The BELLE II ARICH detector

Leonid Burmistrov

LAL, CNRS/IN2P3, Orsay, France

BELLE II detector

Silica Aerogel radiator

As a radiator a silica aerogel is used. Aerogel is an amorphous, highly porous solid of fused silica (silicon dioxide – SiO₂). Refractive index can be adjusted.

- The size of the porous is smaller than 0.1 um this explain the bluish color due to Rayleigh scattering.
- For ARICH use two different Refractive indexes $n_1 = 1.045$ and $n_2 = 1.055$ for focusing purpose.
- \rightarrow Thickness of one layer is 20 mm (40 mm) in total.
 - \blacktriangleright Light transmission length is 45 mm for first layer and 35 mm for second one.

Two layers of wedge-shaped aerogel single tiles of size 17 x 17 x 4 cm³

Aluminum support frame mockup for aerogel radiator

Silica Aerogel radiator

Overall ARICH detector

- r_{in} = 56 cm, r_{out} = 114 cm
- 3.5 m² coverage surface
- ► 6 sectors
- 2 x 124 = 248 aerogel tiles
- 420 HAPD modules with
- 60480 redout channels
- 18 planar mirror plates

Polyethylene shields

ARICH photon detector

- 420 HAPD modules with
- 60480 redout channels
- 18 planar mirror plates

ARICH assembly – October 2017

PMT

- Hybrid Avalanche Photo Detector (HAPD). Co-developed with Hamamatsu.
- 144 pixelated APDs : 5 x 5 mm² position resolution. Effective area : 63 mm×63 mm in 73 mm x 73 mm.
- Signal gain > 4×10^4 by Hybrid amplification process.
- Gamma / neutron tolerance for 10 years operation of Belle II.
- Operation in 1.5 T magnetic field.
- ► This detector have very poor time resolution (~ 100 ns) but this is not important for ring reconstruction.

RICH reconstruction. PID.

"Simple" ring fit and Cherenkov angle reconstruction provide PID information but less precise then logarithm likelihood analysis.

PID with ARICH detector based on logarithm likelihood analysis.

Implementation of merger PCB, cables envelop and backward aluminum wall

Implementation

L. Burmistrov

11

ARICH cooling system upgrade

Baseline cooling system* - was not sufficient to cool down the full detector.

180209-085553

New cooling system has been designed, simulated, fabricated, installed and tested after phase 2.

feb_t1 2019.2.14 1:21:1 After phase 2

Designed and installed by the external company.

FEB cooling bodies

Simulation include : its approximate geometry, orientation (default and rotated), some of the FEB's does not have cooling body installed due to interface problem.

Tomography of the inner detector

Cherenkov angle

Single Cherenkov photon angle resolution.

Reconstructed Cherenkov ring visualized with event display.

- Black line non correlated background (electronics, beam background ...)
- Magenta line correlated background (Rayleigh scattered photons, reflection from APD ...)
- → Blue line signal photons. Single photon resolution ~14 mrad.

BASF II – ARICH - Event Display

