Measuring the electromagnetic moments of Λ_{c}.

Performance assessment of layouts in IR3 and IR8 of the LHC

Alex Fomin

NSC Kharkiv Institute of Physics and Technology (KIPT), Kharkiv, Ukraine
contributed by:

Introduction

- Electromagnetic moments of baryons
- Spin precession in a bent crystal

Optimal crystal orientation for EDM measurement [1,2]

- Spin precession in a bent crystal
- Initial polarisation of baryons $[1,2]$
- quantitive analysis

MDM of $\Sigma+$ (experiment E761, Fermilab 1990) [3]

- Mirroring the setup
- Cancelation of apparatus biases

Performance assessment of layouts in IR3 and IR8 [4,5,1]

- Double crystal layouts at LHC $[4,5]$
[1] A.S. Fomin et al. Eur. Phys. J. C (2020) 80:358
[2] A.S. Fomin, JHEP 08 (2017) 120
[3] D. Chen, PhD thesis, SUNY, Albany, 1992.
[4] D. Mirarchi et al. Eur. Phys. J. C 80 (2020) 10, 929
- Precision of measurement [1]
- Possible improvements [1,4]
[5] CERN Yellow Reports: Monographs, 4/2020

Electromagnetic moments of baryons

Magnetic Dipole Moment:

$$
\vec{\mu}=\frac{g}{2} \frac{e}{m} \vec{S}, \quad \vec{S}=\frac{\hbar}{2} \vec{\sigma}
$$

$|g|=2 \rightarrow$ a point-like Dirac particle
$|g| \approx 2 \rightarrow$ a radiative corrections
$|g| \neq 2 \rightarrow$ a composite structure or NP

Particle	CT	g-factor	Comments
p n	∞ $\sim \infty$	$\begin{aligned} & +5.585694702(17) \\ & -3.82608545(90) \end{aligned}$	$\begin{aligned} & \text { exp. } \\ & \text { exp. } \end{aligned}$
$\Sigma+$	2.4 cm	$\begin{aligned} & +6.233(25) \\ & +6.1(12)_{\text {stat }}(10)_{\text {syst }} \end{aligned}$	exp. world-average value exp. using Bent Crystals (at Fermilab 1990)
$\Lambda_{c}{ }^{+}$	$60 \mu \mathrm{~m}$	$+1.90(15)$ not measured	theor. assuming $g_{\mathrm{c}} \approx 2$ exp. Feasibility studies at LHC

Electric Dipole Moment:

Particle	$\|\delta\|$, e cm 10-25
p	<2.1
n	<0.18
Σ^{+}	not measured
$\Lambda_{c^{+}}$	not measured

Ib V.G. Baryshevsky, Sov. Tech. Phys. Lett. 5 (1979) 73. V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509 [inSPIRE].

$\Theta_{\mu} \equiv \angle\left(\xi_{i} \xi_{f}\right)=(1+\gamma a) \Theta \quad a=\frac{g-2}{2}, \quad \Theta=\frac{L}{R}$
γ, g, a - Lorentz factor, g-factor, anomalous MDM of Λ_{c}
Θ, L, R - deflecting angle, length, curvature radius of the crystal

Initial Polarisation:
$\vec{\xi}_{i}=\xi(\quad 1 \quad 0,0 \quad)$

Final polarisation

$\vec{\xi}_{f}=\xi\left(\cos \Theta_{\mu}, 0, \sin \Theta_{\mu}\right)$

b.G. Baryshevsky,

Sov. Tech. Phys. Lett. 5 (1979) 73.
b V.L. Lyuboshits,
Sov. J. Nucl. Phys. 31 (1980) 509 [inSPIRE].

$$
\Theta_{\mu} \equiv \angle\left(\xi_{i} \xi_{f}\right)=(1+\gamma a) \Theta
$$

$$
\Delta g=\frac{2}{\alpha\left\langle\xi_{x} \gamma\right\rangle \Theta} \sqrt{\frac{3}{N}}
$$

b. F. J. Botella et al.,

EPJ C77 (2017) 181 [inSPIRE]

$$
\frac{\Delta f}{\Delta g}=\frac{2 \gamma a}{\Theta(1+\gamma a)^{2}}
$$

b.G. Baryshevsky,

EPJ C79 (2019) 350 [inSPIRE]
b A.S. Fomin et al.,
EPJ C80 (2020) 358 [inSPIRE]

$$
\Theta_{d} \equiv \angle\left(\xi_{i} \xi_{f}\right)=(1+\gamma f) \Theta
$$

$$
\Delta f=\frac{2}{\alpha\left\langle\xi_{y} \gamma\right\rangle \Theta} \sqrt{\frac{3}{N}}
$$

Optimal crystal orientation for EDM measurement: initial polarisation.

I A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]
Production of $\Lambda_{c}{ }^{+}$in a fixed target $\quad p+p \rightarrow \Lambda_{c}^{+}+X$

Due to the space-inversion symmetry of the strong interaction $\Lambda_{c}{ }^{+}$polarisation is perpendicular to the reaction plane

Optimal for EDM measurement

Optimal for EDM measurement

$\odot \bigcirc \oplus^{\prime} \cdot \oplus+\oplus+\oplus \oplus \oplus+9$

Simultaneous measurement

$$
\Delta g=\frac{2}{\alpha\left\langle\xi_{x} \gamma\right\rangle \Theta} \sqrt{\frac{3}{N}}
$$

$$
\Delta f=\frac{2}{\alpha\left\langle\xi_{y} \gamma\right\rangle \Theta} \sqrt{\frac{3}{N}}
$$

MDM of Σ^{+}experiment E761, Fermilab 1990: Mirroring the setup

D. Chen, The Measurement of the Magnetic Moment of $\Sigma+$ Using Channeling in Bent Crystals, PhD thesis, SUNY, Albany, 1992.

The main purpose of the experiment was to measure the branching ratio and asymmetry parameter of the Σ^{+}radiative decay
A new technique for measuring the magnetic moment of short-lived positively charged particles using channeling in bent crystals was tested.

After some initial testing, we found that only the five center crystals, from \#2 to \#6, were inside the Σ^{+}beam phase space in they direction.

Then, during the run, we were only able to align two of the five crystals \#2 and \#5 with the beam.

Figure 4.6: Crystal bending device

Cancelation of apparatus biases: $\frac{N_{j}^{+}-N_{j}^{-}}{N_{j}^{+}+N_{j}^{-}}=\alpha \xi_{j}^{+} \cos \vartheta_{j}$

$$
N_{j}^{+} \equiv \frac{d N_{j}^{+}}{N_{0 j}^{+} d \cos \vartheta_{j}}=\frac{A j\left(\vartheta_{j}, \ldots\right)}{2}\left(1-\alpha \xi_{j}^{+} \cos \vartheta_{j}\right)
$$

more details: D. Chen, PhD thesis, SUNY, Albany, 1992.

- L. Burmistrov et al., CERN-SPSC-2016-030, CERN, Geneva Switzerland, June 2016 [SPSC-EOI-012].
- A. Stocchi, W. Scandale, talks at Physics Beyond Collider Workshop, CERN, Geneva Switzerland, 6-7 September 2016.

Introduction: double crystal layouts at LHC

A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]

Thorough evaluation of initial polarisation of channeled $\Lambda_{c}{ }^{+}$

- Spectra-angular distribution of $\Lambda_{c}{ }^{+}$(Pythia 8.243)

Layout		IR3	LHCb
Target	proton rate, 10^{10} per 10h fill	3^{\star}	4.3^{\star}
	length, mm	5	5
	length, mm	70^{\star}	$75^{* *}$
	bending radius, m	14^{\star}	$5.4^{\star \star}$
	deflection angle, mrad	5	14
	Average Lorentz factor	1140	600
	Weighted average polarisation	$0.22(5)$	$0.26(5)$
	deflected per 10h fill	180	12
	relative precision of MDM	$\mathbf{1}$	$\mathbf{2 . 7}$
	relative data taking time	$\mathbf{1}$	$\mathbf{7 . 5}$

- Channeling probability as a function of $\Lambda_{c}{ }^{+}$energy, bending radius and length of the crystal
- Initial polarisation of $\Lambda_{c}{ }^{+}$as a function of transverse momentum

The error of g-factor Δg is calculated considering:

- Detector at IR3 would have the same resolution as LHCb for higher energies, and angular acceptance $\geq 5 \mathrm{mrad}$
- Systematical error from poor knowledge of α and ξ

Performance assessment of layouts in IR3 and IR8: possible improvements

b. Fomin et al. EPJ C80 (2020) 358

- Thicker target $5 \mathrm{~mm} \rightarrow 40 \mathrm{~mm}$: ionisation energy losses and multiple scattering can be neglected, showers production - to be checked
- Proton rate, $3-4.3 \times 10^{10}$ per 10 h fill
D. Mirarchi et al. EPJ C80 (2020) 10, 929

Possible improvements:

	$1 \rightarrow 2$	$\mathrm{t} 1 / \mathrm{t} 2$
Target	$5 \mathrm{~mm} \rightarrow 40 \mathrm{~mm}$	6
Crystal	silicon \rightarrow germanium	2.4
Detector	LHCb (IR8) \rightarrow dedicated at IR3	7.5
Beam exitation	currently under studies	\ldots

- 10 year at LHCb, $\sim 7 \times 10^{13}$ POT, $5 \mathrm{~mm}, \mathrm{Si} \rightarrow \Delta \mathrm{g} \sim 0.35$
- 1 year at IR3, $\sim 0.5 \times 10^{13} \mathrm{POT}, 40 \mathrm{~mm}, \mathrm{Ge} \rightarrow \Delta \mathrm{g} \sim 0.12$
- big uncertainty $(\times 10)$ due to α parameter

Initial polarisation in double crystal setup

- new corrected value of initial polarisation of channeled $\Lambda_{c}{ }^{+}: 0.22(5)$ and $0.26(5)$ for IR3 and LHCb

Performance assessment of layouts in IR3 and IR8

- $d g=0.35$ (LHCb) and $d g=0.14$ (IR3) after 10 years
- $\quad 5 \mathrm{~mm} \rightarrow 40 \mathrm{~mm}$
~ 6 time reduction
- silicon \rightarrow germanium
~ 2.4 time reduction
- LHCb (IR8) \rightarrow dedicated at IR3
~ 7.5 time reduction

MDM of $\Sigma+$ (experiment E761, Fermilab 1990)

- Mirroring the setup - doubling the statistics

Polarisation of Λc (from SMOG data)

- initial polarisation as a function of transverse momentum
- reconstruction of final polarisation

Crystals in circulating machines

- channelling of secondary halo in the LHC
- double channelling scheme proved at SPS (2018)

Long crystal channeling efficiency

- UA9 at H8 180 GeV
- SELDOM at H8 $180 \mathrm{GeV} \operatorname{Si}(111), 8 \mathrm{~cm}, 5 \mathrm{~m} ; \mathrm{Ge}(110) 5.5 \mathrm{~cm}, 3.7 \mathrm{~m}$
- simulations vs experiment
- extrapolation to TeV energies

Considerations for the layouts in LHC

- Mirroring the setup - doubling the statistics

thank you

BackUp

Introduction: initial polarisation in double crystal setup

I A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]
Production of $\Lambda_{c}{ }^{+}$in a fixed target $\quad p+p \rightarrow \Lambda_{c}^{+}+X$

Due to the space-inversion symmetry of the strong interaction $\Lambda_{c}{ }^{+}$polarisation is perpendicular to the reaction plane

Distribution of $\Lambda_{c}{ }^{+}$over transverse momentum (Pythia 8.243) Initial polarisation as a function of transverse momentum

MDM of Σ^{+}experiment E761, Fermilab 1990: Mirror the setup - double the statistics
b. Chen, The Measurement of the Magnetic Moment of $\Sigma+$ Using Channeling in Bent Crystals, PhD thesis, SUNY, Albany, 1992.
crystal \#5

crystal \#2

(a)

(b)

Figure 8.5: The $\frac{N_{i}^{+}-N_{i}^{-}}{N_{+}^{+}+N_{-}^{-}}$distribution of the events in the signal area for (a) the 5th crystal and (b) the 2nd crystal.

Separate analyses have been done for crystal \#5 and \#2

We used a bias cancelling technique to cancel the A_{i}. The distribution of the data with a positive targeting angle, i.e. with the polarization \mathbf{P}^{+}, can be written as

$$
\begin{equation*}
\frac{d N_{i}^{+}}{N_{0 i}^{+} d \cos \theta_{\mathrm{i}}}=\frac{1}{2} A_{i}\left(1+\alpha \mathbf{P}_{1}^{+} \cos \theta_{\mathrm{i}}\right) . \tag{8.3}
\end{equation*}
$$

And the equation for negative targeting angle, i.e. with the polarization \mathbf{P}^{-}, is

$$
\begin{equation*}
\frac{d N_{i}^{-}}{N_{0 i}^{-d} d \cos \theta_{i}}=\frac{1}{2} A_{i}\left(1+\alpha \mathrm{P}_{1}^{-} \cos \theta_{1}\right) . \tag{8.4}
\end{equation*}
$$

Assuming the same amplitude for the positive and the negative targeting angle, \mathbf{P}_{1}^{+} $=-\mathbf{P}_{1}^{-}$, we can rewrite equation (8.4) as

$$
\begin{equation*}
\frac{d N_{i}^{-}}{N_{0 \mathrm{i}}^{-} d \cos \theta_{\mathrm{i}}}=\frac{1}{2} A_{\mathrm{i}}\left(1-\alpha \mathrm{P}_{1}^{+} \cos \theta_{\mathrm{i}}\right) . \tag{8.5}
\end{equation*}
$$

If we redefine $N_{i}^{+}=\frac{d N_{i}^{+}}{N_{0}^{+} d \cos \theta_{i}}$ and $N_{i}^{-}=\frac{d N_{i}^{-}}{N_{0 ; i} d \cos \theta_{i}}$ and assume that A_{i} is the same for both targeting angles, from equation (8.3) and equation (8.5), we can derive

$$
\begin{equation*}
\frac{N_{i}^{+}-N_{i}^{-}}{N_{i}^{+}+N_{i}^{-}}=\alpha \mathrm{P}_{1}^{+} \cos \theta_{1} . \tag{8.6}
\end{equation*}
$$

From the plot of $\frac{N_{i}^{+}-N_{i}^{-}}{N_{i}^{+}+N_{i}^{-}}$versus $\cos \theta_{i}$, we obtained the $\alpha \mathrm{P}_{1}^{+}$from the slope of the distribution.

	$\mu_{\Sigma+}\left(\mu_{N}\right)$ with channeling cut	$\mu_{\Sigma+}\left(\mu_{N}\right)$ no channeling cut
5th crystal	2.15 ± 0.61	2.32 ± 0.58
2nd crystal	2.74 ± 0.71	2.62 ± 0.73
Average	2.40 ± 0.46	2.44 ± 0.46
PGD	2.42 ± 0.05	

Table 8.4: Results of the $\mu_{\Sigma+}$ measurement with statistical error only.

Systematical error of g-factor from poor knowledge of α and ξ

b A. Fomin et al. Eur. Phys. J. C (2020) 80:358

1) use pre-measured values of $\alpha \cdot \xi$ factor
2) measure $\alpha \cdot \xi$ and g-factor simultaneously

$$
\begin{aligned}
& \frac{d N}{d \cos \theta_{z}}=\frac{1}{2}\left(1+\alpha \xi_{z} \cos \Theta_{\mu} \cos \theta_{z}\right) \\
& \frac{d N}{d \cos \theta_{x}}=\frac{1}{2}\left(1+\alpha \xi_{x} \sin \Theta_{\mu} \cos \theta_{x}\right)
\end{aligned}
$$

Decay channel	Branching		
ratio, \%		\quad	Weak decay
:---:			
parameter α			

* E. Bagli et al., EPJ C77 (2017) no.12, 828
b. Fomin et al. EPJ C80 (2020) 358

Central values of absolute statistical error of g-factor

Data taking time

Configuration Target length	Crystal	Place		$\frac{\Delta g \text { after }}{1 \text { year }}$		

Channeled halo

and

new VELO aperture

Upgraded VELO aperture: $\quad \sim 5 \mathrm{~mm} \rightarrow 3.5 \mathrm{~mm}$

LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, CERN/LHCC 2013-021, LHCb TDR 13, November 292013 JINST 3 (2008) S08005.

- the old VELO foil inner radius ranges between 4.9 and 5.6 mm , as determined from particle interaction tomography

VELO fully closed (stable beams)

- an inner foil radius of 3.5 mm was proposed and agreed upon
- a closest distance of approach to the LHC beams of just 5.1 mm for the first sensitive pixel

SMOG $5.0 \mathrm{~mm}(128 \sigma)$

SMOG $5.0 \mathrm{~mm}(128 \sigma)$, VELO $3.5 \mathrm{~mm}(80 \sigma)$

- SixTrack simulation with a new VELO aperture: $3.5 \mathrm{~mm}(80 \sigma$, emit $=3.5 \mu \mathrm{~m})$
- No additional losses during the normal operation
- For a double crystal setup the additional check is needed
- Optics of 2018 machine configuration at "End of Squeeze"

Double crystal layout considered in D. Mirarchi et al., (2019), 1906.08551

TO BE CHECKED:
Can the deflected beam cause a problem to the VELO ?
In present layout, the deflected by Crystal 1 halo hits the upgraded VELO detector

Channeled halo and new VELO aperture: profiles and positions of the beams

Max. flux of protons hitting VELO: $\sim 10^{8} \mathrm{p} / \mathrm{s}\left(\sim 10^{11} \mathrm{p} / \mathrm{s}\right.$ for 10 s$)$

Beam profile at VELO

Crystal 1 @ 5.0σ $150 \mu \mathrm{rad}$

Max. flux of protons hitting VELO: $\sim 1.5 \times 10^{6} \mathrm{p} / \mathrm{s}\left(\sim 1.5 \times 10^{9} \mathrm{p} / \mathrm{s}\right.$ for 10 s$)$

Beam profile at VELO 2.7 e-3 Crystal 1 @ 5.5σ Target: 5 mm (ST_50403)

Dynamic changes during levelling

Dynamic changes during levelling

at IP8:
a) End of Squeeze
b) Max separation,
$60 \mu \mathrm{~m}$

c) Min separation,
$-13 \mu \mathrm{~m}$

d) Zero separation,

Channeled halo position

- Optics of 2018 machine configuration at "Stable Beam"

LHCb rotation

- Redundant request from LHCb (since 2012) to establish similar physics conditions regardless of the spectrometer polarity
\rightarrow External V crossing, i.e. collision at $\sim 45^{\circ}$ and $\sim 135^{\circ}$ depending on the spectro polarity for an external vertical X -angle of $135 \mu \mathrm{rad} @ 7 \mathrm{TeV}(145 \mu \mathrm{rad} @ 7 \mathrm{TeV})$. An external V crossing also maximize the luminous region in collision
- Injection with a V crossing is NOT possible unless ramping the spectrometer
- Making the rotation during the ramp could be possible (towards flat top), but after gaining some experience
- An "universal" rotation BP seems to exist, warranting a minimum bb sep of 13σ at the worst BBLR during the rotation (at $\gamma \varepsilon=2.5 \mu \mathrm{rad}$ and 7 TeV) \rightarrow minimize re-validation steps after each polarity

- Optics for Run III are in preparation. If the LHCb request is maintained, offset will need to be studied.

