Measurement of photon polarisation in b \rightarrow sy transitions

Marie-Hélène Schune IJCLab, Orsay

All plots and results from the LHCb publication <u>arXiv:2010.06011</u> (submitted to JHEP)

French-Ukrainian Workshop 19-23 October 2020

Why studying $b \rightarrow s\gamma$?

FCNC: sensitive to NP

In the SM the γ is mostly left-handed

a right-handed signal would be a sign of NP

Why studying $b \rightarrow s\gamma$?

Effective Hamiltonian description 3

$$\mathscr{H}_{\text{eff}} \simeq -\frac{4G_{\text{F}}}{\sqrt{2}} V_{tb} V_{ts}^* \left(C_7 O_7 + C_7' O_7' \right)$$

$$\frac{C_7'}{C_7} \simeq \frac{A_R}{A_L} \simeq \frac{m_s}{m_b} \simeq 0.02$$

Inclusive branching ratio: BR $\propto (C_7^{\text{SM}} + C_7^{\text{NP}})^2 + (C_7^{'\text{NP}})^2$

B-Factories

Main options to measure A_R/A_L

1. Time dependent rate of $B_{d,s}^0 \rightarrow f_{CP}\gamma$ $B^0 \to K^{*0} (\to K^0_s \pi^0) \gamma \text{ or } B^0_s \to \phi (\to K^+ K^-) \gamma$ $\bar{B} \rightarrow f_{CP} \gamma_L + \epsilon f_{CP} \gamma_R$ $\overline{B} \to B \to f_{CP} \gamma_R + \epsilon f_{CP} \gamma_L$ interference $\tilde{\mathcal{B}}(t) = \mathcal{B}_0 e^{-\Gamma t} \left(\cosh \frac{\Delta \Gamma t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma t}{2} \pm \mathcal{C} \cos(\Delta m t) \mp \mathcal{S} \sin(\Delta m t) \right)$ $\mathcal{S} \approx \xi \frac{2\mathcal{I}m[e^{-i\phi_q} \, \mathcal{C}_{_7}\mathcal{C}_{_7}'|}{|\mathcal{C}_{_7}|^2 + |\mathcal{C}'|^2} \qquad \mathcal{A}^{\Delta} \approx \xi \frac{2\mathcal{R}e[e^{-i\phi_s} \, \mathcal{C}_{_7}\mathcal{C}_{_7}'|}{|\mathcal{C}_{_7}|^2 + |\mathcal{C}_{_-}'|^2} \qquad \substack{\phi_{\rm d} = 2\beta\\ \phi_{\rm s} \sim 0}$

2. Angular analysis of $B_d^0 \rightarrow K^{*0}e^+e^-$ at very low q^2

Laboratoire de Physique des 2 Infinis French-Ukrainian Workshop 19-23 October 2020

2. Angular analysis of $B_d^0 \rightarrow K^{*0}e^+e^-$ at very low-q²

At very low-q² the diagrams with a virtual photon dominate

Which data ?

Full LHCb dataset (~ 10¹² bb in detector acceptance): 3 fb⁻¹ at 7 and 8 TeV, 6 fb⁻¹ at 13 TeV

Laboratoire de Physique des 2 Infinis

At LHCb:

- events are busy (hardware trigger needed)
- best reconstruction for μ^{\pm} , π^{\pm} , K[±], p anti-p
- electrons emit quite a fair amount of bremsstrahlung before the magnet (recovery procedure efficiency ~ 50 %)

From M. Borsato

- Select in M(ee) region between 10 MeV and 500 MeV
 Pollution from (axial-)vector currents is negligible in this region
- SM BR is as small as $\sim 2 \times 10^{-7}$ but:
 - Fully charged final state ($K^* \rightarrow K + \pi -$)
 - Semileptonic+combinatorial (SL/C) background is phase-space suppressed

530 signal candidates selected with extremely low background

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \operatorname{dcos} \theta_\ell \operatorname{dcos} \theta_K \operatorname{d}\tilde{\phi}} = \frac{9}{16\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1-F_\mathrm{L}) A_\mathrm{T}^{\mathrm{Re}} \sin^2 \theta_K \cos 2\theta_\ell + (1-F_\mathrm{L}) A_\mathrm{T}^{\mathrm{Re}} \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1-F_\mathrm{L}) A_\mathrm{T}^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\tilde{\phi} + \frac{1}{2} (1-F_\mathrm{L}) A_\mathrm{T}^{\mathrm{Im}} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\tilde{\phi} \Big] .$$

 $B^{0} \rightarrow K^{*}\gamma \text{ photon polarisation:}$ $A_{R(L)} \equiv |A_{R(L)}| e^{i\phi_{R(L)}}, \quad \tan \chi \equiv |A_{R}/A_{L}|$ $A_{T}^{(2)} \simeq \sin(2\chi)\cos(\phi_{L} - \phi_{R}),$ $A_{T}^{Im} \simeq \sin(2\chi)\sin(\phi_{L} - \phi_{R}),$

Laboratoire de Physique des 2 Infinis F_L longitudinal polarisation fraction of the K^{*0}

 A_T^{Re} : related to the lepton FB asymmetry

 $A_T^{(2)}$: averaged between B⁰ and anti-B⁰ A_T^{Im} : CP asymmetry

Control channel: $B^0 \rightarrow K^{*0} \gamma$

The information on polarisation is lost when the photon converts in the detector material but:

- larger BR
- same final state when the photon converts in the detector
- can be well separated from our signal with M(ee) <10 MeV
 What can we check ?
- signal shape and background composition
- signal fit (mass and $\cos\theta_{K}$)

~ 2950 signal candidates

$F_{\rm L} = 0.0^{+0.7}_{-0.0} \%$

compatible with a completely transverse K^{*0} polarisation (as expected in the presence of a real photon)

When $q^2 \rightarrow 0$, only $\cos \theta_{\rm K}$ is meaningful

K*ee angular fit

Fit to B mass and angles in reduced mass region

•Semilept+combinatorial (SL/C) modelled using $B \rightarrow K^* \mu \pm e \mp$ data

•Other backgrounds from simulation

•Fit procedure tested with pseudo- experiments

2

3

30

10

- $F_{\rm L} = 0.044 \pm 0.026 \pm 0.014,$
- $A_{\rm T}^{\rm Re} = -0.06 \pm 0.08 \pm 0.02,$
- $A_{\rm T}^{(2)} = +0.11 \pm 0.10 \pm 0.02,$
 - $A_{\rm T}^{\rm Im} = +0.02 \pm 0.10 \pm 0.01,$

Statistical uncertainty dominates Main systematics:

- signal acceptance
- angular background modelling

Measurement of the photon	
oolarisation at the 5% level	

 $\begin{aligned} &\text{Re} \left(A_{\text{R}} / A_{\text{L}} \right) &= 0.05 \pm 0.05 \\ &\text{Im} \left(A_{\text{R}} / A_{\text{L}} \right) &= 0.01 \pm 0.05. \end{aligned}$

Source of systematic	$A_{ m T}^{(2)}$	$A_{ m T}^{ m Im}$	$A_{ m T}^{ m Re}$	$F_{ m L}$
Simulation sample size for acceptance	0.007	0.007	0.007	0.003
Acceptance function modelling	0.004	0.001	0.008	0.001
$B^0 \to K^{*0} e^+ \mu^-$ sample size for SL/C	0.007	0.007	0.007	0.003
SL/C angular modelling	0.012	0.005	0.006	0.005
PR model other than $K_1(1270)$	0.001	0.003	0.002	0.001
$\eta \text{ or } \pi^0 \text{ angular modelling}$	< 0.001	< 0.001	0.002	0.010
Corrections to simulation	0.003	0.001	0.003	0.007
Signal mass shape	0.002	0.002	0.004	0.001
Total systematic uncertainty	0.017	0.012	0.015	0.014
Statistical uncertainty	0.103	0.102	0.077	0.026

Comparison with predictions

Selection : $0.0001 < q^2 < 0.25 \text{ GeV}^2$

$$\begin{split} F_{\rm L}({\rm SM}) &= 0.051 \pm 0.013, \\ A_{\rm T}^{\rm Re}({\rm SM}) &= -0.0001 \pm 0.0004, \\ A_{\rm T}^{(2)}({\rm SM}) &= 0.033 \pm 0.020, \\ A_{\rm T}^{\rm Im}({\rm SM}) &= -0.00012 \pm 0.00034. \end{split}$$

 C_7 fixed to SM value

Summary

World-best masurement of photon polarisation in b \rightarrow s γ transitions

Method very different from B-Factories

Statistically limited measurement ⇒will keep improving with more luminosity (upgrade)

Using the formalism of 1305.3173

Seq-LR SSM

