

V. ZHOVKOVSKA

V. YEROSHENKO

A.USACHOV

S.BARSUK

$B^{0}_{s} \rightarrow \varphi \varphi \varphi \operatorname{decay}$

- B⁰_s → φφφ possible processes:
 - three-body (non-resonant) penguin
 - two-body tree-level charmonium resonance decay with c-cbar → φφ

- $B^0 \rightarrow \phi \phi$ decay as normalization:
 - two-body penguin with heavy s-sbar resonance

LHCb detector

- Decay vertex reconstruction -Vertex Locator (VELO)
- Kaon identification RICH detectors
- Event selection Trigger system

LHCb Run I measurement

- Previously (Run 1) $B_s^0 \to \phi \phi \phi$ was discovered for the first time and branching fraction was measured (<u>Eur. Phys. J. C 77, 609 (2017)</u>):
- 3D fit of $M(K^+K^-_1) \times M(K^+K^-_2) \times M(K^+K^-_3)$ in bins of M(KKKKKK) to select true $\phi\phi\phi$ combinations

First evidence of $B^0 \hookrightarrow \phi \phi \phi$ (4.9 σ)

• $B^0 \rightarrow \phi \phi$ used as a reference

$$rac{\mathcal{B}(B_s^0
ightarrow\phi\phi)}{\mathcal{B}(B_s^0
ightarrow\phi\phi)}=0.117\pm0.030\pm0.015$$

• using $BR(B^0 \rightarrow \varphi \varphi)$ from JHEP 10, 053

$$\mathcal{B}(B_s^0 \to \phi \phi \phi) = (2.15 \pm 0.54 \pm 0.28 \pm 0.21) \times 10^{-6}$$

LHCb Run I measurement

 No significant resonant contribution was found

 Longitudinal polarization of φ does not describe the data:

Resonant structure in $B^0_s \rightarrow (\phi \phi) \phi$ is searched with the entire Run II data sample

LHCb Run II measurement: data and selection

- $B^0 \rightarrow \phi \phi \phi$ and $B^0 \rightarrow \phi \phi$ data samples from 2016 2018 years
- Run II integrated luminosity is 5.6 fb-1, almost twice as much as in Run I
- Selection requirements:
 - Good-quality high-PT tracks identified as kaons
 - Kaons come from secondary vertex
 - Good-quality φ vertices
 - \circ B_{ς}^{0} mass and direction to PV constraints for resonant spectrum studies

LHCb Run II measurement: strategy

- 3D fit in bins of M(KKKKKK) to extract pure $\phi\phi\phi$ component
- The fit function includes φφφ, φφΚ+K-, φΚ+K-K+K- and K+K-K+K- contributions

2D fit procedure similarly is applied to the normalization channel

B^o_s branching fraction*

• $B^0 \rightarrow \phi \phi \phi$ to $B^0 \rightarrow \phi \phi$ branching fraction ratio:

$$\frac{\mathcal{B}(B^0_s \to \phi \phi \phi)}{\mathcal{B}(B^0_s \to \phi \phi)} = \frac{N_{B^0_s \to \phi \phi \phi}}{N_{B^0_s \to \phi \phi}} \times \frac{\varepsilon_{B^0_s \to \phi \phi}}{\varepsilon_{B^0_s \to \phi \phi \phi}} \times \frac{1}{\mathcal{B}(\phi \to K^+ K^-)} = 0.23 \pm 0.04_{\text{stat}}$$

• $B^0 \rightarrow \phi \phi$ branching fraction is

$$\mathcal{B}(B_s^0 \to \phi \phi) = (1.87 \pm 0.15) \times 10^{-5}$$

• $B^0 \rightarrow \phi \phi \phi$ branching fraction:

$$\mathcal{B}(B_s^0 \to \phi \phi \phi) = (4.2 \pm 0.7_{
m stat}) \times 10^{-6}$$

Efficiency from MC

Search for $B^0_s \rightarrow (\eta_c(1S) \rightarrow \varphi \varphi) \varphi^*$

- Fit to invariant mass of φφ from B0s→(ηc(1S)→φφ)φ
- Considered resonances ⇒
- Background shape is being studied

Resonance	Mass, MeV/ c^2	Γ , MeV/ c^2	J^{CP}
$f_2(2010)$	2011_{-80}^{+60}	202 ± 60	2++
$a_4(2040)$	1995^{+10}_{-8}	257^{+25}_{-23}	4++
$f_4(2050)$	2018 ± 11	237 ± 18	4++
$f_2(2300)$	2297 ± 28	149 ± 40	2++
$f_2(2340)$	2345_{-40}^{+50}	322^{+70}_{-60}	2++
$\eta_c(1S)$	2983.9 ± 0.5	32.0 ± 0.8	0-+
$\chi_{c0}(1P)$	3414.71 ± 0.30	10.8 ± 0.6	0++
$\chi_{c1}(1P)$	3510.67 ± 0.05	0.84 ± 0.04	1++
$h_c(1P)$	3525.38 ± 0.11	0.7 ± 0.4	1+-
$\chi_{c2}(1P)$	3556.17 ± 0.07	1.97 ± 0.09	2++
$\eta_c(2S)$	3637.6 ± 1.2	$11.3^{+3.2}_{-2.9}$	0-+
$\chi_{c1}(3872)$	3871.69 ± 0.17	< 1.2	1++
$Z_c(3900)$	3886.6 ± 2.4	28.2 ± 2.6	1+-
X(3915)	3918.4 ± 1.9	20 ± 5	$0 \ or \ 2^{++}$
$\chi_{c2}(3930)$	3927.2 ± 2.6	24 ± 6	2++
X(4020)	4024.1 ± 1.9	13 ± 5	??+
$\chi_{c1}(4140)$	4146.8 ± 2.4	22^{+8}_{-7}	1++

Resonant structure studies*

φφ mass spectrum after 3+1D fit in bins (without kinematic constraints)

 $\phi\phi$ mass spectrum after 3D fit in bins (with B_s mass and direction constraints)

- Left plot comprises true $\phi\phi$ pairs from true $B^0_s \rightarrow \phi\phi\phi$ decays; Right plot aims at better peak resolutions
- Only significant contribution is the one from η_c(1S)
- Both approaches yield consistent numbers of $\eta_c(1S)$ signal yield

$B_s^0 \to \eta_c(1S) \varphi$ branching fraction*

• From the fit:

$$rac{\mathcal{B}(B_s^0 o \eta_c(1S)\phi)}{\mathcal{B}(B_s^0 o \phi\phi\phi)} = rac{N_{B_s^0 o \eta_c(1S)\phi}}{N_{B_s^0 o \phi\phi\phi}} imes rac{\epsilon_{B_s^0 o \phi\phi\phi}}{\epsilon_{B_s^0 o \eta_c(1S)\phi}} imes rac{1}{\eta_c(1S) o \phi\phi} = 245 \pm 56$$

• Using our $B^0 \rightarrow \phi \phi \phi$ branching fraction:

$$\mathcal{B}(B_s^0
ightarrow \eta_c(1S)\phi) = (10.4 \pm 2.4_{stat}) imes 10^{-4}$$

• Previously measured by LHCb (<u>JHEP 2017 021</u>) with $\eta_c(1S)$ decaying to p-pbar:

$$\mathcal{B}(B_s^0 \to \eta_c \phi) = (5.01 \pm 0.53 \pm 0.27 \pm 0.63) \times 10^{-4}$$

Efficiency from MC

Symmetrized Dalitz plot*

From the $B^0 \rightarrow \phi \phi \phi$ data \rightarrow

Fit of true B^0 signal in bins of Dalitz plot

Symmetrized Dalitz plot: PhysRev.133.B1201

$$X = \frac{\sqrt{3}}{2m_{B_s^0}Q}(u-t) \quad Y = \frac{3}{2m_{B_s^0}Q}((m_{B_s^0} - m_\phi)^2 - s) - 1$$

← From the $B_s^0 \rightarrow \phi \phi \phi$ and $B_s^0 \rightarrow \eta_c(\phi \phi) \phi$ Monte-Carlo respectively

Summary

- The $B^0_s \rightarrow \phi \phi \phi$ analysis with twice as much data as in Run 1 is in progress
- Resonant structure is studied
- The significant amount of $\eta_c(1S)$ resonance in this decay was found for the first time
- Symmetrized Dalitz plot study is in progress