DETERMINING THE POLARISATION OF \wedge_{c} FROM THE DALITZ ANALYSIS OF THE $\wedge_{c} \rightarrow$ P K П DECAY

Emi KOU (IJCLab)

in collaboration with A. Korchin and V. Kovalchuk

- The magnetic moment can be determined by measuring the $\boldsymbol{\Lambda}_{\mathrm{c}}$ polarisation passing through the bent crystal.
- Thus, $\boldsymbol{\Lambda}_{c}$ polarisation has to be measured.
- The angular distribution of the $\boldsymbol{\Lambda}_{c}$ decay carries information of polarisation however, it can not be separated so-called asymmetry parameter $\boldsymbol{\alpha}$.
- We need to measure this parameter at LHCb in advance.

$$
\begin{aligned}
& \frac{1}{N} \frac{d N}{d \cos \vartheta_{k}}=\left.\frac{1}{2}\left(1+c \xi_{k} \cos \vartheta_{k}\right)\right|_{k=x, y, z} \\
& \text { weak parameter polarisation }
\end{aligned}
$$

INTERNSHIP PROJECT

 OF MAKSYM LIUL- Theoretical computation
of the $\Lambda c \rightarrow$ Крп decays of the $\Lambda c \rightarrow$ Крп decays

What we understood in 2018...

- We studied the three body decays.
- $\Lambda c \rightarrow \Lambda \pi \rightarrow$ ртп decay

$$
\begin{aligned}
\frac{d N}{d \cos \theta} & =4 m_{\Lambda}^{2} N_{1} N_{2}\left(1+\alpha_{1} \alpha_{2} \cos \theta-\xi\left(\alpha_{1}-\alpha_{2} \cos \theta\right)\right) \\
& =4 m_{\Lambda}^{2} N_{1} N_{2}\left(1-\xi \alpha_{1}+\alpha_{2}\left(\alpha_{1}+\xi\right) \cos \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& N_{1}=\left(E_{\Lambda_{c}}+m_{\Lambda_{c}}\right)|A|^{2}+\left(E_{\Lambda_{c}}-m_{\Lambda_{c}}\right)|B|^{2} \\
& N_{2}=\left(E_{p}+m_{p}\right)|a|^{2}+\left(E_{p}-m_{p}\right)|b|^{2} \\
& \alpha_{1}=\frac{2 \operatorname{Re}\left(A B^{*}\right)\left|\vec{p}_{\Lambda_{c}}\right|}{N_{1}}
\end{aligned}
$$

$$
\alpha_{2}=\frac{2 \operatorname{Re}\left(a b^{*}\right)\left|\vec{p}_{p}\right|}{N_{2}}
$$

A(B:)form factor for $\wedge c \rightarrow \wedge \pi d e c a y$
a(b:)form factor for $\wedge \rightarrow$ pпdecay

- In this case where the first and the second decays are weak decays (both include parity violation), the angular dependence together with the information of $\alpha_{2}=0.642 \pm 0.013$ allows to determine ξ and α_{1} separately.
- Problem: the decay rate is very small.

What we understood in 2018...

- $\Lambda c \rightarrow\left(K^{*} p, \Delta^{++} K, \Lambda \pi\right) \rightarrow p K \pi$ decay
- This decay was studied by the Fermilab E791 experiment.
- We first followed their formalism (helicity amplitude method).

What we understood in 2018...

- $\Lambda c \rightarrow\left(K^{*} p, \Delta^{++} K, \wedge \pi\right) \rightarrow p K \pi$ decay

The $\Lambda_{c} \rightarrow K^{*}(\rightarrow K \pi) p$ decays

$$
\frac{d \Gamma}{d \cos \theta d \cos \theta^{\prime} d \phi}=a 0+a 1 \cos 2 \theta^{\prime}+P_{\Lambda_{c}} \cos \theta\left(b 0+b 1 \cos 2 \theta^{\prime}\right)+P_{\Lambda_{c}} \sin \theta \sin 2 \theta^{\prime}\left(c 1 \cos \left(\phi-\phi^{\prime}\right)+c 2 \sin \left(\phi-\phi^{\prime}\right)\right.
$$

$$
\begin{aligned}
a 0 & =\frac{1}{8}\left(E_{1}^{2}+2 E_{2}^{2}+2 E_{3}^{2}+E_{4}^{2}\right) \\
a 1 & =-\frac{1}{8}\left(E_{1}^{2}-2 E_{2}^{2}-2 E_{3}^{2}+E_{4}^{2}\right) \\
b 0 & =\frac{1}{8}\left(E_{1}^{2}-2 E_{2}^{2}+2 E_{3}^{2}-E_{4}^{2}\right) \\
b 1 & =-\frac{1}{8}\left(E_{1}^{2}+2 E_{2}^{2}-2 E_{3}^{2}-E_{4}^{2}\right) \\
c 1 & =\frac{1}{2 \sqrt{2}}\left(E_{1} E_{2} \cos \left(\phi_{1}-\phi_{2}\right)-E_{3} E_{4} \cos \left(\phi_{3}-\phi_{4}\right)\right) \\
c 2 & =\frac{1}{2 \sqrt{2}}\left(E_{1} E_{2} \sin \left(\phi_{1}-\phi_{2}\right)-E_{3} E_{4} \sin \left(\phi_{3}-\phi_{4}\right)\right)
\end{aligned}
$$

E1.E4: form factor for S wave decay
E2,E3: form factor for P wave decay
parity violating

$$
P_{\wedge c: ~ p o l a r i s a t i o n ~}(=\xi)
$$

- We can not separately measure all the form factors and the polarisation in this case.

$$
\{a 0, a 1, b 0, b 1, c 1, c 2\} \longrightarrow\left\{\left|E_{1}\right|,\left|E_{2}\right|,\left|E_{3}\right|,\left|E_{4}\right|,\left(\phi_{1}-\phi_{2}\right),\left(\phi_{3}-\phi_{4}\right), P_{\Lambda_{c}}\right\}
$$

What we understood in 2018...

- $\Lambda c \rightarrow\left(K^{*} p, \Delta^{++} K, \wedge \pi\right) \rightarrow p K \pi$ decay
$\underline{\text { The } \Lambda_{c} \rightarrow \Delta^{++}(1232)(\rightarrow p \pi) K \text { decays }}$

$$
\frac{d \Gamma}{d \cos \theta d \cos \theta^{\prime} d \phi}=a 0+a 1 \cos 2 \theta^{\prime}+P_{\Lambda_{c}} \cos \theta\left(b 0+b 1 \cos 2 \theta^{\prime}\right)
$$

$\underline{\text { The } \Lambda_{c} \rightarrow \Lambda(1520)(\rightarrow p K) \pi \text { decays }}$

$$
\frac{d \Gamma}{d \cos \theta d \cos \theta^{\prime} d \phi}=a 0+a 1 \cos 2 \theta^{\prime}+P_{\Lambda_{c}} \cos \theta\left(b 0+b 1 \cos 2 \theta^{\prime}\right)
$$

$$
\begin{aligned}
a 0 & =\frac{5}{16}\left(F_{1}^{2}+F_{2}^{2}\right) \\
a 1 & =\frac{3}{16}\left(F_{1}^{2}+F_{2}^{2}\right) \\
b 0 & =\frac{5}{16}\left(F_{1}^{2}-F_{2}^{2}\right) \\
b 1 & =\frac{3}{16}\left(F_{1}^{2}-F_{2}^{2}\right)
\end{aligned}
$$

$$
a 0=\frac{5}{16}\left(H_{1}^{2}+H_{2}^{2}\right)
$$

$$
a 1=\frac{3}{16}\left(H_{1}^{2}+H_{2}^{2}\right)
$$

$$
b 0=\frac{5}{16}\left(H_{1}^{2}-H_{2}^{2}\right)
$$

$$
b 1=\frac{3}{16}\left(H_{1}^{2}-H_{2}^{2}\right)
$$

- The same conclusions: we can not separately measure all the form factors and the polarisation.
- The interference of these intermediate states allow the separation ???

Computing the interference terms

E.K. A. Korchin, V. Kovalchuk in progress

- It seems complicated to compute the interference term in the helicity amplitude method where we use various rest frames (\rightarrow this problem is discussed and a solution is proposed in arXiv:1910.04566).
- We decided to use a single frame defined as

We use Λc rest frame with

- $x^{\prime}-y^{\prime}-z^{\prime}$: the $\mathbf{p K \pi}$ decay plane
- x-z: p- Σ plane
- $z\left({ }^{(}\right)$: proton direction

Computing the interference terms

E.K. A. Korchin, V. Kovalchuk in progress

- We don't rely on the helicity amplitude method and compute it according to Feynman rules.

$$
d \Gamma(\xi)=\frac{1}{(2 \pi)^{4}} \frac{1}{32 s^{3 / 2}}|\mathcal{M}|^{2} d m_{12}^{2} d m_{23}^{2} d \theta
$$

$$
\mathcal{M}=\mathcal{M}_{\Lambda^{\prime}} \mathcal{B} \mathcal{W}_{\Lambda^{\prime}}\left(s_{12}\right)+\mathcal{M}_{\Delta^{++}} \mathcal{B} \mathcal{W}_{\Delta^{++}}\left(s_{13}\right)+\mathcal{M}_{K^{*}} \mathcal{B} \mathcal{W}_{K^{*}}\left(s_{23}\right)
$$

$$
\begin{aligned}
& \mathcal{M}_{\Lambda^{\prime}}= \bar{u}(p)_{\lambda_{p}} \mathcal{A}_{\Lambda^{\prime}} u_{\Lambda_{c}}(Q) \\
& \mathcal{M}_{\Delta^{++}}= \bar{u}(p)_{\lambda_{p}} \mathcal{A}_{\Delta}+u_{\Lambda_{c}}(Q) \quad \mathcal{B} \mathcal{W}_{R}\left(s_{R}\right)=\frac{1}{s_{R}-m_{R}^{2}+i m_{R} \Gamma} \\
& \mathcal{M}_{K^{*}}= \bar{u}(p)_{\lambda_{p}} \mathcal{A}_{K} u_{\Lambda_{c}}(Q) \\
& \mathcal{A}_{\Lambda^{\prime}}= G_{\Lambda^{\prime}} \mathcal{B} \mathcal{W}_{\Lambda^{\prime}}\left(s_{12}\right)\left\{p_{\mu} \gamma_{5}\left(q_{1}+m_{\Lambda^{\prime}}\right) R^{\mu \nu}\left(q_{1}\right) C_{\nu}^{\Lambda^{\prime}}\right\} \\
& \mathcal{A}_{\Delta^{++}}=G_{\Delta^{++}} \mathcal{B} \mathcal{W}_{\Delta^{++}}\left(s_{13}\right)\left\{p_{\mu}\left(q_{2}+m_{\Delta^{++}}\right) R^{\mu \nu}\left(q_{2}\right) C_{\nu}^{\Delta^{++}}\right\} \\
& \mathcal{A}_{K^{*}}=G_{K^{*}} \mathcal{B} \mathcal{W}_{K^{*}}\left(s_{23}\right)\left\{R^{\mu}\left(q_{3}\right) C_{\mu}^{K^{*}}\right\} \\
& \text { parity violating } \\
&\left.C_{\nu}^{\Lambda^{\prime}}=Q_{l}\left(C \gamma_{5}\right)+D\right) \\
&\left.C_{\nu}^{\Delta^{++}}=Q_{\nu}\left(A \gamma_{5}\right)+B\right) \\
&\left.C_{\mu}^{K^{*}}=E_{1} \gamma_{\mu}+E_{2} Q_{\mu}+\gamma_{5} F_{1} \gamma_{\mu}+F_{2} Q_{\mu}\right)
\end{aligned}
$$

(interim) Results...

- Let us first see the individual resonance contributions. It turned out that the angular distribution fit in single expression:

$$
d \Gamma(\xi) \propto\left[a_{0}-b_{0} \xi \cos \theta-b_{1} \xi \sin \theta \cos \phi\right]
$$

a_{0}, b_{0}, b_{1} are VERY complicated functions of the Dalitz variables

example of $\Lambda c \rightarrow \Delta^{++} K \rightarrow p K \pi$

a_{0}, b_{0}, b_{1} are proportional to

$$
\begin{aligned}
a_{0} & :|A|^{2},|B|^{2} \\
b_{0} & : \xi \operatorname{Re}\left(A B^{*}\right) \\
b_{1} & : \\
& \xi \operatorname{Re}\left(A B^{*}\right)
\end{aligned}
$$

Dalitz analysis gives information of

$$
\begin{gathered}
a_{0} \longrightarrow|A|,|B| \\
b_{0} \longrightarrow|A||B| \cos \delta_{A B} \\
\\
\delta_{A B}=\delta_{A}-\delta_{B}
\end{gathered}
$$

$\mathrm{a}_{0}, \mathrm{~b}_{0,1}$ give information of $|\mathrm{A}|,|\mathrm{B}|$ and $\xi \cos \delta_{\mathrm{AB}}$ and can not provide ξ (unless $\delta_{A B}=0$)

(interim) Results...

- Next we see the interference terms

example of $\Lambda c \rightarrow \Delta^{++} K \rightarrow p K \pi \Lambda c \rightarrow \wedge \pi \rightarrow p K \pi$ intermediate term

$$
d \Gamma(\xi) \propto\left[a_{0}-b_{0} \xi \cos \theta-b_{1} \xi \sin \theta \cos \phi\right]
$$

$a_{0}:|A|^{2},|B|^{2},|C|^{2},|D|^{2}, \operatorname{Re}\left(A D^{*}\right), \operatorname{Re}\left(B C^{*}\right), \operatorname{Im}\left(A D^{*}\right), \operatorname{Im}\left(B C^{*}\right)$
$b_{0}: \xi \operatorname{Re}\left(A B^{*}\right), \xi \operatorname{Im}\left(A B^{*}\right), \xi \operatorname{Re}\left(C D^{*}\right), \xi \operatorname{Im}\left(C D^{*}\right), \xi \operatorname{Re}\left(A C^{*}\right), \xi \operatorname{Im}\left(A C^{*}\right), \xi \operatorname{Re}\left(B D^{*}\right), \xi \operatorname{Im}\left(B D^{*}\right)$
$b_{1}: \xi \operatorname{Re}\left(A B^{*}\right), \xi \operatorname{Im}\left(A B^{*}\right), \xi \operatorname{Re}\left(C D^{*}\right), \xi \operatorname{Im}\left(C D^{*}\right), \xi \operatorname{Re}\left(A C^{*}\right), \xi \operatorname{Im}\left(A C^{*}\right), \xi \operatorname{Re}\left(B D^{*}\right), \xi \operatorname{Im}\left(B D^{*}\right)$
imaginary part is now accessible!!!
$a_{0} \longrightarrow|A|,|B|,|C|,|D|,|A||D| \cos \delta_{A D},|A||D| \sin \delta_{A D},|B||C| \cos \delta_{B C},|B||C| \sin \delta_{B C}$
$b_{0} \longrightarrow \xi|A||B| \cos \delta_{A B}, \xi|A||B| \sin \delta_{A B}, \xi|C||D| \cos \delta_{C D}, \xi|C||D| \sin \delta_{C D}$, $\xi|A||C| \cos \delta_{A C}, \xi|A||C| \sin \delta_{A C}, \xi|B||D| \cos \delta_{B D}, \xi|B||D| \sin \delta_{B D}$
then, using the following relation, we can separate ξ !!!

$$
\frac{\left(\xi|A||B| \cos \delta_{A B}\right)^{2}+\left(\xi|A||B| \sin \delta_{A B}\right)^{2}}{|A|^{2}|B|^{2}}=\xi^{2}
$$

(interim) Results...

- Why are we accessible to the imaginary part???
- The A, B, C... function are actually multiplied by the Breit-Wigner of each resonance:

$$
\begin{aligned}
& A \longrightarrow A \mathcal{B W}_{\Delta^{++}}\left(s_{13}\right), \quad B \longrightarrow B \mathcal{B W}_{\Delta^{++}}\left(s_{13}\right) \\
& C \longrightarrow C \mathcal{B W}_{\Lambda^{\prime}}\left(s_{12}\right), \quad D \longrightarrow D \mathcal{B W}_{\Lambda^{\prime}}\left(s_{12}\right)
\end{aligned}
$$

- When we compute a single resonance, it simply factors out, e.g.

$$
\operatorname{Re}\left(A B^{*}\right) \longrightarrow \operatorname{Re}\left(A B^{*}\right)\left|\mathcal{B} \mathcal{W}_{\Delta^{++}}\left(s_{13}\right)\right|^{2}
$$

- When we have two resonances, these interfere and make it possible separate the real and imaginary parts

$$
\operatorname{Re}\left(A D^{*}\right) \longrightarrow \operatorname{Re}\left(A D^{*}\right) \operatorname{Re}\left(\mathcal{B} \mathcal{W}_{\Delta^{++}}\left(s_{13}\right) \mathcal{B} \mathcal{W}_{\Lambda^{\prime}}^{*}\left(s_{12}\right)\right)-\operatorname{Im}\left(A D^{*}\right) \operatorname{Im}\left(\mathcal{B} \mathcal{W}_{\Delta^{++}}\left(s_{13}\right) \mathcal{B} \mathcal{W}_{\Lambda^{\prime}}^{*}\left(s_{12}\right)\right)
$$

What's next?

- We need to perform the sensitivity study "how precisely we can measure the polarisation ξ at LHCb/SMOG" (for now, with three resonances).
- By doing such study, one can clarify, e.g.

I Is the Dalitz distributions different enough for the different resonances to distinguish $A, B, C \ldots$ parameters?
I Is ϕ distribution important in ξ determination?

- These are simultaneous fit of 8×2 form factors and 1 polarisation parameter.
- We developed a fit program called "Gampola" during internship of B. Knysh (now Belle II-IJCLab group), which can do such a fit very fast.
- It will be great if a very motivated internship student could join to work on this exciting project!

Conclusions

- The charm magnetic moment determination with bent-crystal requires a measurement of the Λ_{c} polarisation.
- It has been puzzling for us how to separately measure the asymmetry parameter and the polarisation.
- We introduced a new frame to compute the interference of the different intermediate states and have shown that indeed, the intermediate terms give extra information to determine full form factors and polarisation.
- We are now ready do perform the sensitivity study.
- The French-Ukraine collaboration have been very fruitful!
- Stay tuned!

