FTOF detector: forward particle identification using Cherenkov light
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fTOF Detector for HIEPA
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Principle
* Quartz Cherenkov radiators conduct light to photon detectors using total internal reflection



DIRC-like TOF for SuperB project

Original idea was proposed for Italian SuperB project: DIRC-like TOF detector for PID in
forward region
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* >10 photons / track — time resolution per

photon around 100 ps l /'
e 12 thin (15 mm thick) quartz tiles sonl I
* Cherenkov light detected by fast MCPPMTs 1
 WaveCatcher electronics (beam view) 24cm (side view) |
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Optimization of time resolution: sector size

Photon arrival time
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Optimization of time resolution: sector thickness
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Optimization of time resolution: sector thickness

* Restore (or improve) initial amount of light retaining the improved time resolution by
using multilayers

Two layers of quartz optically
separated from each other

Time arrival of detected photons
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Further geometry optimization: tilted sectors

* Tilted geometry with an angle o
* Decrease number of side reflections
* Reduce time of propagation spread

* Reduce light loss caused by surface
imperfections

* Reduce time spread caused by Cherenkov
light from &-electrons

* Allows optimal implementation of threshold-
based particle identification

* Single-type geometry to allow all possible
tilting angles
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Threshold-based particle identification o
Given a values favour the light propagating directly to the photon detector without reflection —

“direct” photons

Threshold of Cherenkov light emission is different for K and 1t having the same momentum

Using photo absorbers on sector side surfaces — detecting only direct photons — allows to
improve time properties of the signal and to use threshold-based particle identification

This complementary information does not depend on time resolution of photon detectors

Angle a of propagation without reflections for K and 1t
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Threshold-based particle identification 10

* Performance illustration for the sector with blackened sector side surfaces and
* thickness of 3 cm tilted at a = 23 degrees for K and Tt with p =1 GeV/c

Geometrical factor for the amount of the detected
photons vs distance from photodetector (cm).

It doesn’t include light yield dependent on
momentum and detection efficiency.

Pion * Threshold-based separation between K

Kaon and 1t possible in a region between 18 cm
and 60 cm

* For the distances below 18 cm spread in
photon time of arrival is reduces and time-
of-flight measurement performance is
better
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Identification of particles close to photon detectors 11
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Refraction index variation 12

* Threshold-based particle identification can be further optimized by simultaneously using

materials with adjusted refractive indices n
The “sandwich” of layers with n = 1.04, 1.1, 1.04

Threshold momentum for K+ and 7w+
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WLS tubes light collection 13

Direct idealistic light collection Photon arrival time
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Summary

FTOF detector initially proposed for the SuperB project is reconsidered for the forward
particle identification at future high-luminosity tau-charm factory

New detector geometries are considered to improve time properties of the signal

Combining TOF measurement and Cherenkov light threshold information is
promising to improve PID performance

Using Cherenkov light radiators with different refractive index n complementary to
quartz allows further optimization

New SiPM photodetectors are considered as an alternative to MCPPMT
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Threshold momentum

Cerenkov angle vs momentum for K+ and 7+
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Momentum, MeV/e

n g |7t MeV/e | KT,MeV/e | 200-700 nm | 400-700 nm
1.01 | 0.990 | 984.451 3482.129 32 9
1.02 1 0.980 | 694.387 2456.135 63 19
LO3 | 0971 | 565.566 2000.480 94 28
1.04 | 0.962 | 488.593 1728.215 123 37
1.05 | 0.952 | 435.943 1541.988 152 45
L.06 | 0.943 | 396.993 1404.215 180 o4
1.07 1 0935 |  366.655 1296.907 207 62
1.O8 | 0.926 | 342.149 1210.225 233 70
1.09 | 0.917 | 321.809 1138.278 259 7
1.10 | 0.909 |  304.567 1077.292 284 85
1.20 | 0.833 | 210410 744.246 500 150
1.30 | 0.769 | 168.023 594.317 068 200
1.40 | 0.714 | 142.448 503.857 802 240
1.50 | 0.667 | 124.835 441.558 909 272
1.60 | 0.625 | 111.745 395.258 998 299
1.70 | 0.588 | 101.522 359.097 1071 321
1.80 | 0.556 93.254 329.852 1132 339
1.90 | 0.526 86.392 305.578 1184 359
2.00 | 0.500 | 80.581 285.025 1228 368

Results of Vlad Orlov




Time-Of-Flight Technique

i S i it il
Particles

- ——— muon
pion

kaon
proton

* Time of flight for distance L,

Time-of-Flight, ps

momentum p and mass m:

L\/ (mc)2
t==[1+(—
c p

* The difference in time of flight (K /m):

Lc

At = Zp (sz o mrcz)

‘III TTTITTT TT ATT T T T[T T[T TTTTTTTTTT LT

——

o T
o)

w

1 1.2 14 16 1.8 2 22 24 26 2.8
Momentum, GeVC
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momentum for different particles (L = 130 cm)



Likelihood based particle selector

In Likelihood based selector we construct out measured

gualities variable which can be likelihood ratio defined by this LH, )
equation: Rin=TH +LH, 1+LH,/LH,

Where LH, and LH, - likelihoods of the hypothesis (1) and (2) respectively.
In our case is particle K-meson or 1t-meson.

L= —(r—rm(P,L,m,{x,ymezi))z)
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Considering probability density function (PDF) of the oz TP

measurements are Gaussian, the likelihood can be written
like this both for time-of-flight and number of LH=——— exp
photoelectrons (for threshold counting):
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