abs/2111.06712

What happens in a particle collision

/ Calorimetry \

Tracking

Stable particles

Colision, production, decay
chains, parton shower and

y
\Computationally intensive y
Y
MC Event Generation Detector Simulation 6




Calorimeter Output

e Individual particle traverses detector Detector specific!

e Energy deposited in many cells from
secondary particles in shower
e Can build an “image” but
o High dynamic range of “pixels”
o Often very sparse
o Stochastic - same incoming
particle results in different
shower :
e Assess performance with complex k
distributions over many events



https://arxiv.org/abs/1712.10321

Paganini et al (2017), Krause, Shih (2021),
LAS Collaboration (2019, 2019),

Erdmann et al (2018)

A

Wide range of models
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Wide range of models of varying complexity
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Adapted from A Zaborowska

Calorimeter Challenge

Lots of models but not easy to compare - different detectors, different datasets

34 viee front view

e Challenge: 3 datasets for benchmarking

e Same format, different granularity

e Increasing complexity through granularity An
o Dim. 0(500), 0(6000), O(40k)

An m\
Dataset 1: ATLAS open data, detector, layers &y é

:
U]

https://calochallenge.github.io/homepage/ /

Ag

Dataset 2+3: Simplistic geometry, but 45 layers

10



https://indico.ijclab.in2p3.fr/event/5999/timetable/#67-the-calorimeter-challenge-a
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Adapted from A Zaborowska

Calorimeter Challenge

Lots of models but not easy to compare - different detectors, different datasets

Single Electron shower at 2048.0 MeV

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

e Provide common code for
evaluating metrics, plots @ @ ‘

e Inference framework for fair

Energy (MeV)

Single Electron shower at 512.0 MeV

Layer 2

10°
Energy (MeV)

timing comparison

La;

e Three granularities, additional @ @

slices of detector available e |

Layer 3
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Input data challenges

Sparsity of deposits and reproducing high dynamic range still a tough ask!
Getting tails of distributions hard

e But often key descriptors for underlying physics
Need to accurately learn the PDF of showers including the stochasticity

e How to enhance focus on reconstruction of tails but keep this property
e Only a handful of conditional parameters - particle four vector

Detectors not designed to be easy to simulate!

12



Data format

Not restricted to using readout or detector Showers produce

e Variable number of energy deposits

e Use more natural representation?
Correlated spatial ordering but no natural ordering

[ ]
[
o
" ® P °
Y ™ 0. . o o . .. Py
Point cloud

Work with detector cells Map hits to polar grid
Direct translation of input data

Shower evolution cone shaped
Use graph networks!
To remove edge effects need fine, Preserve natural symmetries
sparse, binning 13

Learn in needed domain, granularity

Doesn't generalise with
consistent geometry
Geometry often nontrivial



Brainstorming discussion - Data

e Are we hiding information from the
networks?
o Don't utilise shower development
o Only look at energy in active
material
e How to use low level information
o Inspiration from molecules?
o Project into higher/lower dim
space?

14
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https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS

Brainstorming discussion - Data

e Why not exploit underlying physics
development in model design

e Characteristic of shower depends on
particle and energy
o Not what happened before
o Could somehow exploit in
development of shower?

15


https://www.researchgate.net/publication/254468999_Quality_control_and_preparation_of_the_PWO_crystals_for_the_electromagnetic_calorimeter_of_CMS

Brainstorming - Getting into production

e What do we need to generate - can focus too much on one thing!

o Different particles, regions, physics of interest mandate differences
o Avoid being fooled you're doing well looking just at one distribution

e Scalability

o Can we handle higher dimensions, validation
o Can overshoot needed granularity - more margin for error

e Aim instead to fix faster simulation, don't replace
o  Multi-fidelity simulation

e How to transfer to more regions/particles/detectors

16



Adapted from D Salamani

Meta-Learning

How easily can we adapt for different

detector materials? z 5 H
P se‘glLen S R slices it se;g;nven S R slices P se;gjw'en S R slices
Autoencoder model, fixed input/output
. R N layers N layers
description , ,
. .. yJ\X P > yJ\X @
e Generalised description of a shower i ; :
Meta training Adaptation
Traln on one com posrt'on, apply to another Material (s) Silicon and tungsten Scintillator and lead Lead tungstate
Geometry name Siw SciPb PBWO4
1 T 1 Number of layers 90 45 1
e Provide initial general solution B - . S

e (Can it save training time with

adaptation?
17


https://indico.ijclab.in2p3.fr/event/5999/timetable/#98-meta-learning-for-fast-simu

Adapted from D Salamani

Meta-Learning

e, 64 [GeV], 90°, PBWO04
...lll""",..
8

Compare

=
o
W
°
°
-
-
.
.
e

« FullSim
« MLSim (Adaptation step 400)

e Transfer learning w/ 400 epochs
e 400 epochs from scratch " . MLSim (Traditional step 3900)
e 3900 epochs from scratch e

Mean energy [Mev]
5
N

1.6
In generalised shower representation | &.. Longitudinal profile
much faster convergence £12
(order seconds!) Ho
& = nger index = o

18
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Four-vector
Simulation

4-Momentum Generation

Sascha Diefenbacher, University of Hamburg

Learning To Discover, Paris 2022

UH

ki
Universitat Hamburg CLOSTER OF EXCELLENCE
DER FORSCHUNG | DER LEHRE | DER BILDUNG QUANTUM U N IVE RSE

19



Adapted from S Diefenbacher

Four vector simulation

e Looktoreplace MC generation of underlying physics processes
e Output four momenta of particles pp =t = W) W) = (b1d,) (bgodh)

e Studied with « Particle number and type fixed

o GANs  Ordered list of floats

o Flows B T
D1 particiel
p2,particle1

Ps ,particlel

Ps Jparticle6 20



https://indico.ijclab.in2p3.fr/event/5999/timetable/#95-generator-model-for-4-momen

Adapted from S Diefenbacher

Using GANs gets direct targets well modelled but building correlated
distributions too wide! Add MMD term

x1073 x107! x10~1
0 —— True — True ! e {11
6.0 —— GAN 201 — GAN 30 !"\‘ —— Breit-Wigner
=7 5.0 251 25 ' gaubs/IsMD
= T of i —— No
8 % % 20 % 20 )
b':ﬁ 30 O, O,
33 1 1.5 1 1.5
~is 2.0 _gg 5 E§
1.0 - 1.0 -5 1.0
(l)g 0.51 0.5
Elg 10 . i
0 R i oo —— 00000 T 7 s i
6 1(')0 260 360 460 560 6(50 7(')0 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
E, [GeV] myy- [GeV] my- [GeV]
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Adapted from S Diefenbacher

Well suited to low dimensionality, good at learning density dist. (read correlations!)

Flows have fixed dimensionality Niets A 3 (1-hot)
v
e Want to Generate processes with g :
. . e ey 21..9 cINN “ H “11“2,j1

variable multiplicities B I Y

e Be clever with architecture Y
210...13 cINN © J2
I

214..17 cINN J3

22
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Adapted from S Diefenbacher

Well suited to low dimensionality, good at learning density dist. (read correlations!)

Z + jets
e Much better performance than - 7+ 3 jot oxclusive
GANS, but some residuals < — Reweighted
. . . =l —— DiscFlow
e Correct with ML reweighting 75‘0_2_ — Tyain
Q
. . I} =
Using Bayesian NNs doesn't capture T
. . . . 0.0 ==
mismodelling with an uncertainty! 121
SQ 1.0 e T T
0.8 1
10.01 ¢ »2s, £ 8934 .
Y 17 $382°%5 8688 | ‘L
% 1.0 +’ % 4 ? : 4 ’
0.1
0 2 4 6 8 23
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Brainstorming

Many similarities across detector simulation and event generation

e Focus on wide range of distributions constructed from outputs
e Need to be smart with architecture design and losses!

How much do we need to replace, where can we speed up current implementations
with ML

e Getting final closure with reweighting seen already with Flows, PDEs
e Speed up and replace slow components e.g. Vegas integration
e MCMC with generative modelling shown to be powerful

24



Microsoft

Deep Learning for Molecules and PDEs

Max Welling
Microsoft Research
Universiteit van Amsterdam




Adapted from M Welling

Equivariances in Networks

let f:X—>Y bea functionand ¢~ and #Y be transformationson X and Y

then f is said to be eguivariant iff fo¢x = ¢ o f

¢X . | o v
X - : =
. = =

26



https://indico.ijclab.in2p3.fr/event/5999/timetable/#94-gnns-for-generating-molecul

Adapted from M Welling

Equivariances in Networks

Updating nodes and rotating are equivarient operations
Need to make sure updates in GNN are equivariant

m;; = ¢, (hi, b}, d%, ai5) , KT = gu(hi, ) &;my;),
J#i
!

)
xt — 2t
mi"’l = :cf + E d;j T lj¢z (hgah;'ad?jiaij) ’ 12

Figure 1. Example of rotation equivariance on a graph with a graph

neural network ¢ GNNs can be used as blocks in many network architectures
27
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Adapted from M Welling

Molecule generation with equivariant flows

X 2z Apply normalising flows to

molecule generation
Transformation parametrised

with equivariant operations

lift to continuous ode_integrate
—»
h ~q(-|h) 20 = [x,h] + / ofa(t))at

—log q(h|h) "1 Jo(z(t))dt log pz (2., z1) logp\ (M)
. 5 )

Dequantization of /
1 =1 Tr Jy (x(t))dt
discrete variables og px (x) = logpz(z) + 0 5(x(t))

Categorical over nr of
atoms in molecule

28
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Adapted from M Welling

Molecule generation with equivariant flows

Encoder (ennoiser)

9(2t|25) = N (ztlowszs, 07, 1),

2 = 04T + 0€

Objective
T
log p(z) > Lo + Loase + Zt=1 L
Ly = —KL(g(2s |z, z¢)|p(2s|2t))

Decoder (denoiser)

p(zslzt) = N(zslll't—m(:ia zt):”f—)sl)
z = ¢(zt’t) _ €= ¢(zt,t)

(EGNN Model)

q(zs|z, ) = N(zs“"t—»s(wvzt)’o'tz—»sl)

O (0]
0000 .. e
o 00O
(@) i 0O
g 1) R (@)
°0 0o
O ©° @) @)
4\ 4 .\
g(zr.... |z, h) II " plx.h.... |z7) q(zr,...|z. k) II ‘. plz.h....|zr)
diffuse \ N denoise diffuse \ N denoise
'y
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Adapted from M Welling

Sampling
Mixture
Density

Network 5

Deterministic
NN

/

Sampling Sampling
Equilibrium Conditional
Distribution Distribution

o
M
L
{

VAE %0
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Adapted from M Welling

u(t + At) = A(At,u(t))

Describe evolution of systems

Great talk from Max Welling

Neural Operator (NO) Autoregressive (AR)

Lstability = ]EkEuk+1|u’°,u’°~pk I:IEos|u’c [‘C(A(uk .5 6), uk+1)]]

with (u* +€) = A(uF1)

* We train to predict the right answer
from a noisy input.
* Noise is given by numerical integration

errors.
e Temporal bundling: predict many
- ini Unrolled traini hf d traini i i
Gm:e:tt:zl\:;-ba:k'?ne G’:::ients :lro.w :a;? Pugru::.:::sr fl::aon']‘.yng tlmeStepS in together' 31

time step only through all time steps through last time step
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Adapted from M Welling

PDEs

Ground truth at 25s Ground truth at 75s Ground truth at 100s

Great predictions for time
evolution of systems

Smoke with 2D Navier Stokes

Shock waves with Burgers 0
equation
Modelling waves with KdV

equation
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Summary



Summary

Great workshop with lots of discussion - big focus on detector simulation

e Very active area in HEP with generative modelling
e By no means a solved problem, but moving to deployment

Success in wide range of physical sciences and applications

Room for lots more synergy and inspiration between models across physics
domains, leveraging symmetries and invariances

34
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Point Clouds

But! - Don't record history of shower development

Each point (E, x) is end of a branch!
Multiplicity can be incredibly high

Points aren't directly connected

Density of points between layers correlated
but cannot easily build a physical graph

e Typically no time information, just layer depth

And for sampling calorimeters dead material

e Low sampling fraction - lots of missed hits!

NN

Layer 0

Layer 1

Current point cloud models aren't designed to learn underlying structure - they focus on learning surfaces or connected structure! 5,

Difficult to use standard benchmarks!
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