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Part I

Quarkonium production mechanisms
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Approaches to Quarkonium Production

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

No consensus on the mechanism at work in quarkonium production
Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ̄, and its hadronisation into a meson

Di�erent approaches di�er essentially in the treatment of the hadronisation
3 fashionable models:

1 Colour Evaporation Model: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) so� gluons ?

2 Colour Singlet Model: hadronisation w/o gluon emission; each emission
costs αs�mQ� and occurs at short distances; bleaching at the pair-production time

3 Colour Octet Mechanism (encapsulated in NRQCD): higher Fock states of
the mesons taken into account; QQ̄ can be produced in octet states with
di�erent quantum # as the meson; bleaching with semi-so� gluons ?
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CEM vs. CSM vs. COM in a little more details

1 Colour Evaporation Model
any QQ̄ state contributes to a speci�c quarkonium state
colourless pair via a simple 1/9 factor
one non-perturbative parameter per meson, supposedly universal

2 Colour Singlet Model
colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to

the Schrödinger wave function at the origin� no free parameter
this parameter is �xed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)
3 Colour Octet Mechanism
one non-perturbative parameter per Fock State
expansion in v2; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and

to a speci�c quarkonium polarisation
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Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);
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ë Perturbative creation of 2 quarks Q and Q̄ BUT
ß on-shell (�)
ß in a colour singlet state
ß with a vanishing relative momentum
ß in a 3S1 state (for J~ψ, ψ� and Υ)

ë Non-perturbative binding of quarks � Schrödinger wave function
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CDF, PRL 79:572 & 578,1997
CDF, PRL 88:161802,2002
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QCD corrections to the CSM for Υ at colliders

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025
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Attention: the NNLO� is not a complete NNLO
See a recent study by H.S. Shao JHEP 1901 (2019) 112 Υ�3S�: 60 % direct; Υ�2S�:60-70 %
direct; Υ�1S�: 50-70 % direct
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Colour Octet Mechanism Dominance : not so simple

Color Octet Mechanism: physical states can be produced by coloured pairs
NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovich,...

ÞHeavy-quark line can connect to one or two gluons, not necessarily three
4 Gluon fragmentation then LO in αS: larger rates
Þ CO fragmentation� Long Distance Matrix Elements (LDMEs)
ÞWhen Pgluon Q, the gluon is nearly on-shell and transversally pol.
Þ NRQCD spin symmetry:Q has the same polarisation as the gluon
7 Experimentally, this is clearly contradicted !

Þ Yields expected to peak near end points in e�e� � J~ψX and γp� J~ψX
(even a�er SCET resummation)

7 Such peaks have never been seen: LDME �ne tuning ...
7 Cannot describe both the high-PT and PT-integrated hadroproduction yields
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QCD corrections to the COM – NRQCD

At LO, PT spectrum driven by the combination
of 2 CO components : 3S�8�1 vs. 1S�8�0 & 3P�8�

J

ψ data: a little less hard than the blue curve

At NLO, the so� component becomes
harder (same e�ect as for CSM)

3P�8�
J becomes as hard as 3S�8�1 and interferes with it; 1S�8�0 a little so�er

Due to this interference, it is possible to make the so�er 1S�8�0 dominant yet
with nonzero 3P�8�

J and 3S�8�1 LDMEs
Since the 3 associated LDMEs are �t, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

What signi�cantly changes is the size of the LDMEs

Polarisation: 1S�8�0 : unpolarised; 3S�8�1 & 3P�8�
J : transverse
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QCD corrections to the CEM PT dependence
JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute
�e gluon fragmentation (� 3S�8�1 ) dominant at large PT
No reason for a change at NLO. �e �t can yield another CEM parameter
value but this will not modify the PT spectrum

Con�rmed by our �rst NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

Tend to overshoot the ψ data at large PT
�e (LO) ICEM not signi�cantly better at large PT Y.Q. Ma, R. Vogt PRD 94 (2016) 114029
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Any CO contribution would create a surplus
Even neglecting the dominant CS, this induces constraints on CO J~ψ LDMEs

via Heavy-Quark Spin Symmetry : `J~ψ�1S�8�0 �e � `ηc�3S�8�1 �e @ 1.46� 10�2 GeV3

Rules out the �ts yielding the 1S�8�0 dominance to get unpolarised yields
Even the PKU �t has now troubles to describe CDF polarisation data
Nobody foresaw the impact of measuring ηc yields: 3 PRL published right a�er the LCHb data

came out (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.F. Zhang et al. 114 (2015) 092006
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To avoid the same situation as with the ψ�2S�, we have performed the �rst
study of its possible prompt production at the LHC

�anks to existing (LHCb, e�e�) data, we identi�ed tractable branchings on
O�10�4�

Using HQSS, we evaluated the theory uncertainty on ηc�2S� production
From the expected yields, we evaluated the expected experimental uncertainties
A forthcoming (LHCb) measurement would further constrain (or exclude) the
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�e current situation in one slide ...
See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

Colour-Singlet Model (CSM) long thought to be insu�cient
. . .not as clear now

[large NLO and NNLO correction to the PT spectrum ; but not perfect� need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

CSM is doing well for the PT integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

Colour-Octet Mechanism (COM) helps in describing the PT spectrum
Yet, the COM NLO �ts di�er a lot in their conclusions owing to their
assumptions (data set, PT cut, polarisation �tted or not, etc.)

Colour-Evaporation Mechanism (CEM)� quark-hadron duality
tends to overshoot the data at large PT – issue shared by some COM �ts
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Universality of NLO NRQCD �ts ?
Plot from M. Butenschön (ICHEP 2012); Discussion in JPL, arXiv:1903.09185
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Part III

Photoproduction at mid and high PT
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Photoproduction at mid and high PT
M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003

LO CSM also fails in photoproduction at HERA
M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, . . .

P. Artoisenet et al. PRL 102 (2009) 142001

M. Butenschoen et al. PRL 104 (2010) 072001

Disagreement not so obvious with the latest H1 data given the theory uncertainties
H1 EPJC (2010) 68: 401

calculation is shown separately

1 GeV as functions of

meson

� Let us revisit this in view of the EIC prospects
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Is the CSM a�er all a good baseline ?
C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264
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LO QCD does a good job at low PT
LO QED much harder but small normalisation [will matter at EIC]
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J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 18 / 33



Predictions for the EIC : inclusive production
C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

√s = 140 GeV

Q2 < 1 GeV2

0.05 < z < 0.9

PT > 1 GeV

20 GeV < Wγp < 80 GeV

µF = µR = mT

mc = 1.5 GeV

CT14NLO

20% FD (ψ′→ J/ψ)
<OJ/ψ

3
S1

[1]

> = 1.45 GeV3

1 ev./2 GeV/1 fb-1

1 ev./2 GeV/10 fb-1

1 ev./2 GeV/100 fb-1

d
σ

(e
 p

 →
 J

/ψ
 X

)/
d

P
T
 [

n
b

/G
eV

]

Prompt CS (QCD NLO★ + J/ψ+c LO VFNS + QED LO)

Prompt CS QCD NLO★
J/ψ+c LO VFNS

Prompt CS QED LO

Prompt CS QCD LO

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

H
E
L
A
C
-
O
n
i
a
 
2
.
5
.
0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20

ra
ti

o
 w

.r
.t

.
P

ro
m

p
t 

C
S

(Q
C

D
 N

L
O
★

+
Q

E
D

 L
O

)

PT [GeV]

J/ψ+c LO VFNS

γ q → J/ψ q g

γ g → J/ψ g g

Prompt CS LO QED

Prompt CS LO QCD

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20

Atºsep � 140 GeV, PT range up to
15-20 GeV
photon-gluon fusion remains
dominant
J~ψ � 2 hard partons dominant for
PT � 10� 15 GeV
Could lead to J~ψ � 2 jets with
moderate PT
A priori the leading jet1 recoils on
the J~ψ� jet2 pair
dσ should scale withMJ~ψ+jet2�MJ~ψ

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 18 / 33



J~ψ�charm associated production at the EIC
C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

Same LO VFNS computation as for
J~ψ�charm contributing to J~ψ �X
except for the detection e�ciency є:
VFNS �
3FS� �1� �1� є�2�� �4FS�CT�� є
Atºsep � 45 GeV, yield limited to low
PT even with L � 100  �1

But it is clearly observable if єc � 0.1
Azimuthal distribution could be studied
Atºsep � 140 GeV, PT range up to
10-12 GeV
Could be observed via charm jet
Rates could be enhanced by colour
transfers whenMJ~ψ�c �MJ~ψ �mc

4FS γc� J~ψc could be enhanced by intrinsic charm
Small e�ect atºsep � 140 GeV [We used IC c�x� encoded in CT14NNLO]
Measurable e�ect atºsep � 45 GeV

: BHPS valence-like peak visible !
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Part IV

Associated-quarkonium production
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Going further with associated-quarkonium production

See section 3 of JPL, arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)
Observables Experiments CSM CEM NRQCD Interest

J/ψ+J/ψ LHCb, CMS, ATLAS, D0 
(+NA3)

NLO,
NNLO*

NLO LO Prod. Mechanism (CS dominant) + 
DPS + gluon TMD

J/ψ+D LHCb LO LO ? LO Prod. Mechanism  (c to J/psi 
fragmentation) + DPS

J/ψ+ϒ D0 (N)LO NLO LO Prod. Mechanism (CO dominant) + 
DPS

J/ψ+hadron STAR LO -- LO B feed-down; Singlet vs Octet 
radiation

J/ψ+Z ATLAS NLO NLO Partial 
NLO

Prod. Mechanism + DPS

J/ψ+W ATLAS LO NLO NLO (?) Prod. Mechanism (CO dominant) + 
DPS

J/ψ vs mult. ALICE,CMS (+UA1) -- -- -- Initial vs Final state effects ?
J/ψ in jet. LHCb, CMS LO -- LO Prod. Mechanism (?)

J/ψ(ϒ) + jet -- -- -- Prod. Mechanism (QCD corrections)
Isolated J/ψ(ϒ) -- -- -- -- Prod. Mechanism (CS dominant ?) 

J/ψ+b -- -- -- LO Prod. Mechanism (CO dominant) + 
DPS

ϒ+D LHCb LO LO ? LO DPS
ϒ+γ -- NLO,

NNLO*
LO ? LO Prod. Mechanism (CO LDME mix) + 

gluon TMD/PDF 
ϒ vs mult. CMS -- -- --
ϒ+Z -- NLO LO ? LO Prod. Mechanism + DPS
ϒ+ϒ CMS NLO ? NLO LO ? Prod. Mechanism (CS dominant ?) + 

DPS +  gluon TMD
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Part V

Quarkonium-pair production
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On the importance of QCD corrections to J~ψ � J~ψ production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

At Born (LO) order, the PψψT spectrum is δ�PψψT �: 2� 2 topologies

It can be a�ected by initial parton kT [� interest for TMD studies]
By far insu�cient (blue) to account for the CMS measured spectrum
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We do not expect NNLO (α6s ) contributions to matter where one currently has data
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Con�rmation at larger PψψT with ATLAS data !
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J~ψ � J~ψ at low PψψT : where LHCb can contribute

J~ψ: relatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85

Negligible qq̄ contributions even at AFTER@LHC
(
º
s � 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

At lower energies (AMBER, SPD), qq̄ contributions
need to computed

Negligible CO contributions, in particular at low
PψψT [black/dashed curves vs. blue; log. plot]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07 (2013) 051

No �nal state gluon needed for the Born
contribution: pure colourless �nal state

JPL, H.S. Shao PRL 111, 122001 (2013)

In the CMS & ATLAS acceptances (PT cut), small
DPS e�ects, but required by the data at large ∆y

DPS in LHCb data [kinematical distributions a priori under-control : independent scatterings]
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A puzzle at large ∆y (orMψψ) ?
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�emost natural solution for this excess is the independent production of two J~ψ
� double parton scattering
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Predictions: excited states and more
JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

Even though we �nd it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by di�erent feed-down patterns
We de�ne F χcψψ (F

ψ�

ψψ) as the fraction of events containing at least one χc (ψ�)
Under DPS dominance (e.g. large ∆y), σDPS

ab �
m
2
σaσb
σeff

(m: symmetry factor)

F χcψψ � F χcψ � �F χcψ � 2Fdirectψ � 2Fψ
�

ψ �,Fψ�

ψψ � Fψ
�

ψ � �Fψ�

ψ � 2Fdirectψ � 2F χcψ �,Fdirectψψ � �Fdirectψ �2

Under SPS CSM dominance,

Fψ
�

ψψ is slightly enhanced by symmetry factors,
F χcψψ , unlike single quarkonium production, is not enhanced and is found to be small

Overall : (CSM) SPS Low PT DPS High PT DPS
Fψ

�

ψψ 50% 15% 15%
F χcψψ small 25% 50%

Based on up-to-date feed-down values (J~ψ is 80% direct at low PT) JPL. arXiv:1903.09185

Hence the importance of measuring J~ψ �ψ� and J~ψ � χc
J~ψ � ηc can also tell something about DPS and about σeff
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Harvesting quarkonium data: 5 extractions using theory
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D0 (γ + 3 jets)
ATLAS (W + 2 jets)
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J~ψ+charm and Υ+charm data point at σeff � 20 mb
J~ψ � J~ψ LHCb region: SPS computations with too large uncertainties to conclude
Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
J~ψ �Υ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

Except for both LHCb extractions, all the quarkonium-based extraction point at
very small σeff values: dependence on the 
avour, the rapidity or the scale(s) ?
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Part VI

Quarkonium-pair production at the LHC and
gluon TMDs
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gg fusion in arbitrary unpolarised process [colourless �nal state]
dσ gg

�

F1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
� P
λa ,λb

M̂λa ,λbM̂
�

λa ,λb�C�f
g
1 f

g
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� helicity non-
ip, azimuthally independent
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ip, azimuthally independent

+
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ip, cos�2ϕ�-modulation
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TMDmodelling : f g1 and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

f g1 modelled as a Gaussian in ÑkT : f g1 �x,Ñk2T� � g�x�
π`k2Te

exp � �Ñk
2
T

`k2Te
�

where g�x� is the usual collinear PDF
First experimental determination [with a pure colorless �nal state] of `k2Te
by �tting C�f g1 f

g
1 � over the normalised LHCb dσ~dPψψT spectrum at 13 TeV

from which we have subtracted the DPS yield determined by LHCb
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Integration over ϕ� cos�nϕ�-terms
cancel out
F2 P F1 � only C�f g1 f

g
1 � contributes to

the cross-section
No evolution so far: `k2Te � 3 GeV2

accounts both for non-perturbative and
perturbative broadenings at a scale close
toMψψ � 8 GeV
Disentangling such (non-)perturbative
e�ects requires data at di�erent scales

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 30 / 33



TMDmodelling : f g1 and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

f g1 modelled as a Gaussian in ÑkT : f g1 �x,Ñk2T� � g�x�
π`k2Te

exp � �Ñk
2
T

`k2Te
�

where g�x� is the usual collinear PDF
First experimental determination [with a pure colorless �nal state] of `k2Te
by �tting C�f g1 f

g
1 � over the normalised LHCb dσ~dPψψT spectrum at 13 TeV

from which we have subtracted the DPS yield determined by LHCb

d
σ

/d
P

ψ
ψ

T
 / 

∫ 0<
M

ψ
ψ
>

 /
2
 d

σ
/d

P
ψ

ψ
T
  
 [

G
e
V

-1
]

                          PψψT
 [GeV]                        (a)

Gaussian f1
g
, <kT

2
> fit

over [0 ;<Mψψ>/2]

 

LHCb data without DPS

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12

<kT
2
> = 3.3 ± 0.8 GeV

2

<Mψψ> = 8 GeV

reduced χ2
 = 0.36

Integration over ϕ� cos�nϕ�-terms
cancel out
F2 P F1 � only C�f g1 f

g
1 � contributes to

the cross-section
No evolution so far: `k2Te � 3 GeV2

accounts both for non-perturbative and
perturbative broadenings at a scale close
toMψψ � 8 GeV
Disentangling such (non-)perturbative
e�ects requires data at di�erent scales

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 30 / 33



TMDmodelling : f g1 and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

f g1 modelled as a Gaussian in ÑkT : f g1 �x,Ñk2T� � g�x�
π`k2Te

exp � �Ñk
2
T

`k2Te
�

where g�x� is the usual collinear PDF
First experimental determination [with a pure colorless �nal state] of `k2Te
by �tting C�f g1 f

g
1 � over the normalised LHCb dσ~dPψψT spectrum at 13 TeV

from which we have subtracted the DPS yield determined by LHCb

d
σ

/d
P

ψ
ψ

T
 / 

∫ 0<
M

ψ
ψ
>

 /
2
 d

σ
/d

P
ψ

ψ
T
  
 [

G
e
V

-1
]

                          PψψT
 [GeV]                        (a)

Gaussian f1
g
, <kT

2
> fit

over [0 ;<Mψψ>/2]

 

LHCb data without DPS

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12

<kT
2
> = 3.3 ± 0.8 GeV

2

<Mψψ> = 8 GeV

reduced χ2
 = 0.36

Integration over ϕ� cos�nϕ�-terms
cancel out
F2 P F1 � only C�f g1 f

g
1 � contributes to

the cross-section
No evolution so far: `k2Te � 3 GeV2

accounts both for non-perturbative and
perturbative broadenings at a scale close
toMψψ � 8 GeV
Disentangling such (non-)perturbative
e�ects requires data at di�erent scales

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 30 / 33



TMDmodelling : f g1 and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

f g1 modelled as a Gaussian in ÑkT : f g1 �x,Ñk2T� � g�x�
π`k2Te

exp � �Ñk
2
T

`k2Te
�

where g�x� is the usual collinear PDF
First experimental determination [with a pure colorless �nal state] of `k2Te
by �tting C�f g1 f

g
1 � over the normalised LHCb dσ~dPψψT spectrum at 13 TeV

from which we have subtracted the DPS yield determined by LHCb

d
σ

/d
P

ψ
ψ

T
 / 

∫ 0<
M

ψ
ψ
>

 /
2
 d

σ
/d

P
ψ

ψ
T
  
 [

G
e
V

-1
]

                          PψψT
 [GeV]                        (a)

Gaussian f1
g
, <kT

2
> fit

over [0 ;<Mψψ>/2]

 

LHCb data without DPS

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12

<kT
2
> = 3.3 ± 0.8 GeV

2

<Mψψ> = 8 GeV

reduced χ2
 = 0.36

Integration over ϕ� cos�nϕ�-terms
cancel out
F2 P F1 � only C�f g1 f

g
1 � contributes to

the cross-section
No evolution so far: `k2Te � 3 GeV2

accounts both for non-perturbative and
perturbative broadenings at a scale close
toMψψ � 8 GeV
Disentangling such (non-)perturbative
e�ects requires data at di�erent scales

J.P. Lansberg (IJCLab) Quarkonium production October 22, 2020 30 / 33



Switching on TMD evolution
F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

With a �t we obtained
`k2Te � 3 GeV2

Let us compare such a value
with what a proper NLL
evolution up to the scale
Mψψ � 8 GeV would give

Evolution e�ects are
measurable

So far, no x dependence
information
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LO predictions for quarkonia� NLOAccess [in2p3.fr/nloaccess]
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