R&D for a Vertex Detector suited to the ILC250 Scientific Goals & Running Conditions

M. Winter (IJCLab-Orsay, IPHC-Strasbourg)

8th France-Ukraine Workshop / IJCLab / 22 Octobre 2020

Contents

- ILC: design, status, ...
- Experimental context
- VXD requirements for physics and running conditions
- Pixel technologies developed: concentrating on IN2P3 activities
- Developments addressing detector integration
- Prospects
- Summary

SOURCES : Talks at VERTEX-2019 & FCCee workshops

The International Linear Collider

- ILC ≡ Linear e⁺e⁻ collider anticipated to be hosted in Japan (Kitakami mountains)
 - TDR (2012), industrialisation assessed (XFEL, LCLS-II, SHINE, ...) \Rightarrow ready for preparing construction
 - Ist stage ("Higgs factory") in preparation by Japanese Gov.
 Discussions on-going with governments in US & Europe
 ICFA ⇒ International Devt Team preparing Pre-Lab (202)
 - E_{cm} = **250 GeV**, 350/380 GeV, \gtrsim 500 GeV Extensions: \nearrow 1 TeV, \searrow 90 GeV, 160 GeV
 - Polarised beam(s): typically $P_{-} = 80$ %, $P_{+} = 30$ %
 - $_{\circ}$ Timeline (prepa. + construct.) \Rightarrow data taking \sim 2035
 - \Rightarrow O(10) yrs available for R&D on vertex detector
- Updated characteristics of Higgs factory: (EPPSU input documents Nr.77 & 66)
 - design resumed for 250 GeV (TDR: optimised at 500 GeV)
 - $\mathcal{L}_0 = 1.35 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $_\circ\,$ Upgrades considered: \mathcal{L}_0 x 4 (ILC-up)
 - \hookrightarrow recently \mathcal{L}_0 x 6 (prelim. estimate: < 300 MW, + 1 BUSD)

Major Aspects of the Detector Concepts

- 2 DETECTOR CONCEPTS :
 - * SiD: full silicon tracker (most compact)
 - * ILD: gaseous main tracker (TPC)
- PRIORITY: GRANULARITY & SENSITIVITY
- EXPLOIT COLLIDER SPECIFICITIES:
 - $* e^+e^-$ collisions:
 - precisely known collision conditions (E_{cm}, Pol., Lumi.)
 - suppressed QCD background \Rightarrow moderate radiation level H occur in 1% of coll. (LHC: 1 H for 10¹⁰ collisions)
 - \Rightarrow triggerless data taking adapted to faint & rare phenomena

* beam time structure:

- $_{\circ} \lesssim$ 1% duty cycle \Rightarrow power cycling \equiv saving \Rightarrow allows high granularity
- $_{\circ} \gtrsim$ 300 ns bunch separation \Rightarrow moderate Δt required
- Ambitionned performance highlights:
 - * Δ_{2ryVx} < 10 μm
 - $\ast\,$ charged track rec.: $\Delta(1/p)$ = 2·10^{-5} ~{\rm GeV}^{-1}
 - $\mathsf{Q}_{2ryVx} \Rrightarrow \;$ rec. $P_t \lesssim$ 100 MeV tracks
 - * mat. budget: \lesssim 10% X $_0$ in front of calorimetres

*
$$\sigma_E^{jet}/E^{jet}\simeq 30\%/\sqrt{E^{jet}}$$
 (neutral had. !) $\Rightarrow~{\rm PFA}$

Vertex Detector Performance Goals

- Vertex detector requirements governed by physics oriented parametres rather than running conditions
 - * emphasis on granularity & material budget (very low power)
 - * much less demanding running conditions than at LHC
 - \Rightarrow alleviated read-out speed & radiation tolerance requests
 - $_{*}\,$ ILC duty cycle \gtrsim 1/200 $\Rightarrow\,$ power saving by power pulsing
- Vertexing goal:
 - * achieve high efficiency & purity flavour tagging
 - \rightarrowtail charm & tau, jet-flavour !!!
 - $_{*}$ reconstruct momentum of soft tracks (P_{t} < 100 MeV)
 - * reconstruct displaced vertex charge
- $\rightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot \sin^{3/2}\theta \ \mu m$ $\triangleright \ LHC: \sigma_{R\phi} \simeq 12 \oplus 70/p \cdot \sin^{3/2}\theta$
 - ▷ Comparison: $\sigma_{R\phi,Z}$ (ILD) with VXD made of ATLAS-IBL or ILD-VXD pixels

Vertexing Concepts & Challenges

- Two alternative pixelated designs :
 - $_{*}$ ILD: long barrel of 3 dble layers (R: 16 60 mm) 0.3% X_0 / layer, $\sigma_{sp} \lesssim$ 3 μm
 - * SiD: short barrel of 5 single layers (R: 14 60 mm) 0.15% X_0 / layer, $\sigma_{sp} \lesssim$ 3-5 μm
 - * several (small & thin) pixel technology options under development
 - * other devts: mat. budget suppression, cooling, 2-sided ladders, ...
- Running conditions dominated by beamstrahlung $oldsymbol{ heta}^{\pm}$:
 - * Radiation doses: O(100) kRad, $< 10^{12} n_{eq}$ /cm²/yr
 - * Rate of e_{BS}^{\pm} impacts: several tens/cm²/BX
 - \Rightarrow governs time resolution requirements
 - * sizeable uncertainties: σ_{BS} , luminosity
 - \Rightarrow substantial safety factors mandatory !

Motivation for High Precision Sensors

Motivation for High Precision Sensors

Role of Vertex Detector: Reconstruction of τ lepton

- Impact of vertex detector on au reconstruction: example of ILD
 - * use measurements of τ spin state in $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-\tau^+\tau^-$ to probe the CP nature of the Higgs boson and search for BSM manifestation by investigating CP conservation in Higgsstrahlung process and Higgs decay
 - * concentrate on hadronic decays of aus (one u only) using displaced vertex reconstruction

* D. Jeans, Nucl. Instrum. Meth. A810, 51 (2016), arXiv:1507.01700 [hep-ex]

* D. Jeans and G. Wilson, Phys. Rev. D 98, 013007 (2018), arXiv:1804.01241 [hep-ex]

Role of Vertex Detector: Impact of Spatial Resolution on b, c Tagging

fermion-pair production at E_{CM} = 500 GeV (CLICdet vertex detector : R_{in} = 31 mm)
 D. Arominski et al., CLICdp-Note-2018-005, arXiv:1812.07337 [physics.ins-det] (2018)

• σ_{sp} = 7 $\mu m
ightarrow$ 3 $\mu m \Rrightarrow$ contaminations suppressed by \sim 20% to 40% for 90% tagging efficiency

Pixel Technologies under Development

- TWO ALTERNATIVE READ-OUT APPROACHES:
 - * continuous during train, possibly alternated with power cycling inbetween trains
 - * delayed after end of train
- FINE PIXEL CCDs (FPCCD): delayed read-out
 - + very granular (5 μm pitch)
- DEPFET: continuous read-out (used in BELLE-II PXD)
 - + very low material budget (e.g. 0.19 % X_0 in BELLE-II PXD)
- SILICON ON INSULATOR (SOI): delayed or continuous read-out
 - + 2-tier process expected to allow very high density integrated μ circuits \Rightarrow pixel dim.
- CMOS PIXEL SENSORS (CPS): delayed (Chronopix) or continuous (PSIRA) read-out
 - + exploits CMOS industry evolution (e.g. feature size \Rightarrow speed, pixel dim., stitching)
- INVERSE LGAD:
 - + made for high resolution time stamping \Rightarrow PID
- SYSTEM INTEGRATION DEVELOPMENTS BESIDES PIXEL TECHNOLOGIES:
 - * ultra-light 2-sided ladders * cooling free of extra material in fiducail volume

CMOS Pixel Sensors (CPS): Main Features

CMOS Pixel Sensors \equiv **Detector** \oplus **Front-End Electronics** in same die NWELL NMOS PMOS DIODE TRANSISTOR TRANSISTOR **PWELL PWELL** NWELL **DEEP PWELL** Epitaxial Layer P-Substrate P++

CMOS Pixel Sensors: Main Features

Location of Devices based on CPS (developed at IPHC)

Present R&D of Monolithic CMOS Pixel Sensors (CPS)

• ILC requirements similar to those of Heavy Ion expts

- ⇒ CPS developed for CBM expt (FAIR/GSI)
 - $\equiv\,$ acts as a forerunner for ILC vertex detectors
- Main characteristics of MIMOSIS
 - $_{st}$ TJsc 180 nm imager process with high-res (25 μm thick) epitaxy
 - * modified high-res (25 μm thin) epitaxy \Rightarrow full depletion \Rightarrow sub-ns charge collection time (+ enhanced rad. tol.)
 - * 1024 col. of 504 pixels with asynchronous r.o. (ALPIDE)
 in-pixel discri. with binary charge encoding
 - $_{*}\,$ pixel: 27x30 $\mu m^{2} \Rrightarrow \sigma_{sp}\gtrsim$ 5 μm (vs depletion depth)
 - * affordable hit density $\simeq 10^8$ hits/cm²/s
 - * $\Delta t \sim$ 5 μs
 - $_{st}$ Power density \sim 40–50 mW/cm 2 (vs hit density)
- Step-1: MIMOSIS-0 proto. \equiv 1/32 slice of final sensor
 - * pixel array μ circuitry validated at 5 μs
 - $\ast\,$ validated rad.tol.> 3 MRad, 3·10^{13} ${\rm n}_{eq}/{\rm cm}^2$
- Step-2: MIMOSIS-1 full size proto.
 - \Rightarrow back from foundry, under test

MIMOSIS-0 Test Results

MIMOSIS-1 Block-Diagramme

MIMOSIS-1 (very) Preliminary Test Results

- 1st electronic noise performance evaluated at T_{room} on 128 DC pixels (1/8 row):
 - \circ Pixel (thermal) Noise \simeq 4.6 \pm 0.4 e⁻ ENC
 - Fixed Patter Noise \simeq 9.4 \pm 0.6 e⁻ ENC (in-pixel discri. threshold \sim 130 e⁻ ENC)

MIMOSIS Spin-Off: Starting Material Options

• still O(10) improvement expected from smaller pixel & sensing diode

Power scheme for VTX-ILD (inner layer)

-		
FCCee workshop, January 2020	A.Besson, Strasbourg University	10

Issue: Link to Forward Tracking System

- Cooling pipes introduce dead material near the IP
- ⇒ alternative (CLICdp approach) : cooled air flowing from outside through end-cap tracking sub-system & traversing vertex detector volume (see N. Alipour Tehrani & P. Roloff, "Optimisation studies for the CLIC vertex-detector geometry", CLICdp-Note-2014-002).
- "40[°] corner":

b-tagging impacted by increased <distance> from barrel edge to 1st disk c-tagging suspected to be significantly more impacted: how much ?

- Other delicate areas:
 - * near the beam pipe (cone ?) \Rightarrow minimal polar angle intercepted (fct of outgoing BS e⁺⁻ cloud)
 - $_{st}$ distance between barrel end and first foward disk \Rightarrow impact on small polar angle tagging

Ultra-Light Double-Sided Pixelated Tracker Modules

• General remarks:

- Double-sided ladders for
 - excellent spatial resolution (granularity, face-to-face correlation)
 - coping with very high hit densities (speed, face-to-face correlation
- Caveate: material budget oughts to be suppressed enough
- ∘ PLUME ≡ Existing prototype, based on MIMOSIS: 8 million pixels, \gtrsim 3 μm , 115 μs , 0.4 % X₀
- $_\circ~$ 1st goal: improve r.o. speed to O(1) μs & squeeze mat. budget to \lesssim 0.3 % X_0, validate face-to-face sensor correlation
- 2ry goal: investigate wireless face-to-face signal transmission
- Possibly: investigate power pulsing in mag. field ? (tbc)
- Sensor related objectives:
 - $_{\rm O}\,$ Baseline MIMOSIS proto.: \gtrsim 4 μm (tbc), \lesssim 5 μs , \lesssim 50 mW/cm^2, \gtrsim 50 MHz/cm^2
 - Assess spatial resolution of ladder based on face-to-face correlations
 - Ideally: develop mixed MALTA-MIMOSIS ladders (complicated !)
- System related objectives:
 - revisit structure of PLUME to compress its material budget
 - investigate new materials & micro-channel cooling

Objectives of R&D in upcoming Years: Time Stamping

- Motivations for time resolution improvements:
 - $_{*}\,$ minimise perturbations due to beamstrahlung e $^{\pm}$
 - * 1st step: single bunch tagging
 - \hookrightarrow bunch spacing: 554 or 337 ns (fct of lumi.)
 - * 2nd step: reject backscattered e $_{BS} \rightarrowtail \Delta t <$ 20 ns
 - * ultimately: allow for particle ID \Rightarrow O(10) ps
 - \hookrightarrow extension to fully pixellated tracking
- R&D activities and difficulties
 - main difficulty: improve time resolution while keeping
 high spatial resolution (& affordable power consumption)
 - \Rightarrow 2 main options addressing single bunch tagging:
 - $_{\circ}\,<$ 0.1 μm CMOS process (e.g. TJsc 65 nm)
 - 2-tier Sol process
 - * e.g.: MIMOSIS may be adapted to 300 ns but granularity
 will be degraded in absence of smaller feature size
 - * oversized pixel dimensions (due to in-pixel circuitry)
 may be compensated by 2-sided impact correlations

Objectives of R&D in coming Years: Material budget reduction

• Physics perfo. limited by material budget of services & overlaps of neighbouring modules/ladders

- Contribution of sensors to total material budget of vertex detector layer is modest: 15 30%
- R&D objective beyond TDR/DBD concepts:
 - Innermost layer: try stitched & curved CPS along goals of ALICE-ITS3, possibly with 65 nm process
 - Concept with minimised mechanical support
 - (e.g. using beam pipe) See Talk of M. Mager at Vertex-19, Lopud Island, Oct.'19

SUMMARY

- The requirements for an ILC vertex detector are particularly demanding in terms of spatial resolution & material budget. They are addressed with various pixel technologies by compromising the time resolution to a tolerable level (w.r.t. beamstrahlung) and exploiting the modest radiation load
- The performances achieved up to now are quite satisfactory w.r.t. DBD/TDR specs, but:
 - * tension between granularity & r.o. speed (\Rightarrow occupancy) \rightarrow little safety margin
 - * material budget issues (power cycling, cooling) not fully addressed \Rightarrow room for improvement
- Main present concerns, addressed by emerging R&D steps:
 - * beam related (beamstrahlung) background: rate subject to sizeable uncertainties
 - \Rightarrow trend of R&D: evolve time stamping toward a few 100 ns (bunch-tagging)
 - \hookrightarrow performance perspectives depend on pixel technology: CPS, Sol ?, others ?
 - N.B.: pixel dimensions will depend on process feature size
 - * material budget: reduce impact of mechanical supports and services
 - \Rightarrow industrial stitching seems promising but there are issues to be addressed soon ...
 - **N.B.** ILC objectives overlap with those of heavy ion (collider) expts \Rightarrow shared effort possibilities ?
- Timeline:
 - * techno. choices of pixel sensors & system integration for an ILC vertex detector may still wait 5 10 years
 - * physics performances described in TDR/DBD (2012) anticipated to improve significantly meanwhile

Issue: σ_{sp} & Δ_t in same sensor

- SPATIAL RESOLUTION :
 - Target value: \lesssim 5 to 3 μm
 - Function of pixel pitch
 - imes signal charge sharing
 - \times charge amplitude
 - imes charge encoding (nb of bits, SNR)

Ex: 25 μm pitch \times M_{clus} = 1 (full depletion, $\theta \sim$ 90°)

- $\Rightarrow \sigma_{sp} \simeq$ 7 μm !
- Correlation with read-out speed:
- $\Delta_t \simeq$ few ns imposes fast charge collection (full depletion, large collection diode, ...)
- \Rightarrow charge sharing suppressed
- Tension mitigated IF $\Delta_t~\gtrsim$ 100 ns
- TIME STAMPING :
 - mainly dictated by beam related background rate (similar at ILC & FCCee)
 - $\sigma_t \lesssim 1 \ \mu s$ hit rate \sim few 10^{-4} /cm²/s \times safety factor (e.g. 3-5)
 - \Rightarrow pixel array occupancy \sim O(10⁻³) at ILC250 & FCCee \Rightarrow Affordable !

Large Prototype FPCCD test status

Large prototype die size is 62.4 X 12.3, that is similar size of FPCCD VTX detector 1^{st} layer sensor.

Photo Image test, read out 0.625Mpix/sec

CCD clock : P1H/P2H/P1V/P2V Input capacitances are large, 10nF~100nF. It's important to manage clock cabling. In our test bench, 9 twisted-pare are paralleled for each clocks. $Z_0 = 11 \sim 12$ [ohm]

LargeCCD	DUT:CPK1-14-CP01-08					
	V. pix. size	H. pix. Size	Horizontal num. pixel	Vertical num. pixel		
OS8	6 6	6 6 x 6 10400	10400	255	ch1	
OS7	0 X 0	0 X 0	10400	200	ch2	
OS6	6 × 6	6 x 6 6 x 12	10400	254	ch3	
OS5					ch4	
OS4	00	00	0 0	7000	101	ch5
OS3	οχο	8 X 8	/800	191	ch6	
OS2	10 , 10	10 , 10	5200	107	ch7	
OS1 12 x 12	12 X 12	5200	127	ch8		

Large prototype CCD is working except ch7 and ch8, of which H. pix size 6 x 6 um². We are working on Fe55 radiation test, and to raise the readout speed up to 10Mpix/sec.

Sol Development (1/2)

SOFIST: SOI Fine measurement of Space and Time

KEK, U Tsukuba, Tohoku U.

Each pixel records multiple hit data (charge and time) to read between beam train

SOI development at IPHC

New features available in the SOI technology

- Double tier "3D" 5 μm pitch bonding *NIMA A 924 (2019) 422–425*
- Pinned photo-diode *doi : 10.3390/s18010027*

Prototyping at IPHC

- Developed a Digital Library in cooperation with KEK
- Submitted two sensors in the last MPW run
 - Digital for the Digital Library characterization
 - > Analog

300μm thick - 6x6 mm²

Analog Sensor features:

- Pixels in 18 μ m pitch
- Matrix of Mimosis pixels
- New amplifier architecture
- Pixels with different collecting diodes

Perspectives

- 20 x 20 μm^2 Mimosis pixel with a digital tier on top
- Assembled structure thinned down to $\widetilde{}$ 50 75 μm

Next MPW submission in May 2020

Study:

- Charge collection & Timing
- Radiation damage influence

Power Consumption of MIMOSIS-1 (1/2)

- Analogue Power: 30 mW (analogue pixel+PLL+DAC+ analogue buffers)
- Total Power = Analogue Power + Digital Power
- Total Power Density 1= Total Power/5.33 cm² (total surface)
- Total Power Density 2= Total Power/4.20 cm² (active surface)
- Power consumption with 8 outputs

	1 pixel/frame	~260 pixels/frame	~520 pixels/frame	~640 pixels/frame	1 pixel/frame 2 outputs
Digital Power mW	150	175	195	200	110
Total Power mW	180	205	225	230	140
Total Power Density 1 mW/cm ²	34	39	42	43	27
Total Power Density 2 mW/cm ²	43	49	53	55	34

Power Consumption of MIMOSIS-1 (2/2)

Ex: DEPFET Potential Approach for Shorter Integration Time

• DEPFET pixels (50 μm pitch, 20 μs r.o.) equip the PXD detector of BELLE-II

Another 2x possible with faster DCD! \rightarrow 12x improvement in occupancy, ~3µs per frame in reach courtesy of Laci Andricek

The ILD Collaboration (70 Institutes)

