

DE LA RECHERCHE À L'INDUSTRIE

The ATLAS – NSW project

(New Small Wheel)

Updated!

Philippe Schune for the ATLAS-Saclay NSW group

CEA, Paris – Saclay Paris – Saclay University

www.cea.fr Irfu.cea.fr

France – Ukraine workshop IJCLab, univ. Paris – Sud, 20/10/2020

2019 layout :

- ATLAS NSW muon s view of HL-LHC
- The NSW project
 - Description (sTGC MWPC detector type)
 - MM MPGD detector type
 - Design, construction and metrology
 - Functioning
 - Production
- NSW status as conclusion

2020:

In this talk, we will discuss practical details, and some parameters and working conditions of our (built) Micromegas detectors.

HL-LHC => x5 present Luminosity
Will have more background in forward regions.

44m

Muon sagitta is only ~500 micron at momentum of 1 TeV 15% measurement => 75 microns measurement precision

Thus detector resolution should be ~50 - 100 microns with aligt + B-field knowledge + detector construction negligible!

Each Micromegas (MPGD) and sTGC (MWPC) modules are 4 planes detector. Each ~ 2 to 3 m².

For Micromegas there is:

8 sectors x2 modules x 2 wheels

=> 32 modules of each type to be build (4 types)

Nominal values:

- 15 kHz / cm2 max flux
- Gas: Ar + 7% CO2 (also considered to have +2% iso- C_4H_{10})
- Drift HV: 300 V
- Nominal amplification HV: 570 V
- Pilars height ~120 μm (should have been 128 μm)
- Gain ~8000

Saclay MM: 5 RO PCB / gap, width 45 cm, L=0.6 to 2m, 1024 strips each.

Strip pitch is 450 µm. => 20 k chanels / detector

MM used in (micro-) TPC mode to recover resolution.

The mesh - stainless steel tissue with wires 30 μ m \varnothing - is glued on the cathode panel.

Mechanical construction precision: ~50 microns within the meas, plane ~100 microns perp. to

Fighting pollution, dusts, etc.

Mesh washing before gluing to drift panel

Drying box for panels

400 µm

Drift Electrode

E Field
Micromesh

-300 V 1

E Field = +500 V

Anti-static roller cleaning (before passivation)

Readout panel washing

Cleaning the Module assembly area

iso-propanol cleaning (before assembly)

5 mm : Conversion/Drift Gap

Amplification Gap.

Readout Strips

Resistive Strips

Anti-static roller cleaning

Details of a RO panel

Kapton foil + resist : Japan contribution

Pessin Poly Circles 20 elt area Custings Lapton toil Line Line Hy desinated area of the Line Hy desinated area of the control of th

strips. Problem: it decreases the local resistivity!

Evolution on HV Issues

- HV sparks:
 - Triggered by: humidity, defects, ionic contamination, tails in amplification, high ionization
 - Controlled by: Resistive layer, quenching in gas
- Several issue during hot and humid summer in keeping low humidity (need high flux an long flushing): flush modules/DW well in advance the tests
- Deal with very low resistance (mostly in Large modules LM1 in particular)
- No much help from passivation in these cases

Slow increase in Resistance
Would need to passivate/lose a lot of active area

Example of damage area because of too much - local - sparking

Deta

PCB-1

5

Kapton foil + resist : Japan contribution

20 est area Curstines to Laptor to il Line Line Line product presidente della curstine de la control de la control

Cosmic bench to qualify a MM Module

- Gain curve values for each gap
- Efficiency values

Cosmic bench composition:

- External tomograph (3 layers of 2D MM, 126 μm pilars, 1cm drift, 4x0.25m², 16 multipl.)
- DREAM elx timing digitization
- Cabling micro-coaxial
- 40 HV distribution
- Multiplexing x2
- Track reconstructing algorithm

3000

2500

2000

1500

1000 500 F

Cosmic bench to qualify a MM Module

250

200

150

100

Cluster size

matching cluster sizes

Cosmic bench composition:

- External tomograph (3 layers of 2D MM, 126 µm pilars, 1cm drift, 4x0.25m², 16 multipl.)
- DREAM elx timing digitization
- Cabling micro-coaxial
- 40 HV distribution
- Multiplexing x2
- Track reconstructing algorithm

PCB2

PCB3

13

cluster charge [ADC]

Cosmic bench to qualify a MM Module

- Gain curve values for each gap (per ~3x3cm² size)
- Efficiency values

Cosmic bench composition:

- External tomograph (3 layers of 2D MM, 126 μm pilars, 1cm drift, 4x0.25m², 16 multipl.)
- DREAM elx timing digitization
- Cabling micro-coaxial
- 40 HV distribution
- Multiplexing x2
- Track reconstructing algorithm

NSW Micromegas Gain distribution w.r.t. some gas mixture

CO₂ and Iso-butane are both quencher gas. Some penning effect occurs on Ar with Iso-butane, increasing the number of primary e-

Efficiency for Ar:CO2+2% iso-b

▶ M25 data taking with ar-co2-iso 93/5/2 :o crosscheck previous results from 2019 and 2018

MPV [ADC]	Layer 1	Layer 2	Layer 3	Layer 4
500 V	276.3	224.7	200.7	309.1
515 V	409.1	346.8	292.6	464.8

570V gain at 350adc => ~510V

Cosmic bench to qualify a MM Module

M2 HV performances :

- All sparking and HV recovered in iso
- No correlation with performances in clean room at 850V in air ...

Ar:CO₂

► M25 HV performances:

- All sparking and HV recovered in iso except one
- The bad sector was good at beginning then suddenly died in ar/co2

Where are we at CERN for the assembly in sectors in Oct. 2020

11/03/2020

+A16

27/07/2020

Sealing of sTGC on A12

28/07/2020 31/07/2020

+A10

03/08/2020

3 sectors installed and 1 dismounted in 3 weeks

+A08

28/08/2020

+A02

02/09/2019

11/09/2020

16/09/2020

A14 out of wheel for reparation, then for Elx noise study

16/09/2020

24/09/2020

Where are we at CERN for the assembly in sectors in Oct. 2020

- AS
- 6 small sectors on NSW-A, ongoing tests with sector A14 out of the wheel (elx noise study)
 - Small sector installation status: sector 12 14* 16 10 8 2 6 4
 - Large sector installation sequence: sector 13 11 15 9 1 7 3 5
 - Commissioning is ongoing for small sectors A12, A10 and A08
 - Installation of small sector A04 in january 2021 → Waiting for a new sTGC confirm wedge

Installation of first large sector A13 → MM-DW did not pass the HV acceptance test, waiting for

decision

Conclusions (1)

At least 2 or 3 of the NSW MM construction groups loose a lot of <u>time, energy and</u> <u>money</u> to fight with some problems which are almost solved today, after an effort for understanding them:

- Too low resistivity of the resistive layer (eq. to or below 5 M-Ohm locally / strip)
- Resistivity bridge layout is problematic for some PCBs
- Humidity problems, more important due to previous weakness (RH <8% needed)
- The Ar+CO2+2% iso-butane gas mixture is considered (this gas is under long term irradiation tests at CERN in gamma's and in Germany in neutrons ~1 MeV range. A X-ray irradiation is also planned)

Pushed by the previous ATLAS management, organizing the NSW project activities <u>and decisions</u> looking too much to the planning constraints was a mistake, <u>especially at the beginning</u> where more R&D would have been needed.

What about the MPGD technology?

- Micromegas are robust detectors (almost ~flat field configuration)
- Resistive detectors GEM, MM, etc. need a more careful detector design and simulations (E field, R-strip, tests, etc. some were missing for the ATLAS-NSW...)

Conclusions (2)

Saclay clean room

Saclay should have delivered its 32 four gaps Micromegas LM1 Modules in April 2021.

Both NSW types of detectors – sTGC and Micromegas – should be produced by Spring 2021.

Commissioning and integration teams are working at CERN trying to install, check and debug sectors each ~15 days. Noise problems on first sectors (new Faraday cage on some elx cards, ...)

- The first wheel NSW-A could be installed in ATLAS in ~Sept. 2021.
- Today's prediction for NSW-C is end of 2021.

Integration area at BB5

Installing detectors on first NSW

Merci pour votre attention

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

DRF - IRFU

France

CEA Paris - Saclay
Paris-Saclay University

Importance of some resistive defects

<u>Looking carefully to PCB edges close to the silver line for \$16</u>, \$17 and E16 LM1-Saclay panels one sees:

- There is some resistive defects close to the silver line (up to ~30 mm)
- They are located at the same place on all PCBs of the same type: e.g. LS-5048, LS-5063, LS-5017, LS-1067
- This is also true for LS-1... and for Eta PCBs.
- These defects are certainly coming from the serigraphy mesh + its pattern.

Each MM module is made with 3 drift panels

+ 2 double side RO panels assembled together

 \Rightarrow 4 drift gap, each of 5 mm gas thick. 20 k-channels / detector ~2 to 3 m²

Physicist model

stack ~80 mm

- CADENCE (Virtuoso) program (hypothesis: R linear as 1 M-Ohm / mm)
- Results could be re-scaled for a different resistivity
- Idea of E.Delagne: basic cells based on a 2 strips layout with some connexio (L=20mm) + trick for R=R(1-x)+R.x

Then introduction of:

- Several individual cells needed to simulate real geometry (angle)
- Tests of different R connexion between strips; different strip lengths; different layout of R-connexion

Saclay production implementation

Saclay productio

502

<=> LM1 area

536B

outside

RO and drift PCB

