4-Momentum Generation

Learning To Discover, Paris 2022

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Sascha Diefenbacher, University of Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Classical momentum:

 $\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \mathbf{v}m = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} m$

- - No concern for everyday applications
 - Problematic in relativistic cases, like high energy physics

• Not Lorentz invariant (e.i. dependent on reference frame)

4-Momentum Generation

- Extend 3-vectors to 4-vectors
- 3D-coordinates \rightarrow 4D-spacetime coordinates

- Extend 3-vectors to 4-vectors
- 4-velocity U:

$\mathbf{U} = \frac{d}{dt}\mathbf{R} = \frac{d}{dt}$	<i>ct</i> <i>r</i> ₁ <i>r</i> ₂	С И И
dt dt	r ₂ r ₃	U U

 \mathcal{C} *l*₁ l_2 *l*3

- Extend 3-vectors to 4-vectors

S. Diefenbacher

- Extend 3-vectors to 4-vectors
- 4-momentum **P**:

$\mathbf{P} = \mathbf{P}m = m$	1 U ₁ U ₂ U ₃	[m] p ₁ p ₂ p ₃

- Particle physics: c = 1
- Lorentz invariant

4-Momentum in HEP

- 4-momentum **P**:
 - Is conserved in decays: $\mathbf{P}_{Z} = \mathbf{P}_{e-} + \mathbf{P}_{e+}$
 - Invariant mass:

$$\mathbf{P}^{2} = \gamma^{2} m_{0}^{2} (c^{2} - u^{2}) =$$
$$m_{0,Z}^{2} = \mathbf{P}_{Z}^{2} = (\mathbf{P}_{e^{-}} + \mathbf{P}_{e^{-}})$$

4-Momentum Generation

4-Momentum in HEP

Taken form "Accuracy and Precision of the Z Boson Mass Measurement with the ATLAS Detector"

S. Diefenbacher

- Invariant mass:
 - $\mathbf{P}^2 = \gamma^2 m_0^2 \ (c^2 u^2) = m_0^2$ $m_{0,Z}^2 = \mathbf{P}_Z^2 = (\mathbf{P}_{e-} + \mathbf{P}_{e+})^2$
 - However not single value
 - Peak with measurable width for final state particles (on-shell)
 - More variable for intermediate (off-shell) particles

4-Momentum in Generation

Taken from https://www.physik.uzh.ch/en/researcharea/tpp.html

S. Diefenbacher

• Particle collision simulation:

4-Momentum in Generation

S. Diefenbacher

- Particle collision simulation:
 - Parton level:
 - Low, fixed number of objects
 - Sharp structures

10

$pp \to t\bar{t} \to (bW^-) \ (\bar{b}W^+) \to (bq_1\bar{q}_1') \ (\bar{b}q_2\bar{q}_2')$

S. Diefenbacher

Parton Level Event Generation

- Top quark pair production
 - Tops decay promptly
 - 6 particles in 'final state'
 - Each particle 4-momentum
 - 24 dimensions
 - However: masses known
 - \rightarrow 24 6 = 18 dimensions

Butter et al.: How to GAN LHC Events: SciPost Phys. 7, 075 (2019), <u>1907.03764</u>

4-Momentum Generation

$pp \to t\bar{t} \to (bW^-) \ (\bar{b}W^+) \to (bq_1\bar{q}_1') \ (\bar{b}q_2\bar{q}_2')$

S. Diefenbacher

Parton Level Event Generation

Particle number and type fixed

Ordered list of floats

P₁,particle1 P₂,particle1 P₃,particle1

Butter et al.: How to GAN LHC Events: SciPost Phys. 7, 075 (2019), 1907.03764

4-Momentum Generation

Ordered list: appropriate for GAN architecture

S. Diefenbacher

4-Momentum Generation

Parton Level Event Generation

Butter et al.: How to GAN LHC Events: SciPost Phys. 7, 075 (2019), 1907.03764

Works well for individual distributions

S. Diefenbacher

Parton Level Event Generation

Butter et al.: How to GAN LHC Events: SciPost Phys. 7, 075 (2019), 1907.03764

4-Momentum Generation

Difficulties with complex correlations like mass peaks

S. Diefenbacher

Parton Level Event Generation

Butter et al.: How to GAN LHC Events: SciPost Phys. 7, 075 (2019), 1907.03764

term in the invariant mass

S. Diefenbacher

Parton Level Event Generation

Approach: additional Maximum Mean Discrepancy (MMD) loss

term in the invariant mass

S. Diefenbacher

Parton Level Event Generation

Approach: additional Maximum Mean Discrepancy (MMD) loss

4-Momentum Generation

- Matrix Element Simulation:
 - Low dimensional (comparatively) data space
 - Also well suited for normalising flows
 - Trains more easily

atively) data space ising flows

• New process:

$$pp \to Z_{\mu\mu} + \{1, 2,$$

- Sharp Z-mass peak
- Variable number of jets
 - 1, 2, 3 jets
 - 9, 13, 17 dimensions

3} jets

Butter et al.: Generative Networks for Precision Enthusiasts (2021), <u>2110.13632</u>

4-Momentum Generation

- Variable number of jets
 - 1, 2, 3 jets
 - 9, 13, 17 dimensions
- Still orderer list
- Different network for each number of jets
 - Redundant parts

 $N_{\rm jets}$

 $z_{10...13}$

 $z_{14...17}$

S. Diefenbacher

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

- Variable number of jets
 - 1, 2, 3 jets
 - 9, 13, 17 dimensions
- Still orderer list
- Different network for each number of jets
 - Redundant parts
- Series of networks conditional on previous

 $z_{10...13}$ -

 $z_{14...17}$

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

- Topological Problems:
 - Mapping single peak gaussian to two peak structure
- Train classifier on real vs fake samples

Butter et al.: Generative Networks for Precision Enthusiasts (2021), <u>2110.13632</u>

4-Momentum Generation

- Topological Problems:
 - Mapping single peak gaussian to two peak structure
- Train classifier on real vs fake samples
- Use classifier weight during training

Z + jets

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

- Topological Problems:
 - Mapping single peak gaussian to two peak structure
- Train classifier on real vs fake samples
- Use classifier weight during training
- Significant Improvement

normalized

 w_D

Z + jets

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

Uncertainties

 $\mathcal{L} = \mathcal{L}_{INN} + KL_{prior}$

S. Diefenbacher

- Bayesian Neural Network
- Replace network weights with gaussian distributions
- Additional loss to regularise gaussian distributions
- Viable option for Flows/INNs
- Can we estimate generative uncertainties?

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

Uncertainties

- BINN uncertainty captures convergence of the network
- Does NOT capture how where the network fails

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

4-Momentum in Generation

S. Diefenbacher

- Particle collision simulation:
 - Parton level:
 - Low, fixed number of objects
 - Sharp structures
 - Hadronisation:
 - High, variable number of objects

Hadronisation

- Some particles (quarks, gluons) radiate/split of particles
 - Collimated spray of particles (jets) Parton level π, Κ, q, g 000 р Particle Jet Energy depositions р in calorimeters

Jet constituents expressed as 4-momenta

Taken form <u>https://cms.cern/news/jets-cms-and-determination-their-energy-scale</u>

Hadronisation

- Jet simulation:
 - Parton level π, Κ, ... q, g р Energy depositions Particle Jet р in calorimeters
 - Type of particles not determined Number of particle not determined Ordered list approach not viable Pointcloud or graph

Taken form https://cms.cern/news/jets-cms-and-determination-their-energy-scale

S. Diefenbacher

4-Momentum Generation

- Fully connected graph MP(-LFC) Generator
- 30 constituents
- Zero padding
- Padding masked for MP/pooling
- Permutation invariant data

Real Particle Cloud

Generated

Particle Cloud

4-Momentum Generation

- Message Passing GAN: blue MP line
- High accuracy in explicit and derived features

Butter et al.: Generative Networks for Precision Enthusiasts (2021), 2110.13632

4-Momentum Generation

25.04.2022

31

Summary

- Data structure with large hidden complexity
 - Encodes significant physics information
 - Difficult to model with generative models
- Impressive results achieved so far
 - Significant ongoing effort to further improve setups
 - Especially for large numbers of particles

Taken form <u>https://cms.cern/detector</u>

S. Diefenbacher

4-Momentum Generation

Backup

Silicon strips $\sim 16m^2 \sim 137,000$ channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

• 4 momentum can be translated into cylindrical coordinates

Taken form https://pos.sissa.it/050/055/pdf

S. Diefenbacher

4-Momentum Generation

Backup

- $\phi = 0$ Х $\dot{\phi} = 2\pi$ $\phi = 3\pi/2$
- Cylindrical symmetry in detector setup
 - 4 momentum can be translated into cylindrical coordinates

$$\begin{bmatrix} E \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \xrightarrow{m} \begin{bmatrix} m \\ p_T \\ \eta \\ \phi \end{bmatrix}$$

Backup

S. Diefenbacher

- Transversal momentum p_T
- Often has lower cutoff
 - Removes noise
 - Workable for GAN
 - Difficult for flows

Backup

S. Diefenbacher

- Transversal momentum p_T
- Often has lower cutoff
 - Removes noise
 - Workable for GAN
 - Difficult for flows
- Log transform

