

Laboratoire de Physique

French-Ukrainian Workshop — IJCLab, Orsay, France October 19-23, 2020

Measuring the electromagnetic moments of Λ_c . Performance assessment of layouts in IR3 and IR8 of the LHC

contributed by:

S. Barsuk (IJCLab), O.A. Bezshyyko (KNU), L. Burmistrov (IJCLab), G. Calderini (LPNHE), S.P. Fomin (KIPT, KhNU), Yu. Ivanov (PNPI), I.V. Kirillin (KIPT, KhNU), A.Yu. Korchin (KIPT, KhNU), V.A. Kovalchuk (KIPT, KhNU), E. Kou (IJCLab), M. Liul (LAL, KhNU), L. Massacrier (IPN), D.Mirarchi (CERN), A. Natochii (LAL, KNU), E. Niel (IJCLab), S. Redaelli (CERN), P. Robbe (IJCLab), W. Scandale (CERN), N.F. Shul'ga (KIPT, KhNU), A. Stocchi (IJCLab)

Alex Fomin

NSC Kharkiv Institute of Physics and Technology (KIPT), Kharkiv, Ukraine

Outline

Introduction

- Electromagnetic moments of baryons •
- Spin precession in a bent crystal

Optimal crystal orientation for EDM measurement [1,2]

- Spin precession in a bent crystal •
- Initial polarisation of baryons [1,2]
- quantitive analysis

MDM of Σ + (experiment E761, Fermilab 1990) [3]

- Mirroring the setup
- Cancelation of apparatus biases •

Performance assessment of layouts in IR3 and IR8 [4,5,1]

- Double crystal layouts at LHC [4,5]
- Precision of measurement [1]
- Possible improvements [1,4] •

- A.S. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1]
- <u>A.S. Fomin, JHEP 08 (2017) 120</u> [2]
- [3] D. Chen, PhD thesis, SUNY, Albany, 1992.
- D. Mirarchi et al. Eur. Phys. J. C 80 (2020) 10, 929 [4]
- CERN Yellow Reports: Monographs, 4/2020 [5]

Electromagnetic moments of baryons

Magnetic Dipole Moment:

Electric Dipole Moment:

$$\overrightarrow{\delta} = \frac{f}{2} \frac{e}{m} \overrightarrow{S}, \quad \overrightarrow{S} = \frac{\hbar}{2} \overrightarrow{\sigma}$$

A nonzero value is forbidden by both: T invariance and P invariance.

g-factor		Comments
+ 5.585 694 702 (17)	exp.	
- 3.826 085 45 (90)	exp.	
+ 6.233 (25)	exp.	world-average value
+ 6.1 (12) _{stat} (10) _{syst}	exp.	using Bent Crystals (at Fermilab 199
+ 1.90 (15)	theor.	assuming $g_c \approx 2$
not measured	exp.	Feasibility studies at LHC
_	<i>g</i> -factor + 5.585 694 702 (17) - 3.826 085 45 (90) + 6.233 (25) + 6.1 (12) _{stat} (10) _{syst} + 1.90 (15) not measured	g-factor + 5.585 694 702 (17) exp. - 3.826 085 45 (90) exp. + 6.233 (25) exp. + 6.1 (12)stat (10)syst exp. + 1.90 (15) theor. not measured exp.

Particle	δ , e cm 10 ⁻²⁵
р	< 2.1
n	< 0.18
Σ+	not measured
Λ_{c}^{+}	not measured

Spin precession in a bent crystal

V.G. Baryshevsky, Sov. Tech. Phys. Lett. 5 (1979) 73.

A. Fomin

Measuring the EMDM of Λc. Performance assessment of layouts in IR3 and IR8 of the LHC

V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509 [inSPIRE].

$$\equiv \angle \left(\xi_i \,\xi_f\right) = \left(1 + \gamma a\right) \Theta \qquad a = \frac{g - 2}{2}, \qquad \Theta = \frac{L}{R}$$

- γ , g, a Lorentz factor, g-factor, anomalous MDM of Λ_c
- Θ , L, R deflecting angle, length, curvature radius of the crystal

Optimal crystal orientation for MDM and EDM measurements

V.G. Baryshevsky, Sov. Tech. Phys. Lett. 5 (1979) 73.

N.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509 [inSPIRE].

$$\frac{\Delta f}{\Delta g} = \frac{2\gamma a}{\Theta \left(1 + \gamma a\right)}$$

$$\Theta_{d} \equiv \angle \left(\xi_{i} \xi_{f}\right) = (1 + \gamma f) \Theta$$

$$\Delta f = \frac{2}{\alpha \langle \xi_{y} \gamma \rangle \Theta} \sqrt{\sum_{\vec{E}} y p_{f}}$$

Optimal crystal orientation for EDM measurement: initial polarisation.

A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]

A. Fomin

Production of Λ_c^+ in a fixed target $p + p \rightarrow \Lambda_c^+ + X$

Optimal crystal orientation for EDM measurement: quantitive analysis

A. Fomin

MDM of Σ^+ experiment E761, Fermilab 1990: Mirroring the setup

D. Chen, <u>The Measurement of the Magnetic Moment of Σ + Using Channeling in Bent Crystals, PhD thesis</u>, SUNY, Albany, 1992.

The main purpose of the experiment was to measure the branching ratio and asymmetry parameter of the Σ^+ radiative decay

A. Fomin

Beam

Ant

- A new technique for measuring the magnetic moment of short-lived positively charged particles using channeling in bent crystals was tested.

MDM of Σ⁺ experiment E761, Fermilab 1990: Cancelation of apparatus biases within one crystal

A. Fomin

Cancelation of apparatus biases:
$$\frac{N_j^+ - N_j^-}{N_j^+ + N_j^-} = \alpha \,\xi_j^+$$
$$N_j^+ \equiv \frac{dN_j^+}{N_{0j}^+ d\cos\vartheta_j} = \frac{Aj(\vartheta_j, ...)}{2} \left(1 - \alpha \,\xi_j^+\right)$$

more details: D. Chen, PhD thesis, SUNY, Albany, 1992.

MDM and EDM of charmed baryons: Fixed target at the LHC

- L. Burmistrov et al., CERN-SPSC-2016-030, CERN, Geneva Switzerland, June 2016 [SPSC-EOI-012].
- A. Stocchi, W. Scandale, talks at Physics Beyond Collider Workshop, CERN, Geneva Switzerland, 6–7 September 2016.

Introduction: double crystal layouts at LHC

D. Mirarchi et al. Eur. Phys. J. C 80 (2020) 10, 929

- impact on the machine
- optimisation of Crystal 1 and Absorbers positions
- running experiment in a parasitic mode
- layout in front of LHCb (IR8) 4.3×10¹⁰ POT/fill
- 3.0×10¹⁰ POT/fill • alternative layout at IR3
- restriction on Crystal 2 bending radius

A. Fomin

Performance assessment of layouts in IR3 and IR8: precision of measurement

A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]

Layout		IR3	LHCb
Torgot	proton rate, 10 ¹⁰ per 10h fill	3*	4.3*
Target	length, mm	5	5
	length, mm	70*	75**
Crystal	bending radius, m	14*	5.4**
	deflection angle, mrad	5	14
	Average Lorentz factor	1140	600
	Weighted average polarisation	0.22(5)	0.26(5)
Λ_c^+	deflected per 10h fill	180	12
	relative precision of MDM	1	2.7
	relative data taking time	1	7.5

* D. Mirarchi et al. Eur. Phys. J. C 80 (2020) 10, 929

** E. Bagli et al., EPJ C77 (2017) no.12, 828

Thorough evaluation of initial polarisation of channeled Λ_c^+

- Spectra-angular distribution of Λ_c^+ (Pythia 8.243)
- Channeling probability as a function of Λ_c^+ energy, bending radius and length of the crystal
- Initial polarisation of Λ_c^+ as a function of transverse momentum

The error of g-factor Δg is calculated considering:

- Detector at IR3 would have the same resolution as LHCb for higher energies, and angular acceptance \geq 5 mrad
- Systematical error from poor knowledge of α and ξ

Performance assessment of layouts in IR3 and IR8: possible improvements

A. Fomin et al. EPJ C80 (2020) 358

- Thicker target $5 \text{ mm} \rightarrow 40 \text{ mm}$: ionisation energy losses and multiple scattering can be neglected, showers production - to be checked
- Proton rate, $3-4.3 \times 10^{10}$ per 10h fill D. Mirarchi et al. EPJ C80 (2020) 10, 929

Possible improvements:

A. Fomin

	1 → 2	t1.
Target	5 mm → 40 mm	(
Crystal	silicon → germanium	2
Detector	LHCb (IR8) \rightarrow dedicated at IR3	7
Beam exitation	currently under studies	•

- 10 year at LHCb, ~7×10¹³ POT, 5mm, Si $\rightarrow \Delta g \sim 0.35$
- **1 year** at **IR3**, ~0.5×10¹³ POT, 40mm, Ge $\rightarrow \Delta g \sim 0.12$ ullet
- big uncertainty ($\times 10$) due to α parameter

Conclusions

Initial polarisation in double crystal setup

new corrected value of initial polarisation of channeled Λ_c^+ : 0.22(5) and 0.26(5) for IR3 and LHCb

Performance assessment of layouts in IR3 and IR8

- dg=0.35 (LHCb) and dg=0.14 (IR3) after 10 years
- $5 \text{ mm} \rightarrow 40 \text{ mm}$ ~ 6 time reduction
- silicon \rightarrow germanium ~ 2.4 time reduction
- LHCb (IR8) \rightarrow dedicated at IR3 ~ 7.5 time reduction

MDM of Σ + (experiment E761, Fermilab 1990)

Mirroring the setup — doubling the statistics

Optimal crystal orientation for EDM measurement

- slight tilt around bending axis ~ 0.9 mrad (for LHCb)
- data taking time reduced by ~170
- 10 years at IR8, 40mm, Ge, $\Delta d \sim 2.6 \ 10^{-16}$ e cm

A. Fomin

Outlook

Polarisation of Λc (from SMOG data)

- initial polarisation as a function of transverse momentum •
- reconstruction of final polarisation •

Crystals in circulating machines

- channelling of secondary halo in the LHC
- double channelling scheme proved at SPS (2018)

Long crystal channeling efficiency

- UA9 at H8 180GeV
- SELDOM at H8 180GeV Si(111), 8cm, 5m; Ge(110) 5.5cm, 3.7m
- simulations vs experiment •
- extrapolation to TeV energies

Considerations for the layouts in LHC

- Mirroring the setup doubling the statistics
- Channeled halo and new VELO aperture
- Dynamic changes during levelling at IR8
- Increasing the statistics of the LHC fixed-target experiments through bunch excitation

A. Fomin

thank you

BackUp

initial polarisation in double crystal setup Introduction:

A. Fomin et al. Eur. Phys. J. C (2020) 80:358 [1909.04654]

A. Fomin

Production of Λ_c^+ in a fixed target $p + p \rightarrow \Lambda_c^+ + X$

Distribution of Λ_c^+ **over transverse momentum** (Pythia 8.243) Initial polarisation as a function of transverse momentum

MDM of Σ^+ experiment E761, Fermilab 1990: Mirror the setup – double the statistics

Figure 8.5: The $\frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$ distribution of the events in the signal area for (a) the 5th crystal and (b) the 2nd crystal.

A. Fomin

D. Chen, <u>The Measurement of the Magnetic Moment of Σ+ Using Channeling in Bent Crystals</u>, PhD thesis, SUNY, Albany, 1992.

Separate analyses have been done for crystal #5 and #2

We used a bias cancelling technique to cancel the A_i . The distribution of the data with a positive targeting angle, i.e. with the polarization P^+ , can be written as

$$\frac{dN_i^+}{N_{0i}^+ d\cos\theta_i} = \frac{1}{2} A_i (1 + \alpha \mathbf{P}_i^+ \cos\theta_i).$$
(8.3)

And the equation for negative targeting angle, i.e. with the polarization P^- , is

$$\frac{dN_i^-}{N_{0i}^- d\cos\theta_i} = \frac{1}{2} A_i (1 + \alpha \mathbf{P}_i^- \cos\theta_i).$$
(8.4)

Assuming the same amplitude for the positive and the negative targeting angle, P_i^+ $= -\mathbf{P_i}^-$, we can rewrite equation (8.4) as

$$\frac{dN_i^-}{N_{0i}^- d\cos\theta_i} = \frac{1}{2} A_i (1 - \alpha \mathbf{P}_i^+ \cos\theta_i).$$
(8.5)

If we redefine $N_i^+ = \frac{dN_i^+}{N_{0i}^+ d\cos\theta_i}$ and $N_i^- = \frac{dN_i^-}{N_{0i}^- d\cos\theta_i}$ and assume that A_i is the same for both targeting angles, from equation (8.3) and equation (8.5), we can derive

$$\frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} = \alpha \mathbf{P}_i^+ \cos\theta_i.$$
(8.6)

From the plot of $\frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$ versus $\cos\theta_i$, we obtained the $\alpha \mathbf{P_i^+}$ from the slope of the distribution.

	$\mu_{\Sigma^+}(\mu_N)$ with channeling cut	μ_{Σ^+} (μ_N) no channeling cut
5th crystal	2.15 ± 0.61	2.32 ± 0.58
2nd crystal	2.74 ± 0.71	2.62 ± 0.73
Average	2.40 ± 0.46	2.44 ± 0.46
PGD	2.42 ± 0.05	

Table 8.4: Results of the μ_{Σ^+} measurement with statistical error only.

Measuring the EMDM of Λc . Performance assessment of layouts in IR3 and IR8 of the LHC

19

Systematical error of g-factor from poor knowledge of α and ξ

A. Fomin et al. Eur. Phys. J. C (2020) 80:358

- **1)** use pre-measured values of $\alpha \cdot \xi$ factor
- 2) measure $\alpha \cdot \xi$ and g-factor simultaneously

$$\frac{dN}{d\cos\theta_z} = \frac{1}{2} \left(1 + \alpha \xi_z \cos\Theta_\mu \cos\theta_z \right)$$
$$\frac{dN}{d\cos\theta_x} = \frac{1}{2} \left(1 + \alpha \xi_x \sin\Theta_\mu \cos\theta_x \right)$$

A. Fomin

Measuring the EMDM of Λc . Performance assessment of layouts in IR3 and IR8 of the LHC

Branching		Weak decay	Detector	Wiegł		
nel	ratio, %	ratio, % parameter α		IR8*	(Δg/Δgj	
(892)	1.96(27)	0.66(28)	0.2	0.2	~ 0.6	
32) <i>K</i> -	1.08(25)	-0.67 <mark>(30)</mark>	0.2	0.2	~ 0.3	
-) π+	0.83(5)	0.91 <mark>(15)</mark>	0.02	0.004	0.01–0.	
0) π+	2.20(5)	-0.11(60)	0.2	0.2	0.02	

* E. Bagli et al., EPJ C77 (2017) no.12, 828

Configuration			Δg after		Time (years) to reach	
Target length	Crystal	Place	1 year	10 years	$\Delta g = 0.1$	$\Delta g = 0.04$
5 mm	Silicon	IR8	1.10	0.35	123	_
		IR3	0.43	0.14	19	120
40 mm	Silicon	IR8	0.49	0.16	25	160
		IR3	0.17	0.06	3	19
40 mm	Germanium	IR8	0.31	0.10	10	62
		IR3	0.12	0.04	1.5	8.5

A. Fomin

Central values of absolute statistical error of g-factor

Data taking time

Channeled halo and new VELO aperture

A. Fomin

Upgraded VELO aperture: $\sim 5 \text{ mm} \rightarrow 3.5 \text{ mm}$

LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

• the old VELO foil inner radius ranges between 4.9 and 5.6 mm, as determined from particle interaction tomography

A. Fomin

CERN/LHCC 2013-021, LHCb TDR 13, November 29 2013

- an inner foil radius of **3.5 mm** was proposed and agreed upon
- a closest distance of approach to the LHC beams of just 5.1 mm for the first sensitive pixel

Upgraded VELO aperture: Loss maps (no crystal)

SMOG 5.0 mm (128 *σ*)

- SixTrack simulation with a new VELO aperture: 3.5 mm (80 σ , emit = 3.5 μ m)
- No additional losses during the normal operation

A. Fomin

• For a double crystal setup the additional check is needed

• Optics of 2018 machine configuration at "End of Squeeze"

Channeled halo and new VELO aperture

A. Fomin

Measuring the EMDM of Λc . Performance assessment of layouts in IR3 and IR8 of the LHC

Target at 1.2 m from IP8

(extra slide)

Channeled halo and new VELO aperture: profiles and positions of the beams

A. Fomin

Channeled halo and new VELO aperture: Beam profile at VELO

Max. flux of protons hitting VELO: ~10⁸ p/s (~10¹¹ p/s for 10s)

A. Fomin

Measuring the EMDM of Λc . Performance assessment of layouts in IR3 and IR8 of the LHC

Dynamic changes during levelling

Dynamic changes during levelling

Beam separation, Δy_{IP}					
at the IP8					
mm σ (0.03 mm)					
a) End of Squeeze	1.00	34			
b) Max separation	0.06	2			
d) Zero separation	0.0	0			
displacement during levelling	0.06	2			

Optics of 2018 machine configuration at "Stable Beam"

A. Fomin

Dynamic changes during levelling: beam and channeled halo displacements

Beam separation, Δy _{IP}			Beam 1 position, y			Deflected beam, y	
at the IP8		at the Crystal 1		at the Target			
	mm	σ (0.03 mm)	mm	σ (0.3 mm)	mm	mm	σ (0.04 mm)
a) End of Squeeze	1.00	34	-0.78	-2.62	-1.00	2.20	58
b) Max separation	0.06	2	-0.05	-0.16	-0.06	3.12	83
d) Zero separation	0.0	0	0.00	-0.01	0	3.20	85
displacement during levelling	0.06	2	0.05	0.15		0.08	2

A. Fomin

Measuring the EMDM of Λc . Performance assessment of layouts in IR3 and IR8 of the LHC

• Optics of 2018 machine configuration at "Stable Beam"

• Optics for Run III are in preparation. If the LHCb request is maintained, offset will need to be studied.

A. Fomin

Possible changes in the optics for Run III

from presentation by S. Fartoukh at Special LHC Run 3 meeting

