Planar pixel sensors for ATLAS ITk and beyond

F. Crescioli on behalf of ITk Paris Cluster (IJCLab, IRFU, LPNHE)

ATLAS & ITk

- ITk is the tracker upgrade for ATLAS @ HL-LHC (Phase-II)
 - Full Silicon tracker: strips & pixels
 - \circ L_{inst} = 5-7x10³⁴ cm⁻²s⁻¹
 - Expected Fluence for pixels
 - $1-2x10^{16}$ n_{eq}/cm^2 for innermost layer (3D pixel)
 - 2-3x10¹⁵ n_{eq}/cm² for outer layers (planar pixel)

ITk pixel layout

ITk planar sensor pixels

- Pitch 50x50 μm²
- n-in-p technology
- 100 μm thin sensors for L1
- 150 µm thin sensors for L2-L4
- ITk pixel FR chip is 20x19.2 mm2 (400x384)
 - Planar sensors produced for 4x FE chips: Quad module

R&D sensors for ITk

- Production 2019 @ FBK
- Single (RD53A), double (RD53A) and quad (ITk) design
- 50-**100-150** um thickness
- Biasing scheme

Punch through (different designs)

Temporary metal

R&D sensors for ITk

Depletion voltage:

- 10-15 for 100 μm
- 20-30 for 150 μm

Tested at DESY after irradiation

- 2 x 10¹⁵ n_{eq}/cm²
 5 x 10¹⁵ n_{eq}/cm²

Efficiency at fluence 2x1015 neq 100 99 98 97 95 94 93 92 100 150 200 250 300

Device SINGLE - Leakage Current Density [A/cm2]

Most devices have breackdown > 200V

Market Survey for ITk

- Several vendors applied to supply ATLAS of ITk sensors
- In order to qualify fairly each vendor a strict procedure has been enstablished:
 Market Survey
- ITk institutes participate by performing the required measurements
 - Metrology
 - Electrical measurements

Deviation of average wafer thickness variation with respect to the specified thickness	≤ 15 μm
Physical sensor thickness variation inside a single sensor	≤ 15 μm
Wafer bow of 6" size	≤ 100 µm
Wafer bow of 8" size	≤ 150 µm
Sensor bow (4-chip geometry)	≤ 25 µm

ITk Market Survey Electrical Measurements

within the Paris ITk Cluster of labs

Beyond ITk

- Future **hadron** colliders will have much higher fluence
- FCC-hh up to $5.5x10^{17}$ n_{eq}/cm²
- Thin sensors to keep the material budget very low

Long-term	damage	for	Tracker	after	30ab-1
-----------	--------	-----	----------------	-------	--------

R [mm]	z[m]	Dose [MGy]	1 MeV equivalent Fluence [cm-2]
25	0	320	5.5 10 ¹⁷
60	0	88	1.25 10 ¹⁷
100	0	40	6 10 ¹⁶
150	0	23	3.3 1016
270	0	8.8	1.51 10 ¹⁶
900	0	0.65	3.2 10 ¹⁵
25	5	410	3.7 10 ¹⁷
50	16	250	2 10 ¹⁷

Z. Drasal @ VERTEX 2017

Unfortunately roc unresponsive so no data for this design

50 µm thickness production 2019

50 um thickness: IV Curve

50 um thickness: hit efficiency

Efficiency 99% for temporary metal design

94-96% for punch through design (see next slide)

50 um thickness

Localized loss of efficiency due to the punch through structure

N.B. tracks at normal incidence Hit-eff. folded in a 4x4 pixel map

Conclusions

- The ITk upgrade for the ATLAS silicon tracker for HL-LHC is preparing for the production phase
 - Planar pixel sensors will be used in all but the innermost pixel layer
 - 100 μm and 150 μm sensors from various vendors are going through a qualification stage called Market Survey
 - All ITk institutes including the Paris Cluster institutes are involved in the Marked Survey effort through metrology and electrical measurements
- Future hadronic colliders impose light and high efficient silicon sensors for tracking in unprecedented harsh environments
 - Thin n-on-p pixels are promising candidates
 - Small pitches are becoming available
 - Very thin sensors (50 μm) show promising results before irradiation
 - two of them will be tested in DESY in next available test beam after irradiation to 5x10¹⁵ n_{eq}/cm²