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Quarkonium production mechanisms
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Approaches to Quarkonium Production

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

@ No consensus on the mechanism at work in quarkonium production

@ Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ, and its hadronisation into a meson

o Different approaches differ essentially in the treatment of the hadronisation

@ 3 fashionable models:
© Corour EvaPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) soft gluons ?
© CoLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission
costs as(mq) and occurs at short distances; bleaching at the pair-production time
© Corour OcTET MECHANISM (encapsulated in NRQCD): higher Fock states of
the mesons taken into account; QQ can be produced in octet states with
different quantum # as the meson; bleaching with semi-soft gluons ?
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e any QQ state contributes to a specific quarkonium state
o colourless pair via a simple 1/9 factor
o one non-perturbative parameter per meson, supposedly universal
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@ CoLoOUR EVAPORATION MODEL

any QQ state contributes to a specific quarkonium state
colourless pair via a simple 1/9 factor
one non-perturbative parameter per meson, supposedly universal
COLOUR SINGLET MODEL
colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to
the Schrodinger wave function at the origin — no free parameter
o this parameter is fixed by the decay width or potential models and
by heavy-quark spin symmetry (HQSS)
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CEM vs. CSM vs. COM in a little more details

CoLOUR EVAPORATION MODEL

o
e any QQ state contributes to a specific quarkonium state
o colourless pair via a simple 1/9 factor
o one non-perturbative parameter per meson, supposedly universal
o
]
o

COLOUR SINGLET MODEL

colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to
the Schrodinger wave function at the origin — no free parameter
o this parameter is fixed by the decay width or potential models and
by heavy-quark spin symmetry (HQSS)
© CoLoUR OCTET MECHANISM

one non-perturbative parameter per Fock State
expansion in v?; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and
to a specific quarkonium polarisation
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Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);
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C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

= Perturbative creation of 2 quarks Q and Q BUT Q
w= on-shell (x) . < LO
= in a colour singlet state J ,32mQ)’

= with a vanishing relative momentum

: 3
= in a °§; state (forJ/y, v’ and Y) )99/ )}b\
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Colour Octet Mechanism Dominance : not so simple

Color Octet Mechanism: physical states can be produced by coloured pairs

NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovich,...
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Colour Octet Mechanism Dominance : not so simple

Color Octet Mechanism: physical states can be produced by coloured pairs
NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovicl’l,...
— Heavy-quark line can connect to one or two gluons, not necessarily three ‘e
¢/ Gluon fragmentation then LO in ag: larger rates
— CO fragmentation o< Long Distance Matrix Elements (LDMEs)
— When Py, >>, the gluon is nearly on-shell and transversally pol.
— NRQCD spin symmetry:Q has the same polarisation as the gluon
X Experimentally, this is clearly contradicted !

— Yields expected to peak near end points in ete™ - J/yX and yp — J/yX
(even after SCET resummation)

X Such peaks have never been seen: LDME fine tuning ...
X Cannot describe both the high-Pr and Pr-integrated hadroproduction yields
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3P}8] becomes as hard as 381[8] and interferes with it; IS([)g] a little softer

@ Due to this interference, it is possible to make the softer IS([)S] dominant yet

with nonzero 3P][8] and 381[8] LDMEs

@ Since the 3 associated LDMEs are fit, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs
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QCD corrections to the COM - NRQCD

@ At LO, Pr spectrum driven by the combination
of 2 CO components : 381[8] vs. IS([)S] & 3P}8]
@ At NLO, the soft component becomes
harder (same effect as for CSM) v data: a little less hard than the blue curve

3P}8] becomes as hard as 381[8] and interferes with it; 18([)8] a little softer

@ Due to this interference, it is possible to make the softer IS([)S] dominant yet

with nonzero 3P][8] and 381[8] LDMEs

@ Since the 3 associated LDMEs are fit, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

e What significantly changes is the size of the LDMEs

@ Polarisation: IS([)S] : unpolarised; 381[8] & 3P][g]: transverse
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QCD corrections to the CEM Pr dependence

JPL, H.S. Shao JHEP 1610 (2016) 153
o All possible spin and colour combinations contribute
@ The gluon fragmentation (~ 3'81[8]) dominant at large Pr
@ No reason for a change at NLO. The fit can yield another CEM parameter
value but this will not modify the Py spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
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JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute

The gluon fragmentation (~ 3'81[8]) dominant at large Pr

No reason for a change at NLO. The fit can yield another CEM parameter
value but this will not modify the Pr spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153
Tend to overshoot the y data at large Pr
The (LO) ICEM not significantly better at large Pt v.Q. Ma, R. Vogt PRD 94 (2016) 114029
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value but this will not modify the Pr spectrum
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All possible spin and colour combinations contribute

JPL, H.S. Shao JHEP 1610 (2016) 153

The gluon fragmentation (~ 3'81[8]) dominant at large Pr
No reason for a change at NLO. The fit can yield another CEM parameter

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

Tend to overshoot the y data at large Pr

The (LO) ICEM not significantly better at large Pr

Y.Q. Ma, R. Vogt PRD 94 (2016) 114029
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Feed downs from the excited states

JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
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Feed downs from the excited states

JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
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@ 1. x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
@ Any CO contribution would create a surplus

@ Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs
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Any CO contribution would create a surplus

Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs

via Heavy-Quark Spin Symmetry : (]/"’(IS([)S] )) = (" (351[8])) <146 x 1072 GeV?®
Rules out the fits yielding the 1S([)S] dominance to get unpolarised yields
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@ Any CO contribution would create a surplus

@ Even neglecting the dominant CS, this induces constraints on CO J/y LDMEs
via Heavy-Quark Spin Symmetry : (]/"’(IS([)S] )) = (" (351[8])) <146 x 1072 GeV?®
@ Rules out the fits yielding the 1S([)S] dominance to get unpolarised yields
@ Even the PKU fit has now troubles to describe CDF polarisation data
@ Nobody foresaw the impact of measuring 7. yields: 3 PRL published right after the LCHb data

came out (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.F. Zhang et al. 114 (2015) 092006
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e To avoid the same situation as with the y(2S), we have performed the first
study of its possible prompt production at the LHC
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e To avoid the same situation as with the y(2S), we have performed the first
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— Belle-II data on the inclusive y(2S) production will alse be crucial
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The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now

[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

e CSM is doing well for the Py integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now

[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now

[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, E. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum
@ Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112
e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
@ Colour-Octet Mechanism (COM) helps in describing the Pr spectrum
@ Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)
@ Colour-Evaporation Mechanism (CEM) <> quark-hadron duality
tends to overshoot the data at large Pr — issue shared by some COM fits

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112
e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
Colour-Octet Mechanism (COM) helps in describing the Py spectrum
Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)
Colour-Evaporation Mechanism (CEM) <> quark-hadron duality
tends to overshoot the data at large Pr — issue shared by some COM fits
All approaches have troubles with ep, ee or pp polarisation and/or the 7. data

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112
e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
Colour-Octet Mechanism (COM) helps in describing the Py spectrum
Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)
Colour-Evaporation Mechanism (CEM) <> quark-hadron duality
tends to overshoot the data at large Pr — issue shared by some COM fits
All approaches have troubles with ep, ee or pp polarisation and/or the 7. data
o This motivates the study of new observables
which can be more discriminant for specific effects [e.g. associated production]

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13 /33


http://arxiv.org/pdf/1903.09185.pdf

.
The current situation in one slide ...

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
e Colour-Singlet Model (CSM) long thought to be insufficient
...not as clear now
[large NLO and NNLO correction to the P spectrum ; but not perfect - need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112
e CSM is doing well for the Py integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313
Colour-Octet Mechanism (COM) helps in describing the Py spectrum
Yet, the COM NLO fits differ a lot in their conclusions owing to their
assumptions (data set, Py cut, polarisation fitted or not, etc.)
Colour-Evaporation Mechanism (CEM) <> quark-hadron duality
tends to overshoot the data at large Pr — issue shared by some COM fits
All approaches have troubles with ep, ee or pp polarisation and/or the 7. data
o This motivates the study of new observables
which can be more discriminant for specific effects [e.g. associated production]
e However, as we will now see, these offer new ways to study DPS

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 13/33


http://arxiv.org/pdf/1903.09185.pdf

N
Universality of NLO NRQCD fits ?
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Part I1I

Photoproduction at mid and high Py

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 15/33



Photoproduction at mid and high Pr

M.Kramer Nucl.Phys.B459:31996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27,173, 2003
LO CSM also fails in photoproduction at HERA
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M. Kramer, Nucl.Phys.B459:3 199
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M.Kramer Nucl.Phys.B459:31996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27,173, 2003
LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199
In 2009-2010, theory updates, along with polarisation studies, ...

Taking into account the ay corrections,
color-singlet production alone does not describe all fea-
P. Artoisenet ef al. PRL 102 (2009) 142001 tures of the data collected at HERA. With a natural choice
for the renormalization scale, the predicted rate is smaller
than data,
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[19,20] show clear evidence of the existence of CO pro-
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’ — Let us revisit this in view of the EIC prospects
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Is the CSM after all a good baseline ?

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

10!
H1 data: HERA2 [EPIC 68, 401 (2010)] H
H1 data: HERA2 (EPIC 65,401 (2010)) (B — )/ subtracted)
. Prompt CS QCDLO 575
10°

I

107! V+g—’1/’+g@0¢0¢g2 [LO]

102 CTI4NLO

103 F 20% FD W'= /%)

<Ojy> =145GeV?

104

do(ep —J/pX)/dP? [nb/GeV?]

5 [ vs=319Gev

107 F 2 <25Gev?
Pr>1GeV

03<2<09

1076 | 60GeV < W, <240 GeV

HELAC-Onia 2.5.0

1 10 100
Pf [Gev?]
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10!
H1 data: HERA2 [EPIC 68, 401 (2010)] H
H1 data: HERA2 (EFIC 8 401 2010)) (B )/ sublrated) o
. Prompl CS QD LO 155
100 B Prompt CS QEDLO -

P

107! )’+g—’1//+g@0¢0¢g2 [LO]

CTI4NLO iy ):’. w Y + q— w + q @ 0(3 [NEW ']

102

103 F 20% FD W'= /%)

<Opi> =145GeV?

do(ep —J/pX)/dP? [nb/GeV?]

o
1074 s @
z ~
= 3
Vs =319 GeV' Cs g
s LY A 5
107 F @2 <25Gev? = o
Pr>1GeV = L{)
03<z<09 = f}
1076 |+ 60 GeV < W, <240 GeV - =
1 10
Pf [Gev?]
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Is the CSM after all a good baseline ?

do(ep — J/§ X)/dP} [nb/GeV?]

10!

100 &

107!

102

103

104

10°

106

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

H1 data: HI

20% FD (¢~ J/4)
<Ojy> =145GeV?

03<z<09
60 GeV < W, <240 GeV

H1 data: HERA2 [EPIC 63, 401 (2010)] H-
[ERA2 (EPIC 68, 401 (2010)] (B — ]/ subtracted) -
Prompt CSQCD LO 1575
Prompt CS QED LO ©-

J/+c LO VENS 27 S

HF = PR = mg
me=15GeV
CTI4NLO

HELAC-Onia 2.5.0

10 100

(IJCLab)

P? [GeV?]

Quarkonium production

{

y+g—>v+g@aal [LO]

y+c—>y+c @ aa’w. 4 Flav.
y+g—y+c+i @ aodw. 3 Flav.

[also NEW !]
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Is the CSM after all a good baseline ?

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

10!
H1 data: HERA2 [EPJC 68, 401 (2010)) HO-
HI data: HERA2 [EPIC 68, 401 (2010)] (B — J/ subtracted) +#
. Prompl CSQCDLO 55
100 Prompt CS QED LO

P

Prompt CS (QCDNLO® + J/§p+c LOVFNS + QEDLO}

107! )’+g—’1//+g@0¢0¢g2 [LO]

CTINLO L:y Y:. o y + q — w =+ q @ 0(3 [NEW ']
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03<2<09
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[also NEW !]
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Is the CSM after all a good baseline ?

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

10!
a: HERA2 [EPIC 68, 401 (2010)) HOH
1 dota HERA2 71 101 206
: PGS QD10 55
100 pt CS QED LC
4 aconton i v
& VENS + QEDLO) ) —
% o o ( y+g > y+g@aa’ [LO]
>y WE = JR = M7
= m, = 15GeV
— ~F14N y 2
o 10-2 L L L2 CTI4NLO o) '
g WV tqg o ytq@a’ [NEW!]
>_:<'_ 103 £ 20% FD (9~ J/§) R y . ) 2
= <Op> =145 GeV' . Y - y ¢ + D PHCE2Y+c@ aagw. 4 Flav.
1 7 . Jiw -
LTy e : 4 %w c y+g—y+c+i @ aodw. 3 Flav.
£ > i L
o = 3¢ Ca 4
10° & s e SEm 10 [also NEW !]
Pr>1GeV P i X
05 %2<09 ) E ”/“ Y+g—’1#/+g+g@ “a LO
10—6 60 GeV < W, <240 GeV * £
— V+q_’W+g+q@0‘0‘s
1 10 100

Pf [GeV?|
@ LO QCD does a good job at low P
@ LO QED much harder but small normalisation [will matter at EIC]
@ J/y+charm: starts to matter at high Pr [will also matter at EIC]
@ NLO™) close the data, the overall sum nearly agrees with them
o

Agreement when the expected B — J/y feed down (always overlooked) is subtracted

— will restrict to CSM for EIC predictions
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Predictions for the EIC : inclusive production
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Predictions for the EIC : inclusive production
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HELAC-Oni

Quarkonium production

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

@ At,/sep = 45 GeV, one enters the
valence region

@ Yield measurable up to Py = 10 GeV
with £ =100 fb™!
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Predictions for the EIC : inclusive production

ratio w.r.t.

Prompt CS
(QCD NLO*+QED LO)

do (ep —J/¢ X)/dPt [nb/GeV]

-
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1ev/2GeV/100 b
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Prompt CSLO QCD £
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HELAC-Oni

Quarkonium production

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

@ At,/sep = 45 GeV, one enters the
valence region

@ Yield measurable up to Py = 10 GeV
with £ =100 fb™!

@ QED contribution leading at the

largest measurable Pr
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Predictions for the EIC : inclusive production

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264
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Predictions for the EIC : inclusive production

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

o HE= I'R‘ =mq ‘ ‘ ‘
100 me = 15GeV
CT14NLO
101 Prompt CS (QCD NLO* 4 J/+c LO VENS + QED LO)
%10_2 J— @ At /Sep =140 GeV, Py range up to
g s oo 15-20 GeV
5 103 Pr>1GeV ] . .
£ new<w,<oce | @ photon-gluon fusion remains
o -
S104 %D (=) dominant
i AN
T10° @ J/w+ 2 hard partons dominant for
sl Pr ~10-15GeV
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07 @ Could lead to J/y + 2 jets with
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o
1 b @ A priori the leading jet; recoils on
509 . .
208 the ] /y+ jet, pair
299 0% .
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

VENS = 3FS[1-(1-¢,)2)] + (4FS - CT)%e, | VENS (o IC) &
=01 5= 45 Gey @ Same LO VENS computation as for
Q% < 1Gev? X .
_ imsages J/w+charm contributing to J/y + X
0 cngan 1 Gey < W <206V except for the detection efficiency e:
5 VENS =
10

1ev./2 GeV./10 fbr!

do(ep —J/¢ c)/dPr [nb/GeV]

3ESx (1-(1—€)?) + (4FS—CT) x ¢
A @ At /5¢p = 45 GeV, yield limited to low
m, = 1.5 GeV

Pr even with £ =100 fb~!
3" @ Butitis clearly observable if ¢, = 0.1
! : ’ Py [Gev] ‘ ° ® @ Azimuthal distribution could be studied
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

- VENS = 3F$*[1-(1-))] + (4FS - CT)*e. VENS (no IC) &5t
=0t @ Same LO VENS computation as for
G {2;;3:\/:: e i::%"zé . J/w+charm contributing to J/y + X
z Pr> 16 except for the detection efficiency e:
%\10_4 . 20 GeV < Woyp, <100 GeV VFNS -
R . 3FSx (1-(1-€)?) + (4FS-CT) x ¢
gws | @ At /Sy =45 GeV, yield limited to low
e Pr even with £ =100 fb~!
- . . =S @ Butitis clearly observable if ¢, = 0.1
Pr(GeV) @ Azimuthal distribution could be studied
@ At /sy =140 GeV, Pr range up to
10-12 GeV

Could be observed via charm jet
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264
“« VENS = 3FS*[1-(1-))] + (4FS - CT)*, VENS (no IC) &5
=01 @ Same LO VENS computation as for
i S mowey J/w+charm contributing to J/y + X
3 0.05<2z<09 <Opy> =145 GeV? . .
d Pro1GeV except for the detection efficiency e:
":_, 104 20 GeV < Woyp, <100 GeV
£ hoseue VENS =
P 3FSx (1-(1-¢€)*) + (4FS—CT) x
2 e @ At /5¢p = 45 GeV, yield limited to low
1ev./2.Gev/100 f] . _
) Pr even with £ =100 fb™!
v 1 @ Butitis clearly observable ife, = 0.1
2 4 6 8 10 12 14

J.P. Lansberg (IJCLab)

@ Azimuthal distribution could be studied
@ At /sy =140 GeV, Pr range up to
10-12 GeV
@ Could be observed via charm jet
@ Rates could be enhanced by colour
transters when My, .. —> My, +me
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J/w+charm associated production at the EIC

VENS = 3FS*[1-(1-¢)%)] + (4FS - CT)*e,
£=0.1

N

Vs =140 GeV
Q< 1GeV2
005<2<09
Pr>1GeV

Lev/2.Gev/L!

VENS (no IC) 5%

me=15GeV
MF = PR =mr
<0;y> = 145GeV?

20 GeV < Woyp, <100 GeV

1ev/2.GeV/10 b

do(ep =]/ c)/dPr [nb/GeV]

1ev./2.GeV/100 fb!

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

@ Same LO VENS computation as for

J/w+charm contributing to J/y + X
except for the detection efficiency e:
VENS =

3ESx (1-(1—€)?) + (4FS—CT) x ¢
At | /5¢p =45 GeV, yield limited to low
Pr even with £ =100 fb~!

But it is clearly observable if e, = 0.1
Azimuthal distribution could be studied
At | /Sep =140 GeV, Pr range up to
10-12 GeV

Could be observed via charm jet
Rates could be enhanced by colour
transters when My, .. —> My, +me

@ 4FS yc — J/yc could be enhanced by intrinsic charm

J.P. Lansberg (IJCLab)
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

VENS = 3FS*[1-(1-¢)%)] + (4FS - CT)*ec VENS (no IC) 553
€e=0.1 VFNS (SEA-like IC) 75

10?

@ Same LO VENS computation as for

103 e J/w+charm contributing to J/y + X
005<2<09 <Op> =145 GeV? . R
P> 16 except for the detection efficiency e:

20 GeV < W, <100 GeV

1ev/2.Gev/1 b

VENS =
3ESx (1-(1—€)?) + (4FS—CT) x ¢

@ At /Sy =45 GeV, yield limited to low
Pr even with £ =100 fb~!

@ But it is clearly observable if e, = 0.1

@ Azimuthal distribution could be studied

1ev/2.GeV/10 )

do(ep — ]/ ¢)/dPr [nb/GeV]
5

1ev/2.GeV/100 b7

g @ At /sy =140 GeV, Pr range up to
- 10-12 GeV
N @ Could be observed via charm jet
o @ Rates could be enhanced by colour
’ ' " e ’ ’ ! transters when My, .. —> My, +me

@ 4FS yc — J/yc could be enhanced by intrinsic charm
@ Small effect at | /5., = 140 GeV [We used IC ¢(x) encoded in CT14NNLO]
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

VENS = 3FS*[1-(1-¢c)?) ] + (4FS - CT)*e. VENS (no IC)
10? =01 Y URNS (BHIS C) o @ Same LO VFNS computation as for
10 éﬂ;jﬁgg‘f\: E'B: ,1;::5] a&mi J/w+charm contributing to J/y + X
Pr>1Ge N except for the detection efficiency e:

. 20 GeV < Wy <100 GeV 4
1ev./2.GeV.1 b

VENS =
3ESx (1-(1—€)?) + (4FS—CT) x ¢
@ At /Sy =45 GeV, yield limited to low
Pr even with £ =100 fb~!
@ But it is clearly observable if e, = 0.1
@ Azimuthal distribution could be studied
@ At /sy =140 GeV, Pr range up to
10-12 GeV
@ Could be observed via charm jet
ol ‘ ‘ ‘ ‘ ‘ i @ Rates could be enhanced by colour
Pr [Gev] transfers when Mjpyse = Mypy +me

1ev./2.GeV/10 fb!

do(ep = J/ ¢)/dPr [nb/GeV]
o
3
3

1ev./2.GeV100. b

HELAC-Onia 2.5.0

ratio w.r.t. VFNS (no IC)

@ 4FS yc — J/yc could be enhanced by intrinsic charm
@ Small effect at | /5., = 140 GeV [We used IC ¢(x) encoded in CT14NNLO]
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J/w+charm associated production at the EIC

. . . . C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264
VENS = 3FS*[1-(1-¢¢)%)] + (4FS - CT)*e VENS (no IC) &5

10% €= 01 P Gey @ Same LO VENS computation as for
3 S5 509 h ibuti X
g LB <a s J/w+charm contributing to J/y +
217 1 GV < Mop <206V except for the detection efficiency e:
| VENS =
S peen — 3ESx (1-(1—€)?) + (4FS—CT) x ¢
Swef SN - @ At /5o = 45 GeV, yield limited to low
N me —}{thV Pr even with £ =100 fb~!

7 L 3
WP Ee | @ Butit is clearly observable if e, = 0.1
' : Y e @ Azimuthal distribution could be studied
@ At /sy =140 GeV, Pr range up to
10-12 GeV

@ Could be observed via charm jet
@ Rates could be enhanced by colour
transters when My, .. —> My, +me

@ 4FS yc — J/yc could be enhanced by intrinsic charm
@ Small effect at | /5., = 140 GeV [We used IC ¢(x) encoded in CT14NNLO]
@ Measurable effect at , /5¢;, = 45 GeV
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J/w+charm associated production at the EIC

VENS = 3FS*[1-(1-¢)%)] + (4FS - CT)*, VENS (no IC) £5%
s VENS (SEA-like IC) £7
10% ey Ee=01 Vs =45 GeV
= 4 Q* <1Gev?
NN 777 0.05<2<09
) . AN\ s Pr>1Gev
210 ¢ NN\ 10 GeV < W,y < 20 GeV
= 1ev./2 GeV/1 b BSSNINER
[ N\ 177
g DN
Ti05 L R 7
510 LLL
= 1ev./2 GeV/10 b X
T N
o
2100
Y 1.ev./2 GeV./100.fb
= >
mg = 1.5GeV i

= iR = Ty
01> =145 GeV?

ratio w.r.t. VENS (no IC)

NS
N
NN

\
\ \
DTS
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Pr[GeV]

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

Same LO VENS computation as for
J/w+charm contributing to J/y + X
except for the detection efficiency e:
VENS =

3ESx (1-(1—€)?) + (4FS—CT) x ¢
At | /5¢p =45 GeV, yield limited to low
Pr even with £ =100 fb~!

But it is clearly observable if e, = 0.1
Azimuthal distribution could be studied
At | /Sep =140 GeV, Pr range up to
10-12 GeV

Could be observed via charm jet

Rates could be enhanced by colour
transters when My, .. —> My, +me

@ 4FS yc — J/yc could be enhanced by intrinsic charm
@ Small effect at | /5., = 140 GeV
@ Measurable effect at , /5¢;, = 45 GeV

J.P. Lansberg (IJCLab)

[We used IC ¢(x) encoded in CT14NNLO]
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J/w+charm associated production at the EIC

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264
VENS = 3FS*[1-(1-¢)%)] + (4FS - CT)*, VENS (no IC) &5

- =0 fioss el ] @ Same LO VENS computation as for

g AP J/w+charm contributing to J/y + X
CEl AN 10CeV < Wop <20 Ge¥ except for the detection efficiency e:
| : VFNS =

= peaceon! 3ESx (1-(1—€)?) + (4FS—CT) x ¢
Swef @ At /Sy =45 GeV, yield limited to low

Pr even with £ =100 fb~!
@ But it is clearly observable if e, = 0.1
@ Azimuthal distribution could be studied
@ At /sy =140 GeV, Pr range up to
10-12 GeV
@ Could be observed via charm jet
| @ Rates could be enhanced by colour

1 2 * e s 6 transters when My, .. —> My, +me

IR

NI
MBI

ratio w.r.t. VENS (no IC)

NN
2RLMINN

\\\\\\\\\,\A SIS

@ 4FS yc — J/yc could be enhanced by intrinsic charm
@ Small effect at | /5., = 140 GeV [We used IC ¢(x) encoded in CT14NNLO]
@ Measurable effect at /5., = 45 GeV: BHPS valence-like peak visible !
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Part IV

Associated-quarkonium production
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Going further with associated-quarkonium production
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Going further with associated-quarkonium production

See section 3 of JPL, arXiv:1903.09185 [hep-ph]

Observable perime RQCD e
I/ LHCb, CMS, ATLAS, DO NLO, NLO Lo Prod. Mechanism (CS dominant) +
(+NA3) NNLO* DPS + gluon TMD

J/P+D LHCb LO Lo? Lo Prod. Mechanism (c to J/psi
fragmentation) + DPS

J/p+Y DO (N)LO NLO LO Prod. Mechanism (CO dominant) +
DPS

J/P+hadron STAR Lo - Lo B feed-down; Singlet vs Octet
radiation

J/+Z ATLAS NLO NLO Partial Prod. Mechanism + DPS

NLO

/W ATLAS LO NLO NLO (?) Prod. Mechanism (CO dominant) +
DPS

J/ vs mult. ALICE,CMS (+UA1) - - - Initial vs Final state effects ?

J/in jet. LHCb, CMS LO - LO Prod. Mechanism (?)

J/P(Y) + jet - - - Prod. Mechanism (QCD corrections)

Isolated J/(Y) | - = = = Prod. Mechanism (CS dominant ?)

J/+b - - - LO Prod. Mechanism (CO dominant) +
DPS

Y+D LHCb Lo Lo? LO DPS

Y+y - NLO, Lo? LO Prod. Mechanism (CO LDME mix) +

NNLO* gluon TMD/PDF

Y vs mult. CMS = = =

Y+Z - NLO Lo? LO Prod. Mechanism + DPS

Y+Y CMS NLO ? NLO Lo? Prod. Mechanism (CS dominant ?) +
DPS + gluon TMD
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Part V

Quarkonium-pair production
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On the importance of QCD corrections to J/y + J/y production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the PVT/V spectrum is & (P#W): 2 — 2 topologies
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On the importance of QCD corrections to J/y + J /¢ production

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the PVT/V spectrum is & (P#W): 2 — 2 topologies
[«> interest for TMD studies]

@ It can be affected by initial parton kr
@ By far insufficient (blue) to account for the CMS measured spectrum
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On the importance of QCD corrections to J/y + J/y production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the PVT/V spectrum is & (P#W): 2 — 2 topologies
@ It can be affected by initial parton kr [« interest for TMD studies]
@ By far insufficient (blue) to account for the CMS measured spectrum

1 E R\K\W LO SPS+smearmg (xs E
~ 1n-1f FEE NLO® o
20 o
O 107200 .
£ 10 b= I
T
3 10_5 1 R
3 0
b 10_6§
< _.F 7TeVeLHC
10~"= CMS Accep.
—8f . ) ‘
1075 0 W 60
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@ NLO a? contributions are crucial here and do a good job even up to the largest PVT’W
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On the importance of QCD corrections to J/y + J/y production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the PVT/V spectrum is & (P#W): 2 — 2 topologies
@ It can be affected by initial parton kr [« interest for TMD studies]
@ By far insufficient (blue) to account for the CMS measured spectrum

1 E R\K\W LO SPS+smearmg (xs E
~ 1n-1f FEE NLO® o
2 0 e
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s 1074
e
S
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< _.F 7TeVeLHC
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—8f . ) ‘
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P} (Gev)
@ NLO a? contributions are crucial here and do a good job even up to the largest

@ We do not expect NNLO (a?) contributions to matter where one currently has data
[the orange histogram shows one class of leading Py af contributions ]
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On the importance of QCD corrections to J/y + J /¢ production

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

@ At Born (LO) order, the PVT/V spectrum is & (P#W): 2 — 2 topologies

@ It can be affected by initial parton kr

[«> interest for TMD studies]

@ By far insufficient (blue) to account for the CMS measured spectrum

W\V LO SPS+smea.rmg og 4
i NLO" o,

Yecy o

da/dPy [pb/2.5 GeV]

do/dPY (nb/GeV)

7 7TeVe@LHC
10~ CMS Accep. =

-8 . . |
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Prompt J/y+J/ production at ¥s=8 TeV LHC

NLO'sPs 53
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@ NLO a? contributions are crucial here and do a good job even up to the largest P;fw

@ We do not expect NNLO (a®) contributions to matter where one currently has data
[the orange histogram shows one class of leading Py af contributions ]

@ Confirmation at larger P#V/ with ATLAS data !
i e i
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|
J/w+]]w atlow Plpl: where LHCD can contribute

@ J/v: relatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85
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J/w+]]w atlow P?W: where LHCD can contribute

@ J/v: relatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85

@ Negligible gg contributions even at AFTER@LHC
(v/s = 115 GeV) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
@ Atlower energies (AMBER, SPD), g4 contributions
need to computed
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@ J/v: relatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; DO PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85

@ Negligible gg contributions even at AFTER@LHC
(v/s = 115 GeV) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
@ Atlower energies (AMBER, SPD), g4 contributions
need to computed
@ Negligible CO contributions, in particular at low
ijfw [black/dashed curves vs. blue; log. plot]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07 (2013) 051

@ No final state gluon needed for the Born

contribution: pure colourless final state
JPL, H.S. Shao PRL 111, 122001 (2013)
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@ Negligible gg contributions even at AFTER@LHC
(v/s = 115 GeV) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
@ Atlower energies (AMBER, SPD), g4 contributions
need to computed
@ Negligible CO contributions, in particular at low
ijfw [black/dashed curves vs. blue; log. plot]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07 (2013) 051

@ No final state gluon needed for the Born

contribution: pure colourless final state
JPL, H.S. Shao PRL 111, 122001 (2013)

@ In the CMS & ATLAS acceptances (Pr cut), small
DPS effects, but required by the data at large Ay
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@ Negligible gg contributions even at AFTER@LHC
(v/s = 115 GeV) energies
J.P.L., H.S. Shao NPB 900 (2015) 273
@ Atlower energies (AMBER, SPD), g4 contributions
need to computed
@ Negligible CO contributions, in particular at low
ijfw [black/dashed curves vs. blue; log. plot]
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@ No final state gluon needed for the Born

contribution: pure colourless final state
JPL, H.S. Shao PRL 111, 122001 (2013)

@ In the CMS & ATLAS acceptances (Pr cut), small
DPS effects, but required by the data at large Ay

do/dP’ (nb/GeV)

10

do/dAy [pb/0.3]
I
7

F DPS Pred.
——
1= 3
i 4 ]
-
T
S0 e

[ LO SPS+smearing  §
[f#% NLO* SPS

N
- ig;hraé:\ max

7TeVaLHC
CMS Accep.

20 30 4C
PY (Gev)

ls=8Tev,11.4 fo*

Tops = 9.20 £ 2.1%
e Data =
© DPS Estimate

_?_

-2
0% 05 1 15 2 25 3 35 4

Dy, I)

@ DPS in LHCD data [kinematical distributions a priori under-control : independent scatterings]
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A puzzle at large Ay (or My,) ?
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A puzzle at large Ay (or My,) ?
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The most natural solution for this excess is the independent production of two J/w

— | double parton scattering ‘
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
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@ Even though we find it a natural, accounting for DPS introduces another parameter
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@ How to check that one is not playing with a further d.o.f. on the theory side?
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JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

X ' . P /
We define FV,;, (FW) as the fraction of events containing at least one y. (¢')
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Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns
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We define FV,;, (FW) as the fraction of events containing at least one y. (¢')

Under DPS dominance (e.g. large Ay), 0P = 22 % (m: symmetry factor)

Xe _ pXe Xe direct v’ vy ' direct Xe direct _ ¢ pdirect)2
Fyy = Byt x (FyS +2Fg + 2F) ), Fiy, = Fy x (Fy +2Fy"t 4 2F )7 ), Fguect = (Fyiree!)
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

X ' . P /
We define FV,;, (FW) as the fraction of events containing at least one y. (¢')

Under DPS dominance (e.g. large Ay), 0P = 22 % (m: symmetry factor)

Xe _ pXe Xe direct v’ vy ' direct Xe direct _ ¢ pdirect)2
Fyy = Byt x (FyS +2Fg + 2F) ), Fiy, = Fy x (Fy +2Fy"t 4 2F )7 ), Fguect = (Fyiree!)

° Unc%er SPS CSM dominance,
° F:!///V/ is slightly enhanced by symmetry factors,

° F%, unlike single quarkonium production, is not enhanced and is found to be small
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

X ' . P /
We define FV,;, (FW) as the fraction of events containing at least one y. (¢')

Under DPS dominance (e.g. large Ay), 0P = 22 ‘;"—‘:f" (m: symmetry factor)

Xe _ X Xc direct ‘l/’ 1/” _ W, ‘/’I direct Xc direct _ direct\2
Fyy = Byt x (FyS +2Fg + 2F) ), Fiy, = Fy x (Fy +2Fy"t 4 2F )7 ), Fguect = (Fyiree!)

° Unc%er SPS CSM dominance,
° Fz,/v, is slightly enhanced by symmetry factors,

° F%, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: | (CSM) SPS | Low Py DPS | High Py DPS
Fv"ju, 50% 15% 15%
Fl% small 25% 50%

@ Based on up-to-date feed-down values (J/v is 80% direct at low Pr)  jpL. arXiv:1903.09185
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Predictions: excited states and more

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
@ Even though we find it a natural, accounting for DPS introduces another parameter
@ How to check that one is not playing with a further d.o.f. on the theory side?
@ DPS vs SPS dominance are characterised by different feed-down patterns

X ' . P /
@ We define FV,;, (FW) as the fraction of events containing at least one y. (¢')

@ Under DPS dominance (e.g. large Ay), 60FS = 2 % (m: symmetry factor)
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Fyy = Byt x (FyS +2Fg + 2F) ), Fiy, = Fy x (Fy +2Fy"t 4 2F )7 ), Fguect = (Fyiree!)

° Unc%er SPS CSM dominance,
° F:!///V/ is slightly enhanced by symmetry factors,

° F%, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: | (CSM) SPS | Low Py DPS | High Py DPS
F%, 50% 15% 15%
Fl% small 25% 50%

@ Based on up-to-date feed-down values (J/v is 80% direct at low Pr)  jpL. arXiv:1903.09185
@ Hence the importance of measuring J/y + ¢/ and J /vy + x.
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Even though we find it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by different feed-down patterns

X ' . P /
We define FV,;, (FW) as the fraction of events containing at least one y. (¢')

Under DPS dominance (e.g. large Ay), 0P = 22 % (m: symmetry factor)

Xe _ pXe Xe direct v’ vy ' direct Xe direct _ ¢ pdirect)2
Fyy = Byt x (FyS +2Fg + 2F) ), Fiy, = Fy x (Fy +2Fy"t 4 2F )7 ), Fguect = (Fyiree!)

° Unc%er SPS CSM dominance,
° F:!///V/ is slightly enhanced by symmetry factors,

° F%, unlike single quarkonium production, is not enhanced and is found to be small

@ Overall: | (CSM) SPS | Low Py DPS | High Py DPS
F%, 50% 15% 15%
Fl% small 25% 50%

@ Based on up-to-date feed-down values (J/v is 80% direct at low Pr)  jpL. arXiv:1903.09185
@ Hence the importance of measuring J/y + ¢/ and J /vy + x.

@ J/v + 1, can also tell something about DPS and about o.¢
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Harvesting quarkonium data: 5 extractions using theory
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Harvesting quarkonium data: 5 extractions using theory
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@ J/y+J/w LHCD region: SPS computations with too large uncertainties to conclude
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Harvesting quarkonium data: 5 extractions using theory
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@ J/y+charm and Y+charm data point at g ~ 20 mb
@ J/y+J/w LHCD region: SPS computations with too large uncertainties to conclude
@ Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio

@ J/w+Y data clearly points at a very large DPS

DO PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001
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Harvesting quarkonium data: 5 extractions using theory

30 o1 ATLAS (J/+WZ, Lansberg-Shao-Yamanaka)
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@ J/y+charm and Y+charm data point at g ~ 20 mb
@ J/y+J/w LHCD region: SPS computations with too large uncertainties to conclude
@ Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
@ J/w+Y data clearly points at a very large DPS
DO PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001
@ Except for both LHCDb extractions, all the quarkonium-based extraction point at
very small o.¢ values: dependence on the flavour, the rapidity or the scale(s) ?
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Part VI

Quarkonium-pair production at the LHC and
gluon TMDs
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

——

(= Mo MG, ) SR
a>Nb

= helicity non-flip, azimuthally independent
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

——

(= Mo MG, ) SR
a>’b
= helicity non-flip, azimuthally independent

F,
—_——

+( §MMM3,_A) Clwa x HEShe]
= double helicity flip, azimuthally independent
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
F

——

(= Mo MG, ) SR
a>’b
= helicity non-flip, azimuthally independent

F,
—_——

+ ( %Ml,lMil,—l) C[Wz X hf_ghi-g]

= double helicity flip, azimuthally independent
F;

Y Vi 1.
+( A%b MlanM—Ag,Ah) C[W3 X lghlg] +

{a = b}
= single helicity flip, cos(2¢)-modulation
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gg fusion in arbitrary unpolarised process [colourless final state]

do88 <
B

——

(= Mo MG, ) SR
a>’b
= helicity non-flip, azimuthally independent

F,
—_——

+ %M“Mﬁ,_a) Clwa xRy €]

= double helicity flip, azimuthally independent
F;

Y Vi 1.
+( A%b MlanM—Ag,Ah) C[W3 X lghlg] +

{a = b}
= single helicity flip, cos(2¢)-modulation

Fy
—

+ ( Z M)L,—)\Mil)l) C[W4 X highfg]
A
= double helicity flip, cos(4¢)-modulation
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TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217
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N
TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

° flg modelled as a Gaussian in IZT : flg (x, EZT) = % exp (%)
T T

where g(x) is the usual collinear PDF

o First experimental determination [with a pure colorless final state] of <k%~>
by fitting C[ff] over the normalised LHCb do /dPyy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb
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TMD modelling : f{ and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

o £ modelled as a Gaussian in kr fx, EZT) = g((x)) exp ( i kz))
where g(x) is the usual collinear PDF
e First experimental determination [with a pure colorless final state] Of (k7.)
by fitting C[ff] over the normalised LHCb do /dPyy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb

o 04 . . . .
E Gaussian fJ, <k?> fit —
= over [0 ;<MW>/2]
'g_ 03 i
o LHCb data without DPS
3 02 ] <M,>-8GeV 1
% <k&> =3.3+0.8 GeV?
=
Lo 01 H ++ reducedx =0.36
~
a
g
z ol .
S 0 2 4 10 12
Py [GeV] (@)
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TMD modelling : f{ and the relevance of the LHCb data
JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217
o £ modelled as a Gaussian in kr fx, EZT) ((x)) exp ( ) )
where g(x) is the usual collinear PDF

o First experimental determination [with a pure colorless final state] of <k%~>
by fitting C[ff] over the normalised LHCb do /dPyy, spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb

o 04 . , . ; i

E Gaussian 1, <k il — @ Integration over ¢ = cos(n¢)-terms

= over [0 <M, >/2] cancel out

s 03 1 @ F, < F; = only C[f*f*] contributes to

o LHCb data without DPS +—+— O Y hf]

g | | the cross-section
o 02 <Myy> =8 GeV ,| @ Noevolution so far: (k%) ~ 3 GeV?
3 <Kf>=33+0.8 GeV accounts both for non-perturbative and
=01 + reduced 1* = 0.36 | perturbative broadenings at a scale close
n_’g_ to M‘VV/ ~ 8 GeV

z 0 o s 4 & 5 10 = @ Disentangling such (non-)perturbative
b Pyy, [GeV] (@) effects requires data at different scales
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|
Switching on TMD evolution

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87
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|
Switching on TMD evolution

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

o With a fit we obtained
(k%) ~ 3 GeV?
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|
Switching on TMD evolution

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87
o With a fit we obtained
2 2
(k7) ~ 3 GeV

@ Let us compare such a value
with what a proper NLL
evolution up to the scale
Myy ~ 8 GeV would give
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|
Switching on TMD evolution

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

. . Gaussian <k#> = 3.3 + 0.8 Gev2 —
o With a fit we obtained

Evolved f@ , brjim € [2;8] GeV!

<k%> ~ 3 GeV?2 T o5 LHCb data with DPS subtracted

=)
@ Let us compare such a value i

with what a proper NLL £ oosf

evolution up to the scale 2 .

Myy ~ 8 GeV would give 3
= <Myy> = 8 GeV
%g 0 L L L L L L L )
E 0 0.5 1 1.5 2 25 3 3.5 4

Pyyy [GeV]
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Switching on TMD evolution

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

. . Gaussian <k#> = 3.3 + 0.8 Gev2 —
o With a fit we obtained

Evolved f@ , brjim € [2;8] GeV!

<k%> ~ 3 GeV?2 ”; 05 - LHCb data with DPS subtracted
e
@ Let us compare such a value o
with what a proper NLL £ oosf
evolution up to the scale 3.
My, ~ 8 GeV would give ¥
yy e oal
Z <Myy> = 8 GeV
@ Evolution effects are S
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. . Gaussian <k#> = 3.3 + 0.8 Gev2 —
o With a fit we obtained
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LO predictions for quarkonia - NLOAccess [in2p3.fr/nloaccess]

NLOAccess

Home Theproject~  News -

GENERAL DESCRIPTION FOLLOW:

Objectives:

NLOAccess will give access to automated tools generating scientific codes allowing anyone to evaluate
observables -such as production rates or kinematical properties - of scatterings involving hadrons. The
automation and the versatility of these tools are such that these scatterings need not to be pre-coded. In
other terms, it is possible that a random user may request for the first time the generation of a code to
compute characteristics of a reaction which n dy thought of before. NLOAccess will allow ti

test the code and then to download to run it on its own computer. It essentially gives access to a

Avnamical lihran:

e user to
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https://nloaccess.in2p3.fr/

N
HELAC-Onia Web [in2p3.fr/nloaccess/HO]

HELAC-Onia Web  RequestRegistration  References  Contact us “ILogin

université >

PARIS-SAGLAY

Automated perturbative calculation with HELAC-Onia Web

Welcome to HELAC-Onia Web!

HELAC-Onia ia an automatic matrix element generator for the calculation of the heavy
quarkonium helicity ampli in the of NRQCD

The program is able to calculate helicity amplitudes of multi P-wave quarkonium states
production at hadron colliders and electron-positron colliders by including new P-wave
off-shell currents. Besides the high efficiencies in ion of multi-leg

within the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing
with P-wave quarkonia and P-wave color-octet intermediate states.

Already registered to the portal? Please login.

Do you not have an account? Make a registration request.

STR@NG
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