

Quarkonium production: where do we stand and where to go ?

J.P. Lansberg

IJCLab Orsay - Paris Saclay U. - CNRS

October 22, 2020 French-Ukrainian Workshop IJCLab Orsay, October 19-23, 2020

Part I

Quarkonium production mechanisms

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 2 / 33

A (1) × A (2) × A (2)

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

・ロト ・日ト ・ヨト ・ヨト

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

• No consensus on the mechanism at work in quarkonium production

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:

イロト イポト イヨト イヨト

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs α_s(m_Q) and occurs at short distances; bleaching at the pair-production time

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, $Q\bar{Q}$, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs α_s(m_O) and occurs at short distances; bleaching at the pair-production time
 - COLOUR OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson; bleaching with semi-soft gluons ?

J.P. Lansberg ((\mathbf{I})	JCLa	.b)
-----------------	----------------	------	-----

E

- Colour Evaporation Model
 - any $Q\bar{Q}$ state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
 - one non-perturbative parameter per meson, supposedly universal

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Colour Evaporation Model
 - any $Q\bar{Q}$ state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
 - one non-perturbative parameter per meson, supposedly universal
- OLOUR SINGLET MODEL
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - one non-perturbative parameter per meson but equal to

the Schrödinger wave function at the origin \rightarrow no free parameter

• this parameter is fixed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)

イロト イポト イヨト イヨト 二日

- Colour Evaporation Model
 - any $Q\bar{Q}$ state contributes to a specific quarkonium state
 - colourless pair via a simple 1/9 factor
 - one non-perturbative parameter per meson, supposedly universal
- OLOUR SINGLET MODEL
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - one non-perturbative parameter per meson but equal to

the Schrödinger wave function at the origin \rightarrow no free parameter

• this parameter is fixed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)

- OLOUR OCTET MECHANISM
- one non-perturbative parameter per Fock State
- expansion in v^2 ; series can be truncated
- the phenomenology partly depends on this
- HQSS relates some non-perturbative parameters to each others and

to a specific quarkonium polarisation

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

크

イロト イポト イヨト イヨト

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \overline{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - with a vanishing relative momentum
 - \rightarrow in a ³*S*₁ state (for *J*/ ψ , ψ' and Υ)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \overline{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - with a vanishing relative momentum
 - \Rightarrow in a ³S₁ state (for J/ψ , ψ' and Υ)
- → Non-perturbative binding of quarks

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \overline{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - with a vanishing relative momentum
 - \Rightarrow in a ³S₁ state (for J/ψ , ψ' and Υ)
- → Non-perturbative binding of quarks

→ Schrödinger wave function

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

- \Rightarrow Perturbative creation of 2 quarks Q and \overline{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state
 - with a vanishing relative momentum
 - \Rightarrow in a ³S₁ state (for J/ψ , ψ' and Υ)
- → Non-perturbative binding of quarks

 \rightarrow Schrödinger wave function

CDF, PRL 88:161802,2002

J.P.	Lans	berg ((I)	JCI	Lab)
------	------	--------	-----	-----	-----	---

E

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025

イロト イヨト イヨト

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025

э

イロト イポト イヨト イヨト

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) ATLAS PRD 87 052004

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 6 / 33

Color Octet Mechanism: physical states can be produced by coloured pairs

NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovich,...

イロト イヨト イヨト イヨト

크

Color Octet Mechanism: physical states can be produced by coloured pairs

 \rightarrow Heavy-quark line can connect to one or two gluons, not necessarily three

- ✓ Gluon fragmentation then LO in α_S : larger rates
- → CO fragmentation ∝ Long Distance Matrix Elements (LDMEs)

Color Octet Mechanism: physical states can be produced by coloured pairs

- → Heavy-quark line can connect to one or two gluons, not necessarily three
- ✓ Gluon fragmentation then LO in α_S : larger rates
- → CO fragmentation ∝ Long Distance Matrix Elements (LDMEs)
- \rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally pol.
- \rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon

Color Octet Mechanism: physical states can be produced by coloured pairs

- \rightarrow Heavy-quark line can connect to one or two gluons, not necessarily three
- ✓ Gluon fragmentation then LO in α_S : larger rates
- \rightarrow CO fragmentation \propto Long Distance Matrix Elements (LDMEs)
- \rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally pol.
- \rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon
- X Experimentally, this is clearly contradicted !

Color Octet Mechanism: physical states can be produced by coloured pairs

- \rightarrow Heavy-quark line can connect to one or two gluons, not necessarily three
- ✓ Gluon fragmentation then LO in α_S : larger rates
- \rightarrow CO fragmentation \propto Long Distance Matrix Elements (LDMEs)
- \rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally pol.
- \rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon
- X Experimentally, this is clearly contradicted !
- → Yields expected to peak near end points in $e^+e^- \rightarrow J/\psi X$ and $\gamma p \rightarrow J/\psi X$ (even after SCET resummation)

NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovich,...

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Color Octet Mechanism: physical states can be produced by coloured pairs

- \rightarrow Heavy-quark line can connect to one or two gluons, not necessarily three
- ✓ Gluon fragmentation then LO in α_S : larger rates
- \rightarrow CO fragmentation \propto Long Distance Matrix Elements (LDMEs)
- \rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally pol.
- \rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon \checkmark Experimentally, this is clearly contradicted !
- → Yields expected to peak near end points in $e^+e^- \rightarrow J/\psi X$ and $\gamma p \rightarrow J/\psi X$ (even after SCET resummation)

X Such peaks have never been seen: LDME fine tuning ...

イロト イヨト イヨト

Color Octet Mechanism: physical states can be produced by coloured pairs

- \rightarrow Heavy-quark line can connect to one or two gluons, not necessarily three
- ✓ Gluon fragmentation then LO in α_S : larger rates
- \rightarrow CO fragmentation \propto Long Distance Matrix Elements (LDMEs)
- \rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally pol.
- \rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon \checkmark Experimentally, this is clearly contradicted !
- → Yields expected to peak near end points in $e^+e^- \rightarrow J/\psi X$ and $\gamma p \rightarrow J/\psi X$ (even after SCET resummation)
- X Such peaks have never been seen: LDME fine tuning ...
- \checkmark Cannot describe both the high- P_T and P_T -integrated hadroproduction yields

QCD corrections to the COM - NRQCD

J.P. Lansberg	(IJCLab)
---------------	----------

QCD corrections to the COM – NRQCD

• At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{J}^{[8]}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 ψ data: a little less hard than the blue curve

QCD corrections to the COM – NRQCD

- At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{I}^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 ψ data: a little less hard than the blue curve

QCD corrections to the COM – NRQCD

- At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{1}^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

 ψ data: a little less hard than the blue curve

• ${}^{3}P_{I}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
QCD corrections to the COM – NRQCD

- At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{1}^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^{1}S_{0}^{[8]}$ dominant yet with nonzero ${}^{3}P_{I}^{[8]}$ and ${}^{3}S_{1}^{[8]}$ LDMEs

QCD corrections to the COM – NRQCD

- At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{1}^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^{1}S_{0}^{[8]}$ dominant yet with nonzero ${}^{3}P_{I}^{[8]}$ and ${}^{3}S_{1}^{[8]}$ LDMEs
- Since the 3 associated LDMEs are fit, the combination at NLO still describes the data; hence an apparent stability of NRQCD x-section at NLO
- What significantly changes is the size of the LDMEs

QCD corrections to the COM – NRQCD

- At LO, P_T spectrum driven by the combination of 2 CO components : ${}^{3}S_{1}^{[8]}$ vs. ${}^{1}S_{0}^{[8]} \otimes {}^{3}P_{I}^{[8]}$
- At NLO, the soft component becomes harder (same effect as for CSM)

 ψ data: a little less hard than the blue curve

- ${}^{3}P_{J}^{[8]}$ becomes as hard as ${}^{3}S_{1}^{[8]}$ and interferes with it; ${}^{1}S_{0}^{[8]}$ a little softer
- Due to this interference, it is possible to make the softer ${}^{1}S_{0}^{[8]}$ dominant yet with nonzero ${}^{3}P_{I}^{[8]}$ and ${}^{3}S_{1}^{[8]}$ LDMEs
- Since the 3 associated LDMEs are fit, the combination at NLO still describes the data; hence an apparent stability of NRQCD x-section at NLO
- What significantly changes is the size of the LDMEs
- Polarisation: ${}^{1}S_{0}^{[8]}$: unpolarised; ${}^{3}S_{1}^{[8]}$ & ${}^{3}P_{I}^{[8]}$: transverse

JPL, H.S. Shao JHEP 1610 (2016) 153

・ロト ・日ト ・ヨト ・ヨト

JPL, H.S. Shao JHEP 1610 (2016) 153

• All possible spin and colour combinations contribute

1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation (~ ${}^{3}S_{1}^{[8]}$) dominant at large P_{T}

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation (~ ${}^{3}S_{1}^{[8]}$) dominant at large P_{T}
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation (~ ${}^{3}S_{1}^{[8]}$) dominant at large P_{T}
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

• Tend to overshoot the ψ data at large P_T

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation (~ ${}^{3}S_{1}^{[8]}$) dominant at large P_{T}
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

- Tend to overshoot the ψ data at large P_T
- The (LO) ICEM not significantly better at large P_T Y.Q. Ma, R. Vogt PRD 94 (2016) 114029

JPL, H.S. Shao JHEP 1610 (2016) 153

- All possible spin and colour combinations contribute
- The gluon fragmentation (~ ${}^{3}S_{1}^{[8]}$) dominant at large P_{T}
- No reason for a change at NLO. The fit can yield another CEM parameter value but this will not modify the P_T spectrum

Confirmed by our first NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

- Tend to overshoot the ψ data at large P_T
- The (LO) ICEM not significantly better at large P_T Y.Q. Ma, R. Vogt PRD 94 (2016) 114029

Feed downs from the excited states

JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 10 / 33

э

Feed downs from the excited states

JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

p_T (GeV) Data LHCb : EPJC 75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)

イロト イポト イヨト イヨ

• η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)

- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even *neglecting* the *dominant* CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry : ${J/\psi({}^{1}S_{0}^{[8]})} = {\eta_{c}({}^{3}S_{1}^{[8]})} < 1.46 \times 10^{-2} \text{ GeV}^{3}$

 $[\text{Additional relations: } \langle \eta_c \left({}^{1}S_0^{[8]} \right) \rangle = \langle J/\psi \left({}^{3}S_1^{[8]} \right) \rangle / 3 \text{ and } \langle \eta_c \left({}^{1}P_1^{[8]} \right) \rangle = 3 \times (J/\psi \left({}^{3}P_0^{[8]} \right))]$

- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even neglecting the dominant CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry: (^{J/ψ}(¹S₀^[8])) = (^{η_c}(³S₁^[8])) < 1.46 × 10⁻² GeV³
- Rules out the fits yielding the ${}^{1}S_{0}^{[8]}$ dominance to get unpolarised yields
- Even the PKU fit has now troubles to describe CDF polarisation data

 $[\text{Additional relations: } \binom{\eta_{\varepsilon} \left({}^{1}S_{0}^{\left[8 \right]} \right)}{=} \binom{J/\psi}{3} \binom{3}{1} \binom{3}{1} \binom{3}{1} 3 \text{ and } \binom{\eta_{\varepsilon} \left({}^{1}P_{1}^{\left[8 \right]} \right)}{=} 3 \times \binom{J/\psi}{3} \binom{3}{1} \binom{3}{2} \binom{3}{$

- η_c x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
- Any CO contribution would create a surplus
- Even *neglecting* the *dominant* CS, this induces constraints on CO J/ψ LDMEs via Heavy-Quark Spin Symmetry : ${J/\psi({}^{1}S_{0}^{[8]})} = {\eta_{c}({}^{3}S_{1}^{[8]})} < 1.46 \times 10^{-2} \text{ GeV}^{3}$
- Rules out the fits yielding the ${}^{1}S_{0}^{[8]}$ dominance to get unpolarised yields
- Even the PKU fit has now troubles to describe CDF polarisation data
- Nobody foresaw the impact of measuring η_c yields: 3 PRL published right after the LCHb data came out (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.F. Zhang et al. 114 (2015) 092006

 $[\text{Additional relations: } \langle \eta_{c} \left({}^{1}S_{0}^{[8]} \right) \rangle = \langle J/\psi \left({}^{3}S_{1}^{[8]} \right) \rangle / 3 \text{ and } \langle \eta_{c} \left({}^{1}P_{1}^{[8]} \right) \rangle = 3 \underset{\frown}{\times} \underset{\frown}{\times} \binom{J/\psi}{\cong} \binom{3}{9} \binom{3}{0} \rangle] = 3 \underset{\frown}{\times} \underset{\frown}{\times}$

JPL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342

3

• HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{JBL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$

3

イロト イポト イヨト イヨト

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL_{w}H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $O(10^{-4})$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL_wH.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL_wH.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{\text{JBL}, \text{H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties
 - A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $\mathcal{O}(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties
 - A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

- HQSS also relates the LDMEs for the $\psi(2S)$ and $\eta_c(2S)^{IBL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342}$
- To avoid the same situation as with the $\psi(2S)$, we have performed the first study of its possible prompt production at the LHC
 - Thanks to existing (LHCb, e^+e^-) data, we identified tractable branchings on $O(10^{-4})$
 - Using HQSS, we evaluated the theory uncertainty on $\eta_c(2S)$ production
 - From the expected yields, we evaluated the expected experimental uncertainties
 - A forthcoming (LHCb) measurement would further constrain (or exclude) the existing NLO $\psi(2S)$ LDME fits of Shao *et al.* and Gong *et al.* and confirm/exclude the hypotheses underlying the Bodwin *et al.* fit.

→ Belle-II data on the inclusive $\psi(2S)$ production will also be crucial

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 12 / 33

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

・ロト ・日ト ・ヨト ・ヨト

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, E.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112 • CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

イロト イポト イヨト イヨト

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P*_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

• Colour-Octet Mechanism (COM) helps in describing the *P*_T spectrum

イロト イポト イヨト イヨト

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P*_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X. Wang Eur. Phys. J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, *P*_T cut, polarisation fitted or not, etc.)

• Colour-Singlet Model (CSM) long thought to be insufficient

```
... not as clear now
```

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P*_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the *P*_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, *P*_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) ↔ quark-hadron duality tends to overshoot the data at large P_T – issue shared by some COM fits

• Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P*_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, *P*_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) ↔ quark-hadron duality tends to overshoot the data at large P_T – issue shared by some COM fits
- All approaches have troubles with *ep*, *ee* or *pp* polarisation and/or the η_c data

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press) Colour-Singlet Model (CSM) long thought to be insufficient

```
... not as clear now
```

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P*_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, *P*_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) ↔ quark-hadron duality tends to overshoot the data at large P_T – issue shared by some COM fits
- All approaches have troubles with *ep*, *ee* or *pp* polarisation and/or the η_c data
- This motivates the study of new observables

which can be more discriminant for specific effects [e.g. associated production]

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

See JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press) Colour-Singlet Model (CSM) long thought to be insufficient

```
... not as clear now
```

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the *P_T* integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, *P*_T cut, polarisation fitted or not, etc.)
- Colour-Evaporation Mechanism (CEM) ↔ quark-hadron duality tends to overshoot the data at large P_T – issue shared by some COM fits
- All approaches have troubles with *ep*, *ee* or *pp* polarisation and/or the η_c data
- This motivates the study of new observables
- which can be more discriminant for specific effects [e.g. associated production]
- However, as we will now see, these offer new ways to study DPS

Universality of NLO NRQCD fits ?

Plot from M. Butenschön (ICHEP 2012); Discussion in JPL, arXiv:1903.09185

Further caveats: η_c data ! I.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 14 / 33

э

< □ > < □ > < □ > < □ > < □ > < □ >
Part III

Photoproduction at mid and high P_T

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 15 / 33

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA

M. Kramer, Nucl.Phys.B459:3 199

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, ...

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, ...

P. Artoisenet et al. PRL 102 (2009) 142001

Taking into account the α_s corrections, color-singlet production alone does not describe all features of the data collected at HERA. With a natural choice for the renormalization scale, the predicted rate is smaller than data,

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, ...

P. Artoisenet et al. PRL 102 (2009) 142001

Taking into account the α_s corrections, color-singlet production alone does not describe all features of the data collected at HERA. With a natural choice for the renormalization scale, the predicted rate is smaller than data,

Despite the caveat concerning our limited knowledge of the CO LDMEs at NLO, we conclude that the H1 data [19,20] show clear evidence of the existence of CO processes in nature, as predicted by NRQCD,

M. Butenschoen et al. PRL 104 (2010) 072001

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, ...

P. Artoisenet et al. PRL 102 (2009) 142001

Taking into account the α_s corrections, color-singlet production alone does not describe all features of the data collected at HERA. With a natural choice for the renormalization scale, the predicted rate is smaller than data,

Despite the caveat concerning our limited knowledge of the CO LDMEs at NLO, we conclude that the H1 data [19,20] show clear evidence of the existence of CO processes in nature, as predicted by NRQCD,

M. Butenschoen et al. PRL 104 (2010) 072001

Disagreement not so obvious with the latest H1 data given the theory uncertainties

H1 EPJC (2010) 68: 401

M.Kramer Nucl.Phys.B459:3 1996; e.g. H1,EPJC 25, 2,2002; ZEUS, EPJC 27, 173, 2003 LO CSM also fails in photoproduction at HERA BUT NLO CSM agrees with the data !

M. Kramer, Nucl.Phys.B459:3 199

In 2009-2010, theory updates, along with polarisation studies, ...

P. Artoisenet et al. PRL 102 (2009) 142001

Taking into account the α_s corrections, color-singlet production alone does not describe all features of the data collected at HERA. With a natural choice for the renormalization scale, the predicted rate is smaller than data,

Despite the caveat concerning our limited knowledge of the CO LDMEs at NLO, we conclude that the H1 data [19,20] show clear evidence of the existence of CO processes in nature, as predicted by NRQCD,

M. Butenschoen et al. PRL 104 (2010) 072001

Disagreement not so obvious with the latest H1 data given the theory uncertainties

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

- A E

Image: A math a math

- A 🖻

Image: A math a math

- LO QCD does a good job at low P_T
- LO QED much harder but small normalisation
- J/ψ +charm: starts to matter at high P_T

[will matter at EIC] [will also matter at EIC]

- NLO^(*) close the data, the overall sum nearly agrees with them
- Agreement when the expected $B \rightarrow J/\psi$ feed down (always overlooked) is subtracted

\rightarrow will restrict to CSM for EIC predictions

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 17 / 33

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

J.P. Lansberg	g (IJCLab)
---------------	------------

э

イロト イポト イヨト イヨト

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

- At $\sqrt{s_{ep}} = 45$ GeV, one enters the valence region
- Yield measurable up to $P_T = 10 \text{ GeV}$ with $\mathcal{L} = 100 \text{ fb}^{-1}$

イロト イポト イヨト イヨト

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

- At $\sqrt{s_{ep}} = 45$ GeV, one enters the valence region
- Yield measurable up to $P_T = 10 \text{ GeV}$ with $\mathcal{L} = 100 \text{ fb}^{-1}$

イロト イポト イヨト イヨト

• QED contribution leading at the largest measurable *P*_T

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

• At $\sqrt{s_{ep}} = 140 \text{ GeV}$, P_T range up to 15-20 GeV

• photon-gluon fusion remains dominant

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

- At $\sqrt{s_{ep}}$ = 140 GeV, P_T range up to 15-20 GeV
- photon-gluon fusion remains dominant
- $J/\psi + 2$ hard partons dominant for $P_T \sim 10 15$ GeV
- Could lead to J/ψ + 2 jets with moderate P_T
- A priori the leading jet₁ recoils on the J/ψ + jet₂ pair
- $d\sigma$ should scale with $M_{J/\psi+\text{jet}_2} M_{J/\psi}$

イロト イポト イヨト イヨト

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ+charm contributing to J/ψ + X except for the detection efficiency ε: VFNS =

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ+charm contributing to J/ψ + X except for the detection efficiency ε: VFNS =

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ+charm contributing to J/ψ + X except for the detection efficiency ε: VFNS =

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{J/\psi+c} \rightarrow M_{J/\psi} + m_c$

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ+charm contributing to J/ψ + X except for the detection efficiency ε: VFNS =

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{J/\psi+c} \rightarrow M_{J/\psi} + m_c$
- 4FS $\gamma c \rightarrow J/\psi c$ could be enhanced by intrinsic charm

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

• Same LO VFNS computation as for J/ψ +charm contributing to $J/\psi + X$ except for the detection efficiency ϵ : *VFNS* =

 $3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{J/\psi+c} \rightarrow M_{J/\psi} + m_c$
- 4FS γc → J/ψc could be enhanced by intrinsic charm
 Small effect at √sep = 140 GeV [We u

[We used IC c(x) encoded in CT14NNLO]

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ+charm contributing to J/ψ + X except for the detection efficiency ε: VFNS =

 $3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{J/\psi+c} \rightarrow M_{J/\psi} + m_c$

4FS γc → J/ψc could be enhanced by intrinsic charm
Small effect at √sep = 140 GeV [We u

[We used IC c(x) encoded in CT14NNLO]

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ +charm contributing to J/ψ + X except for the detection efficiency ϵ : VFNS =

 $3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{I/\psi+c} \rightarrow M_{I/\psi} + m_c$

[We used IC c(x) encoded in CT14NNLO]

- 4FS $\gamma c \rightarrow J/\psi c$ could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$
- Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$

J.P. Lansberg (IJCLab)

Quarkonium production

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ +charm contributing to J/ψ + X except for the detection efficiency ϵ : VFNS =

 $3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{I/\psi+c} \rightarrow M_{I/\psi} + m_c$
- 4FS $\gamma c \rightarrow J/\psi c$ could be enhanced by intrinsic charm [We used IC c(x) encoded in CT14NNLO]
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$
- Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$

J.P. Lansberg (IJCLab)

C.Flore, JPL, H.S. Shao, Y. Yedelkina, 2009.08264

 Same LO VFNS computation as for J/ψ +charm contributing to J/ψ + X except for the detection efficiency ϵ : VFNS =

 $3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$

- At $\sqrt{s_{ep}}$ = 45 GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\epsilon_c = 0.1$
- Azimuthal distribution could be studied
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10-12 GeV
- Could be observed via charm jet
- Rates could be enhanced by colour transfers when $M_{I/\psi+c} \rightarrow M_{I/\psi} + m_c$
- 4FS $\gamma c \rightarrow J/\psi c$ could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$
- [We used IC c(x) encoded in CT14NNLO] • Measurable effect at $\sqrt{s_{ep}} = 45$ GeV: BHPS valence-like peak visible !

J.P. Lansberg (IJCLab)

Part IV

Associated-quarkonium production

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 20 / 33

A (10) × (10) × (10)

Going further with associated-quarkonium production

J.P.	Lans	berg ((I)	JCI	Lab)
------	------	--------	-----	-----	-----	---

イロト イポト イヨト イヨト

3

Going further with associated-quarkonium production

See section 3 of JPL, arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

Observables	Experiments	CSM	CEM	NRQCD	Interest
Ϳ∕ψ+Ϳ∕ψ	LHCb, CMS, ATLAS, D0 (+NA3)	NLO, NNLO*	NLO	LO	Prod. Mechanism (CS dominant) + DPS + gluon TMD
J/ψ+D	LHCb	LO	LO ?	LO	Prod. Mechanism (c to J/psi fragmentation) + DPS
J/ψ+Υ	DO	(N)LO	NLO	LO	Prod. Mechanism (CO dominant) + DPS
J/ψ+hadron	STAR	LO		LO	B feed-down; Singlet vs Octet radiation
J/ψ+Z	ATLAS	NLO	NLO	Partial NLO	Prod. Mechanism + DPS
J/ψ+W	ATLAS	LO	NLO	NLO (?)	Prod. Mechanism (CO dominant) + DPS
J/ψ vs mult.	ALICE,CMS (+UA1)				Initial vs Final state effects ?
J/ψ in jet.	LHCb, CMS	LO		LO	Prod. Mechanism (?)
J/ψ(Ƴ) + jet					Prod. Mechanism (QCD corrections)
Isolated J/ψ(Υ)					Prod. Mechanism (CS dominant ?)
J/ψ+b				LO	Prod. Mechanism (CO dominant) + DPS
Y+D	LHCb	LO	LO ?	LO	DPS
Υ+γ		NLO, NNLO*	LO ?	LO	Prod. Mechanism (CO LDME mix) + gluon TMD/PDF
Y vs mult.	CMS				
Υ+Z		NLO	LO ?	LO	Prod. Mechanism + DPS
Y+Y	CMS	NLO ?	NLO	LO ?	Prod. Mechanism (CS dominant ?) + DPS + gluon TMD

J.P. Lansberg (IJCLab)

October 22, 2020 21 / 33

Part V

Quarkonium-pair production

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 22 / 33

イロト イポト イヨト イヨト

э

On the importance of QCD corrections to $J/\psi + J/\psi$ production

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

• At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi}): 2 \rightarrow 2$ topologies

<□> <同> <同> <目> <目> <同> <目> <同> <目> <同> <同> <

On the importance of QCD corrections to $J/\psi + J/\psi$ production

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T

[\leftrightarrow interest for TMD studies]
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi}): 2 \to 2$ topologies
- It can be affected by initial parton k_T
- By far insufficient (blue) to account for the CMS measured spectrum

 $[\leftrightarrow \text{ interest for TMD studies}]$

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

• NLO α_s^5 contributions are crucial here and do a good job even up to the largest $P_T^{\psi\psi}$

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi}): 2 \to 2$ topologies
- It can be affected by initial parton k_T [\leftrightarrow interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

- NLO α_s^5 contributions are crucial here and do a good job even up to the largest $P_T^{\psi\psi}$
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data [the orange histogram shows one class of leading $P_T \alpha_s^6$ contributions]

JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: $2 \rightarrow 2$ topologies
- It can be affected by initial parton k_T

- $[\leftrightarrow \text{ interest for TMD studies}]$
- By far insufficient (blue) to account for the CMS measured spectrum

- NLO α_s^5 contributions are crucial here and do a good job even up to the largest $P_T^{\psi\psi}$
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data [the orange histogram shows one class of leading $P_T \alpha_s^6$ contributions]
- Confirmation at larger $P_T^{\psi\psi}$ with ATLAS data !

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ◆

J/ψ: relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85

3

イロト イヨト イヨト

- J/ψ: relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3
 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 77 (2017) 76; D0 PRD 90 (2014) 11101; NA3 PLB 158 (1985) 85
 Nordigible gg contributions of Norma A ETER @LHC
- Negligible $q\bar{q}$ contributions even at AFTER@LHC ($\sqrt{s} = 115$ GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

• At lower energies (AMBER, SPD), qq̄ contributions need to computed

- *J*/ψ: relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3
 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 72 (2017) 65: D0 PRD 90 (2014) UII03: NA3 PLB 158 (0185) 85
- Negligible $q\bar{q}$ contributions even at AFTER@LHC ($\sqrt{s} = 115$ GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

- At lower energies (AMBER, SPD), qq̄ contributions need to computed
- Negligible CO contributions, in particular at low
 - P^{ψψ}_T [black/dashed curves vs. blue; log. plot] JPI, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP 07 (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state IPL H.S. Shao PRL 111, 122001 (2013)

(D) (A) (A) (A) (A)

- *J*/ψ: relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3
 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 72 (2017) 65: D0 PRD 90 (2014) UII03: NA3 PLB 158 (0185) 85
- Negligible $q\bar{q}$ contributions even at AFTER@LHC ($\sqrt{s} = 115$ GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

- At lower energies (AMBER, SPD), qq̄ contributions need to computed
- Negligible CO contributions, in particular at low $P_T^{\psi\psi}$ [black/dashed curves vs. blue; log. plot]
 - ⁷ [black/dashed curves vs. blue; log. plot]
 JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
 07 (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state IPL H.S. Shao PRL 111, 122001 (2013)
- In the CMS & ATLAS acceptances (P_T cut), small DPS effects, but required by the data at large Δy

< ロ > < 同 > < 回 > < 回 >

- *J*/ψ: relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3
 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPIC 72 (2017) 65: D0 PRD 90 (2014) UII03: NA3 PLB 158 (0185) 85
- Negligible $q\bar{q}$ contributions even at AFTER@LHC ($\sqrt{s} = 115$ GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

- At lower energies (AMBER, SPD), qq̄ contributions need to computed
- Negligible CO contributions, in particular at low $P_T^{\psi\psi}$ [black/dashed curves vs. blue; log. plot]
 - J^T
 [black/dashed curves vs. blue; log. plot]
 JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
 07 (2013) 051
- No final state gluon needed for the Born contribution: pure colourless final state IPL H.S. Shao PRL 111, 122001 (2013)
- In the CMS & ATLAS acceptances (P_T cut), small DPS effects, but required by the data at large ∆y

• DPS in LHCb data [kinematical distributions a priori under-control: independent scatterings]

J.P. Lansberg (IJCLab)

A puzzle at large Δy (or $M_{\psi\psi}$) ?

October 22, 2020 25 / 33

э

(日) (四) (三) (三)

A puzzle at large Δy (or $M_{\psi\psi}$) ?

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 25 / 33

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

・ロト ・日ト ・ヨト ・ヨト

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

• Even though we find it a natural, accounting for DPS introduces another parameter

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?

(D) (A) (A) (A) (A)

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns

(D) (A) (A) (A) (A)

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ ($F_{\psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ')

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ $(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (*m*: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = (F_{\psi}^{\text{direct}})^2$$

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ $(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (*m*: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

- Under SPS CSM dominance,
 - $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
 - $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small

・ロン ・四 ・ ・ ヨン ・ ヨ

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ $(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (*m*: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

• Under SPS CSM dominance,

Overall:

- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small

	(CSM) SPS	Low P_T DPS	High P_T DPS
$F_{\psi\psi}^{\psi'}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

• Based on up-to-date feed-down values $(J/\psi \text{ is 80\% direct at low } P_T)$ JPL. arXiv:1903.09185

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ $(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (*m*: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

• Under SPS CSM dominance,

Overall :

- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small

	(CSM) SPS	Low P_T DPS	High P_T DPS
$F_{\psi\psi}^{\psi'}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

- Based on up-to-date feed-down values $(J/\psi \text{ is 80\% direct at low } P_T)$ JPL. arXiv:1903.09185
- Hence the importance of measuring $J/\psi + \psi'$ and $J/\psi + \chi_c$

JPL, H.-S.Shao PLB 751 (2015) 479; JPL JPL. arXiv:1903.09185 [hep-ph] (Phys. Rept. 2020, In Press)

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c}$ $(F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$ (*m*: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi}^{\chi_c} \times \left(F_{\psi}^{\chi_c} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\psi'}\right), F_{\psi\psi}^{\psi'} = F_{\psi}^{\psi'} \times \left(F_{\psi}^{\psi'} + 2F_{\psi}^{\text{direct}} + 2F_{\psi}^{\chi_c}\right), F_{\psi\psi}^{\text{direct}} = \left(F_{\psi}^{\text{direct}}\right)^2$$

• Under SPS CSM dominance,

Overall :

- $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
- $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small

	(CSM) SPS	Low P_T DPS	High P_T DPS
$F_{\psi\psi}^{\psi'}$	50%	15%	15%
$F_{\psi\psi}^{\chi_c}$	small	25%	50%

- Based on up-to-date feed-down values $(J/\psi \text{ is 80\% direct at low } P_T)$ JPL. arXiv:1903.09185
- Hence the importance of measuring $J/\psi + \psi'$ and $J/\psi + \chi_c$

J.P.	Lans	berg ((I)	JCI	Lab)
------	------	--------	-----	-----	-----	---

イロト イボト イヨト イヨト

E

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 27 / 33

(D) (A) (A) (A) (A)

• J/ψ +charm and Y+charm data point at $\sigma_{eff} \sim 20$ mb

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 27 / 33

(D) (A) (A) (A) (A)

- J/ψ +charm and Y+charm data point at $\sigma_{eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- J/ψ +charm and Y+charm data point at $\sigma_{eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- J/ψ +charm and Y+charm data point at $\sigma_{eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
- $J/\psi + \Upsilon$ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

- J/ψ +charm and Y+charm data point at $\sigma_{eff} \sim 20 \text{ mb}$
- $J/\psi + J/\psi$ LHCb region: SPS computations with too large uncertainties to conclude
- Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
- $J/\psi + \Upsilon$ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

 Except for both LHCb extractions, all the quarkonium-based extraction point at very small σ_{eff} values: dependence on the flavour, the rapidity or the scale(s) ?

J.P. Lansberg (IJCLab)

Quarkonium production

Part VI

Quarkonium-pair production at the LHC and gluon TMDs

J.P. Lansberg (IJCLab)

Quarkonium production

October 22, 2020 28 / 33

-47 ▶

 $d\sigma^{gg} \propto$

イロト イポト イヨト イヨ

э

$$\frac{d\sigma^{gg} \propto}{\left(\sum_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b}^*\right)} \mathcal{C}[f_1^g f_1^g]}$$

 \Rightarrow helicity non-flip, azimuthally independent

イロト イポト イヨト イヨ

$$\frac{d\sigma^{gg} \propto}{\left(\sum_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b}^*\right)} \mathcal{C}[f_1^g f_1^g]}_{\Rightarrow \text{ helicity non-flip, azimuthally independent}}$$

$$+ \underbrace{\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda,\lambda} \hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}_{F_{2}} \mathcal{C}[w_{2} \times h_{1}^{\perp g} h_{1}^{\perp g}]$$

 \Rightarrow double helicity flip, azimuthally independent

18 A.

$$\frac{d\sigma^{gg}}{\left(\sum_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right)}\mathcal{C}[f_{1}^{g}f_{1}^{g}]}{\Rightarrow}$$

$$\Rightarrow \text{ helicity non-flip, azimuthally independent}$$

$$+\left(\sum_{\lambda}\hat{\mathcal{M}}_{\lambda,\lambda}\hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)\mathcal{C}[w_{2}\times h_{1}^{\perp g}h_{1}^{\perp g}]$$

$$\Rightarrow \text{ double helicity flip, azimuthally independent}$$

$$+\left(\sum_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{-\lambda_{a},\lambda_{b}}^{*}\right)\mathcal{C}[w_{3}\times f_{1}^{g}h_{1}^{\perp g}] + \{a\leftrightarrow b\}$$

$$\Rightarrow \text{ single helicity flip, cos(2\phi)-modulation}$$

18 A.

$$\frac{d\sigma^{gg}}{\left(\sum\limits_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right)}\mathcal{C}[f_{1}^{g}f_{1}^{g}]}{\Rightarrow \text{ helicity non-flip, azimuthally independent}} \\
+ \underbrace{\left(\sum\limits_{\lambda}\hat{\mathcal{M}}_{\lambda,\lambda}\hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)}_{F_{2}}\mathcal{C}[w_{2} \times h_{1}^{\perp g}h_{1}^{\perp g}]}{\Rightarrow \text{ double helicity flip, azimuthally independent}} \\
+ \underbrace{\left(\sum\limits_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{-\lambda_{a},\lambda_{b}}^{*}\right)}_{F_{3}}\mathcal{C}[w_{3} \times f_{1}^{g}h_{1}^{\perp g}] + \\ \{a \leftrightarrow b\}} \\
\Rightarrow \text{ single helicity flip, cos(2\phi)-modulation} \\
+ \underbrace{\left(\sum\limits_{\lambda}\hat{\mathcal{M}}_{\lambda,-\lambda}\hat{\mathcal{M}}_{-\lambda,\lambda}^{*}\right)}_{F_{4}}\mathcal{C}[w_{4} \times h_{1}^{\perp g}h_{1}^{\perp g}]} \\
\Rightarrow \text{ double helicity flip, cos(4\phi)-modulation}$$

TMD modelling : f_1^g and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217
TMD modelling : f_1^g and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- f_1^g modelled as a Gaussian in $\vec{k}_T : f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$ where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $C[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

TMD modelling : f_1^g and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- f_1^g modelled as a Gaussian in $\vec{k}_T : f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$ where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $C[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

October 22, 2020 30 / 33

TMD modelling : f_1^g and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- f_1^g modelled as a Gaussian in $\vec{k}_T : f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$ where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of $\langle k_T^2 \rangle$ by fitting $C[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

- Integration over φ ⇒ cos(nφ)-terms cancel out
- *F*₂ ≪ *F*₁ ⇒ only C[*f*^g₁*f*^g₁] contributes to the cross-section
- No evolution so far: $(k_T^2) \sim 3 \text{ GeV}^2$ accounts both for non-perturbative and perturbative broadenings at a scale close to $M_{\psi\psi} \sim 8 \text{ GeV}$
- Disentangling such (non-)perturbative effects requires data at different scales

J.P. Lansberg (IJCLab)

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

E

・ロト ・日ト ・ヨト ・ヨト

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

• With a fit we obtained $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$
- Let us compare such a value with what a proper NLL evolution up to the scale M_{\nu\nu\nu} ~ 8 GeV would give

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained
 (k_T²) ~ 3 GeV²
- Let us compare such a value with what a proper NLL evolution up to the scale M<sub>\u03c0\u03c0\u03c0 \u03c0 8 GeV would give
 </sub>

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained $\langle k_T^2 \rangle \sim 3 \,\mathrm{GeV}^2$
- Let us compare such a value with what a proper NLL evolution up to the scale $M_{\psi\psi} \sim 8 \text{ GeV}$ would give
- Evolution effects are measurable

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$
- Let us compare such a value with what a proper NLL evolution up to the scale M<sub>\u03c0\u03c0\u03c0 \u03c0 8 GeV would give
 </sub>
- Evolution effects are measurable
- So far, no *x* dependence information

J.P. Lansberg (IJCLab)

Home The project - News - Tools - Request registration

GENERAL DESCRIPTION

FOLLOW:

<ロ> (日) (日) (日) (日) (日)

Objectives:

NLOAccess will give access to automated tools generating scientific codes allowing anyone to evaluate observables -such as production rates or kinematical properties – of scatterings involving hadrons. The automation and the versatility of these tools are such that these scatterings need not to be pre-coded. In other terms, it is possible that a random user may request for the first time the generation of a code to compute characteristics of a reaction which nobody thought of before. NLOAccess will allow the user to test the code and then to download to run it on its own computer. It essentially gives access to a dvnamical lineary.

Show more

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824093.

HELAC-Onia Web [in2p3.fr/nloaccess/HO]

Automated perturbative calculation with HELAC-Onia Web

Welcome to HELAC-Onia Web!

HELAC-Onia ia an automatic matrix element generator for the calculation of the heavy quarkonium helicity amplitudes in the framework of NROCD factorization. The program is able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Besides the high efficiencies in computation of multi-leg processes within the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing with P-wave quarkonia and P-wave color-octel intermediate states.

Already registered to the portal? Please login.

Do you not have an account? Make a registration request.

