

Projet DICE -Développement pIxels pour les taux de Comptage et niveau de radiation Extrêmes-

Journee R&T, IJClab 4-6/10/2021

Marlon Barbero CPPM, Aix-Marseille Université, CNRS / IN2P3, France

- 1. Introduction
- 2. WP Pixels Hybrides : 28 nm
- 3. WP Depleted MAPS :
 - a) TJ65
 - b) LF150
 - c) TJ180
- 4. Avancées, TRL, calendrier
- 5. Conclusion

Le projet DICE

- Un projet porté par le CPPM et l'IPHC, porteur M. Barbero / CPPM (+ <u>J. Baudot / IPHC</u>)
- Une thématique générale:
 - Détecteurs pixels de traces et de vertex dans les technologies pertinentes pour de futurs projets qui se caractérisent en premier lieu par:
 - Taux de comptage / taux d'occupation importants.
 - **Résistance aux radiations** moyennes à élevées.
- 2 Work Packages:
 - Les Pixels Hybrides: Exploration de technologies mettant en œuvre des nœuds de process très avancés -e.g. 28 nm- (RS: Barbero / RT: Menouni)
 - Les Pixels Monolithiques: Exploration de la technologie Depleted MAPS dans deux directions principales, exploitation des développements et potentialité des nouvelles technologies (RS: Baudot / RT: Pangaud)

WP1: Pixels hybrides pour futurs trackers

- Future génération des circuits de lecture des pixels pour les détecteurs internes
 - Des conditions de rayonnement ultra-sévères
 - Un taux de hits sans précédent
 - Techniques complexes de gestion de trigger
 - Transfert de données à un débit de plusieurs dizaines de Gbit/s
 - Petite taille de pixel intégrant des fonctions digitales très complexes demandant une forte densité d'intégration
 - Résolution temporelle accrue→ tracking 4D
 - Faible consommation et faible budget de matière

Process CMOS 28 nm standard

- Meilleur compromis densité d'intégration et tolérance au rayonnement ionisant
- Candidat potentiel pour succéder au nœud
 CMOS 65nm utilisé pour le développement des pixels hybrides pour le HL-LHC

- Augmentation de la luminosité instantanée
 - augmentation du pile up
- Run2 : 40 interactions de pile up dans ATLAS (par bunch crossing)
- HL-LHC : 200 interactions pile up dans ATLAS
- L'exploitation de la mesure du temps permet de séparer les traces

Plan à court terme

- Utilisation du process CMOS 28 nm
 - Process préconisé par le CERN
 - Process planaire standard \rightarrow résistance à la dose ionisante
- Etude de la compatibilité avec la conception des fonctions analogiques nécessaires pour les circuits à pixels.
 - Simulations de circuits de base
 - Qualification du process en termes de performances pour les circuits de type analogique, basse consommation et bas bruit

Qualifications en TID du process

- Compatibilité avec les niveaux de dose prévus futurs projets à pixels
- Modélisation de l'effet de TID
 - Simulations analogiques et numériques prenant en compte les effets de dose

Effets singuliers (SEE)

- Circuits prototypes pour l'étude des effets SEU/SET
- Très faibles capacité des nœuds de stockage
 - Besoin de nouvelles architectures plus tolérantes ?.

Plan à moyen/long terme

Conception d'une petite matrice de pixels \rightarrow 64 × 64 pixels de 25µm × 25µm

- Utilisation de l'approche ≪ digital on top ≫
 - La maîtrise des outils de conception numérique est indispensable pour aborder la conception de circuits à pixels
 - Fonctions analogiques avec de fortes contraintes comme les amplificateurs bas bruit, ADC de précision, PLL, ou sérialiseurs haute vitesse

Travail de prospections sur les techniques d'hybridation évoluées

- Advacam propose des techniques d' hybridation 10-20 μm
- IZM ?
- Techniques 3D ?

Projet ambitieux en terme de RH et budget

- Les cycles de conception pour ce type de process sont plus longs et nécessitant plus de vérifications
- Devrait se faire au sein de collaborations
 - IN2P3 : Elargissement du projet DICE aux laboratoires intéressés par de tels développements
 - RD53 s' intéresse au design 28 nm pour le futur des expériences LHC (niveaux internes)

Techniques d'interconnections très haute densité (source Vahanen Advacam)

Avancement et perspectives

- Personnes impliquées au niveau design:
 - Eva Joly (Apprentie ingénieure) \rightarrow 50%
 - Mohsine Menouni (IR) \rightarrow 20%
 - Denis Fougeron (IR) \rightarrow 20 %
- Soumission d' un chip prototype en 28 nm fin 2021/début 2022
 - Transistors unitaires (TID)
 - Ring Oscillator pour les tests TID (Caractérisation librairies digitales / Projet de fin d'étude pour Eva)
 - Circuit pour les tests SEU
 - Bloc analogique : Amplificateur de charge rapide

Préparation des tests :

- Conception de cartes de tests
- Choix du système d'acquisition
- Tests fonctionnels Q2/Q3-2022
- Test irradiation (TID + SEE) Q3-2022
- Fin 2022 / début 2023 \rightarrow Soumission d'une matrice 64 × 64 de pixels 25µm².

TID Testing at AMU-Saint Jérôme

Heavy lons SEU Tests at UCL Louvain La Neuve

- <u>Applications de la R&D avancée</u>:
 - Court terme
 - Validation des performances des LF-/TJ- Monopix2, travail sur les technologies LF150 et TJ180
 - Moyen terme
 - Adapter Monopix2 pour un démonstrateur Belle II: OBELIX-v1
- **Nouvelle R&D**: Exploration nouvelle technologie TJ-65 nm
 - Court terme
 - vérifier les performances de bases
 - Évaluer l'adéquation avec objectifs DICE
 - Moyen terme
 - Prototype(s) dédié(s) pour
 - Taux de comptage élevés (>> 100 MHz/cm²)
 - Résolution temporelle vers 100 ps
 - Radiotolérance >>10¹⁵ n_{eq}/cm^2
 - Evolution possible vers une R&D "système de tracking"
 - Gestion du flux important de données et/ou timing avec de l'intelligence proche (ASIC ou FPGA)

TJ-65 nm - MLR1

Le MLR1 a été soumis en décembre 2020, retour à l'été 2021.

L'IPHC a contribué à cette soumission avec des Front-Ends analogiques CE65 pour étudier la collection de charge dans la nouvelle technologie.

Le CPPM a contribué avec une série de Ring Oscillators conçue pour caractériser la tenue aux radiations ionisantes des cellules standards des librairies digitales de la technologie.

Architecture du Ring Oscillator

En résumé: Un prototype de test contenant 24 x 2 ring oscillator, formé de cellules de type différent (Inv, Nand, Nor, DFF), de tailles différentes, et avec deux seuils VT (bas, super-bas).

La fréquence d'oscillation dépend de plusieurs facteurs:

- Température
- Polarisation
- TID et Dose rate

Mais il a été observé aussi d'autres facteurs (en techno TSMC 65 nm)... possibilité de test avec cette soumission:

- Cellules dynamiques ou statiques
- Entrées cellules asymétriques

Lo	w V _T	Super Low V _T		
Size Min	Size+	Size Min	Size+	
INV0_LVT	INV4_LVT	INV4_SLVT	INV8_SLVT	
NOR1_LVT_A	NOR4_LVT_A	NOR4_SLVT_A	NOR8_SLVT_A	
NOR1_LVT_B	NOR4_LVT_B	NOR4_SLVT_B	NOR8_SLVT_B	
NAND0_LVT_A	NAND4_LVT_A	NAND4_SLVT_A	NAND4_SLVT_A	
NANDO_LVT_B	NAND4_LVT_B	NAND4_SLVT_B	NAND4_SLVT_B	
DFF1_LVT	DFF4_LVT	DFF1_SLVT	DFF4_SLVT	

TJ65 IPHC – MLR1

Objectif général

- Comprendre les propriétés de collection des charges de la nouvelle techno
 - SNR, partage des charges, <u>vitesse du signal</u>
 - pour des capteurs non-irradiés et irradiés
- Activités largement commune avec MP R&D-CMOS

4 capteurs conçus: CE-65

- Petite matrices à sorties analogiques 64/48x32
- Déclinés chacun en 12 versions
 - Front-end : ampli DC, ampli DC, suiveur DC
 - profil de dopage, std et 3 modifs (pilotées par CERN)
- Test faisceau en oct & novembre
 - Collab: CERN+INFN+IPHC

Conception (en 2021) pour soumission Q1-2022 (ER1)

- (Grand circuit 10x30 cm², MOSS, inspiré par ALICE => R&D-CMOS)
- Long circuit 2x30 cm², MOST, preservation du timing =>
 - Nouvelle architecture de lecture, basse consommation & info temporelle
 - Intérêt pour DICE
- Optimisation pixels avec nouvelles petites matrices CE-65+
 - => double intérêt DICE + R&D-CMOS

Deux développements Monopix

2×1 cm², 340×56 pixels, 50×150 μm² Amélioration de la FE Analogique / Digitale, Taille pixels reduite, meilleur layout

Soumission en Juin 2020

→ Retour Décembre 2020

2×2 cm², 512×512 pixels, 33×33 μm²

Nouveaux implants pour une meilleure collection de charges après irradiation, bas seuil Soumission en Octobre 2020 → Retour Février 2021

Technologie LFOUNDRY 150nm

Circuit LF-MONOPIX2 (Bonn, CPPM, IRFU)

Le circuit est revenu fin 2020 : 12 wafers

Utilisation d'un banc de test développé par Univ Bonn : Carte MIO3+GPAC. Firmware développé par Bonn.

Les tests réalisés par Bonn et CPPM (en cours) montrent un circuit fonctionnel avec des résultats proches des spécifications. Cette deuxième version (LF-MONOPIX2) qui devait réparer certains problèmes de xtalk et d'ajustement de seuil est fidèle aux attentes.

Tests en cours : caractérisations du sensor, ajustement des seuils. Puis viendront les tests de tenus aux irradiations pour 2022

Technologie LFOUNDRY 150nm

Circuit LF-MONOPIX2 (Bonn, CPPM, IRFU)

- + Test Structures : Petit circuit contenant différentes structures à tester, valider
- Petits pixels(50μ x 50μ) : les 1^{er} résultats montrent que des petits pixels peuvent être déplétés jusqu'à ~80V. Les tests continuent
- Bandgap conçu par Maria Ramirez : erreur de fabrication. Doit être resoumis à travers RD50-MPW3 (test en 2022)
- Les circuits a anneaux de gardes <u>3GR ainsi que l'APD</u> : Réalisé par la visiteuse chinoise Zhao Mei : en cours de test

Bottom Voltage (V)

30nA/4px global leakage current for different diode (DNW) sizes, for a top bias @24 V BV at 54V (2kohms substrate) 10nA/4px leakage current for different diode (DNW) sizes, for a bottom bias @0 V BV at 24V (2kohms substrate)

Top Voltage (V)

The total Voltage potential (top to bottom) at **78 V** is achieved

Journées R&T, IJClab 06/10/21, Projet DICE

Circuit RD50-MPW2 (RD50 collaboration)

+ Circuit a mémoire résistante au SEU

testé à Ganil (France) et RBI (Croatie) en 2021! Les tout premiers résultats montrent que LF est une technologie robuste , et peut être plus robuste que TJ 180nm (NIEL, TID et SEU)

Cellules: SRAM (col8), split TRL + DICE cell (col7), split TRL + standard cell (col6), TRL + DICE cell (col5), TRL + standard cells (col4), enhanced DICE cell (col3), DICE cell (col2), standard cell Col1)

Etude de la sensibilité des mémoires suivant leurs architectures

Journées R&T, IJClab 06/10/21, Projet DICE

Technologie TOWERJAZZ

Circuit TJ-MONOPIX2 (CERN, BONN, CPPM)

Circuit développé et soumis en 2020. Retour 24 janvier 2021.

- Circuit de 2×2cm² avec des pixels de 33umx33um
- TJ-Monopix2 bénéficie d'une architecture digitale high rate (column drain / trigger / 40MHz clock)
- Cette deuxième version (TJ-MONOPIX2) qui devait réparer certains problèmes d'ajustement de seuil est toujours en cours de test
- Base pour l'upgrade de Belle-II

Utilisation d'un banc de test développé par Univ Bonn : Carte MIO3+GPAC ou BDAQ. Firmware développé par Bonn.

2021 est l'année de la caractérisation des circuits TJ-MONOPIX2 Le banc de test (firmware, software) n'est pas aussi avancé que celui de LF

En 2022

Développement du circuit prototype **OBELIX** à partir du circuit TJ-MONOPIX2. En cours: définition des spécifications / test de TJ-MONOPIX2

Beaucoup de choses restent a faire comme campagne d'irradiation et de caractérisation intensif

• Détection d'une source ⁵⁵Fe:

• Courbe en S & linéarité de DAC:

• Résultats TJ-Malta2 (FE identique!): W5R10 EPI NGAP - Total scan of the matrix

- WP 1: Avancées 2021
 - Etudes en 28 nm: Prise en main du PDK
 - Soumission fin 21: Matrice de transistor (TID), R-O (TID), Circuit test SEU, amplificateur → Etudes focalisées tenue aux radiations technologie.
 - Passage à la vérification fonctionnelle en labo (TRL₃ \rightarrow TRL₄)
- WP 2: Avancées 2021
 - Prise en main PDK et soumissions TJ65: R-O (TID), Matrices CE65; en cours démarrage des tests (TRL3→TRL4)
 - Test matrices représentatives LF/TJ-Monopix2 TJ180 et LF150, discussions applicatives en environnement réel (Belle Upg)... (TRL4→TRL5)

	2020 (hors demande)	2021	2022	2023
WP 1: Technologies fines	Etudes preliminaires <40nm	Tests sous irradiation, identification des	Conception et developpement matrice typ	Hybridisation et test du proto,
"high radiation / high hit	(simulation de bases, tests TID)	process d'interet pour notre contexte	<u>64×64 pixels 25×25 μm². Ce proto</u>	validation du process dans puce
rate" - CPPM		(design de transistors unitaires, de	contiendra fonctions de base	complexe
		premieres structures SEU-hard, de	essentiellement analogique (ambition en	
		premiers blocs analogiques pour tests	terme de RH et budget selon ampleur de la	
		sous irradiation)	collaboration mise en place)	
WP 2: Technologie	Finalisation des demonstrateurs	Tests sous irradiation des demonstrateurs	Test sous irradiation des premieres	Test matrice en laboratoire et sous
Depleted Monolithic	(en technologie TJ180nm /	developpes. Potentielle reduction de	structures en technologie fine,	irradiation. Validation du process
Active Pixel Sensors -	LF150nm en collaboration avec	taille des pixels. Etude de process plus fin	developpements de structure de bases pour	pour futures applications.
CPPM & IPHC	nos partenaires historiques).	(TJ65), simulation TCAD et MPW en	future matrice. <u>Soumission de matrice</u> dont	Demarrage <u>design circuit</u>
	Etude de l' <u>adaptabilite de cette</u>	technologie fine (appui de partenaires	complexite liee a l'ampleur de collaboration	demonstrateur digital on top.
	techno dans le contexte Belle-II	internationaux) + suivi projet Belle-II	mise en place + Integration VTX Belle-II	Suivant evolution du projet Belle-II/-
			(visant ~ 2026)	III, mise en oeuvre de la solution
				arretee par la collaboration

• <u>WP hybride</u>:

- <u>28 nm</u>: Finalisation prototype (transistors, R-O, cells SEU-hard, ampli) → soumission fin 2021 / tests fonctionnels / test irradiations / conception matrice pixels fin 2022.
- IN2P3 / AIDAinnova / RD53 (session 28nm le 29 sept)

• <u>WP DepCMOS</u>:

- <u>TJ65</u>:
 - 1er tests de puces CE65 & RO incessamment / irradiations / conception CE65+
 - AIDAinnova/ CERN strategic R&D WP1.2 / Participation financière ER1 actée par DICE
- <u>LF 150</u>:
 - Finalisation tests LF-Monopix2 / petits pixels / RD50-MPW3 / projet matrice petits pixels
 - AIDAinnova / Cadre de RD50
- <u>TJ180</u>:
 - Tests fonctionnels TJ-Monopix2 / tests sous irrad / transition OBELIX pour environnement Belle-II Upgrade (v1 en 2022, spécifications 100 MHz/cm², ~50 MRad, ~3.10¹⁴ n_{eq}/cm²).
 - AIDAinnova / CERN strategic R&D WP1.2 / transition Belle II upgrade

• BACKUP

LF DMAPS development line

- Large collection diode :
 - LF 150 nm process
 - Multiple nested wells
 - 6 metal layers + thick top
 - Substrate resistivity > $2k\Omega.cm$
 - Backside thinning and processing
- Several prototypes:

- Pixel size: 33×125 μm²
- Chip size: 5×5 mm²
- Fast Readout with FE-I4
- Thickness: 750/300/100 μm M. Barbero et al. doi.org/10.1088/1748-0221/15/05/P05013

- Pixel size: 50×250 μm²
- Chip size: 10×10 mm²
- Fast Readout with FE-I4
- Thickness: 750/300/100 μm

- Pixel size: $50 \times 250 \ \mu m^2$
- Chip size: 10×10 mm²
- Monolithic: Includes Column Drain Readout.
- Thickness: 750/300/100 μm

LF-Monopix1 performances

- High breakdown voltage >250 V
 - Improved wrt previous designs

- J. Liu, et al, DOI: 10.1088/1748-0221/12/11/C11013 I. Caicedo et. al, DOI: 10.1088/1748-0221/14/06/C06006
- High & uniform efficiency after 10¹⁵ n.cm⁻²
 - Bias -130V, dry ice cooled
 - Thres. ~1700 e-_
 - 0.2% masked pixels

efficiency: 98%

Moderate noise & gain degradation at 100 MRad:

OVERVIEW OF <u>UNTUNED</u> TH SCANS (HV=60V)

Flavour	CSA	Tuning	Cf (fF)	TDAC	TH mean (e-)	Unt. TH disp (e-)	ENC (e-)	ENC disp (e-)
LFM1-8	V1 (NMOS)	Unidir.	5	0	-	~900	~140	~20
M1-1*	V1	Bidir.	1.5	0	N.A.	N.A. // N.A.	N.A. // N.A.	N.A. // N.A.
M1-2*	V1	Bidir.	5	15	3916	868	152	22
M1-3*	V1	Unidir.	5	0	2890	658	112	18
M1-4*	V1	Unidir.	5	0	2873	677	113	19
M2*	V2	Bidir.	1.5	15	2935	446	141	20
M3*	V3	Bidir.	1.5	15	2415	392	158	22

* Calibrated assuming the same Cinj as LFM1 (2.76fF) in both cases. I still need to measure the Cinj of LFM2.

- Untuned TH dispersions in all LFM2 flavours are smaller than in LFM1. ENCs in 2 LFM2 flavours are also smaller.
 - Untuned TH dispersions in M2 and M3 are about 40% smaller than any M1.
 - Flavours with bidir. tuning seem ~20% noisier than those with unidir. tuning.

• 85 pixels/column (every 4th). 1 column at the time.

Sub-array	Column	CSA	Feedback cap.	Discriminator	Logic
1	0-7	V3	1.5 fF	bidirectional tuning	Falling
2	8-15	V2	1.5 fF	1.5 fF bidirectional tuning	
3-1	16-39	V1	5 f	5 f unidirectional tuning	
3-2	40-47	V1	5 f	unidirectional tuning R	
4-1	48-51	V1	5 fF	bidirectional tuning F	
4-2	52-55	V1	1.5 fF	bidirectional tuning	Falling

Journées R&T, IJClab 06/10/21, Projet DICE

TJ family: Malta & Monopix

VTX upgrade

- **Remove whole VXD** for a detector entirely based on monolithic active pixel technology up to Belle's CDC detector.
 - Electronics directly integrated with sensor
 - Copes with radiation environment
 - Thin detector, reduced power needs, supports and ultra-light services
 - → ("ALARA" material!) Light concept

- To be efficient (**tight schedule**):
 - Uses **present VXD configuration**: Compatibility with DAQ, compatibility with detectors boundaries.
 - Uses a sensor in an advanced state of development.

VTX

- 5 straight layers using monolithic active pixel sensors.
- Keeps as much as possible the current machine-detector boundaries.

- VTX in numbers:
 - surface ~ $1m^2$.
 - # of Ladders 70-130 (includes 10% spares).
 - # of Sensors 2200-4500 (includes 50% yield).

VTX

- Low material: ~50 μ m thin sensors, 0.1-0.2% X₀ L1/L2, 0.3% X₀ L3, 0.8% X₀ L4/L5
- Moderate pixel pitch ~40 μ m². Size? 1.4×3 cm²...
- Fast integration time $O(25-100ns) \rightarrow Low occupancy$
- Same FE but diff. mechanical integration: Separation iVTX (L1/2) & oVTX (L3/4/5).
- "Operational" improvements due to VTX upgrade:
 - No CO2 cooling → less services, easier integration, better shielding (reduces bkg in CDC and TOP)
 - No special operation mode for VTX (no gated mode, no RoI selection, no data reduction).
 - Direct connection to HLT, same DAQ with VXD...
 - Improves tracking

• From point of view of several specifications, similarities between ATLAS ITk layer 4 / Belle PXD layer 1.

	ALICE	HL-ATLAS	ALICE	Belle2	ILC	FCCee
	ITS2	ITK - lay4	ITS3	PXD1-Lnomi	VTX	VTX
Resol. Spatiale [µm]	~5	~10	~5	<10	<3	<5
Budget Matiere [%X0]	0.35	<1	0.05	0.15	0.15	0.15
Hit Rate [MHz/cm ²]	~1	~200	~2	100	20	~20
Temps typique [ns]	5.10 ³	25	2.10 ³	~100	10 ² -10 ⁴	10²-10³
Rad Harness [Mrad]	30	100	60	~<50	10	20
Rad Harness [n _{eq} /cm ²]	2.10 ¹³	2.10 ¹⁵	4.10 ¹³	~< 3.10 ¹⁴	<10 ¹²	5.10 ¹¹

• Note NIEL and TID estimates for Belle2 are here given for 5 years in nominal lumi conditions with factor 5 safety factor (NB: beam loss events, background modelling, ...)

- DepCMOS designs (from approx 2014 on):
 - Initially large consortium.
 - Designing teams got focused these last 3 years to get large prototypes out:
 - Bonn/CERN/CPPM/IRFU-CEA
 - LF 150nm series
 - TJ 180nm series
 - KIT/Heidelberg/Geneva (small implication CPPM):
 - AMS/TSI
- DepCMOS sensors for Belle upgrade: Obelix
 - IPHC in, experts in MAPS, connection to TJ 180nm.
 - Discussions between CPPM/IPHC/Ubonn designers → preliminary work plan
 - VTX regular meetings: Austria/France/Germany/Italy/Spain
- French effort on Belle II upgrade:
 - IJClab / CPPM / IPHC

Inventory of missing blocks \rightarrow Build designers' collaboration

- Optimize for Belle, design missing blocks, refine working blocks where need is
- Digital integration (done by Bonn) + simulation, verification, etc...

- Build on TJ-Monopix2 developments \rightarrow Characterize TJ-Monopix2

- Deliverable: 1st full-scale sensor OBELIX
- 2023-2024: Finalize

2021: Initial steps

٠

٠

—

- Test OBELIX-1
- **OBELIX-2** submission

2022: Core development

- Validation tests
- 2024-2025: Production ۲
 - Ladder production
 - Assembly
- 2026-2027: Ready to install ٠

In parallel:

- Module concept
- Detector design
- Work on production aspects
- Work on DAQ aspects _

TJ-Monopix2 \rightarrow OBELIX

New Rad-Hard Small pixel approach

- Let think to reach a pixel size of $50\mu m \times 50\mu m \times 50\mu m$
 - 50µ x 50µ square and 50µ depth
 - From ~10V (no Irrad) to 90V (2x10¹⁵ neq/cm²)
 - With Backside Metallization
 - Less restrictive guardings
 - Uniform drift field

31

I.Mandić, et al., DOI: 10.1016/j.nima.2018.06.062

D= distance (very important parameter)

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM Patrick Pangaud - RD50 CMOS meeting

Small sensor diodes flavors

DNW structure	Capacitance [fF]	Breakdown voltage [V] (Back Bias)				
Square 40 x 40	126	-100				
Mickey 30 x 30	107	-70				
Hexagone 30	77	-66				
Hollow Hexa 30	55	-66				
From TCAD simulation						

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPN Patrick Pangaud - RD50 CMOS meeting

Small pixels flavors front-end

Square

Mickey

Hexa

Hollow Hexa

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM Patrick Pangaud - RD50 CMOS meeting

Aix+Marseille

34

Small pixels matrix (25 "square" pixels)

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPN Patrick Pangaud - RD50 CMOS meeting

35 Aix+Marseille

Small pixels test chip

- This test chip is a part of the LF-MONOPIX2.
- The tape-out was in may 2020.
- Delivering chip : end of 2020 (wafer thickness 700 μm , 200 μm , 100 μm , 75 μm)
- Test features to do (with and without radiations)
 - E-TCT
 - Analog readout of the pixels

Test setups

• Developed by Bonn colleagues (used in RD53 context too)

MIO3 + GPAC DAQ setup

BDAQ setup

Chip Layout

R

	Signal Name	Nominal Va	lue	Comments	
	VDDD 1.2 V			Main power supply	
	VSSD	0 V		Common ground	
Power Supply	PSUB	oV if P-substrate (default) and 1.2V if N_substrate		Seal Ring substrate contact	
	Pwell<1:3>	o V		Pads for the CERN's pixels. Not used, and are internally connected to VSSD	
	No-use	oV		Not used and are internally connected to VSSD	
	Signal Name	Nominal Value	Comments		
	dffSetBarF	1.2V	When low, it sets the DFF ring oscilla in the 'F' group		
Inputs	dffSetBarS	1.2V	When low, it sets the DFF ring oscillat in the 'S' group		
	startF	oV	When high, starts oscillations in the 'F' group		
	startS	oV	When high, starts oscillations in the 'S' group		
	Sel<0:5>	oV	Selects which ring oscillator to com the output counter vis the multiplex		
	Signal Name	Nominal Value	Comments		
Outputs	countOut<0:11>	oV	The output It could be r per a period a bit as a fre monitoring	of the internal 12-bit counter. read as the number of counts of time (DC output), or select quency divider for real time	

37

A detailed documentation is ready and can be shared upon request.