

Belle II status and Highlights Karim Trabelsi karim.trabelsi@in2p3.fr

The Geography of the International Belle II collaboration

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory $(\sim 1.3 \times 10^9 \text{ cc} \text{ pairs per ab}^{-1})$ (but also charmonium, X, Y, Z, pentaguarks, tetraguarks, bottomonium...)
- a (Super) τ factory (~0.9 × 10⁹ $\tau^+ \tau^-$ pairs per ab⁻¹)
- exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e^+e^-) rather than proton-proton (p-p))

SuperKEKB/Belle II status

- \circ successfully introduced this spring, crab waist for LER/HER
- despite difficult conditions, continued to take data since March ! beyond to 2.4×10³⁴/cm²/s !

record of KEKB/Belle 2.1×10^{34} /cm²/s currents >1A record of PEPII/BaBar 1.2×10^{34} /cm²/s currents >2A

Belle II detector

EM Calorimeter : CsI(Tl) waveform sampling

Vertex Detector 1/2 layers DEPFET + 4 layers DSSD

Installation of Vertex Detector (Fall 2018)

K_L and muon detector Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification Time-Of-Propagation counter (barrel) Prox. focusing Aerogel RICH

Central Drift Chamber He (50%):C₂H₆ (50%)small cells, long level arm, fast electronics

on - going DAQ upgrade (to be fully installed in 2021) PCIe 40 board, capable of reading via high speed optical links and to write to computer at rate of 100 Gb/s: limited number of boards (20) enough to read (almost) entire Belle II detector (P.Robbe, D.Charlet et al)

⇒ now getting involved in VTX upgrade (2026)

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

(flavour tagging, B tagging, missing energy)

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,\,B\,\overline{B} \\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

LHCb

 $pp \rightarrow b\overline{b}X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b\,\overline{b}}$ much higher than at the $Y(4\,S)$

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$	
HERA pA	42 GeV	~30	~10 ⁻⁶	
Tevatron	Tevatron 2 TeV		~10 ⁻³	
	8 TeV	~3x10 ⁵	~ 5x10 ⁻³	
LHC	14 TeV	~6x10 ⁵	~10 ⁻²	

b $\overline{\mathbf{b}}$ **production cross-section at IHCb** ~ 500,000 × BaBar/Belle !!

 $\begin{array}{l} \sigma_{b \,\overline{b}} / \sigma_{total} \mbox{ much lower than at the } Y(4\,S) \\ \Rightarrow \mbox{ lower trigger efficiencies} \end{array}$

B mesons live relativey long

mean decay length $\beta \gamma c \tau \sim 200 \mu m$ mean decay length $\beta \gamma c \tau \sim 7 mm$ data taking period(s)(displaced vertices) $[1999-2010] = 1 ab^{-1}$ $[run I: 2010-2012] = 3 fb^{-1}$,[2019-...] = ... $[run II: 2015-2018] = 6 fb^{-1}$ $[Belle II from 2019] \rightarrow 50 ab^{-1}$ [LHCb upgrade from 2021]

Precision measurements

The Unitarity Triangle in the year 2030

NB: α with couple of degrees @ Belle II

 \Rightarrow major updates for $|V_{ub}|$, $\frac{\sin 2\beta}{\alpha}$, α , γ

<u>Time-dependent CP asymmetries</u> in decays to CP eigenstates

Measurement of $sin 2\beta$

$sin 2\beta$ at Belle II

	Belle	Belle II (50 ab ⁻¹)	
S	0.667 ± 0.023 ± 0.012	$x.xxxx \pm 0.0027 \pm 0.0044$	anchor of SM
А	$0.006 \pm 0.016 \pm 0.012$	x.xxxx ± 0.0033 ± 0.0037	

will be dominated by systematic uncertainties

11

12

 ϕK^0 η'K⁰ -0.3 0.2 0.3 -0.2 -0.10.1Theory uncertainty on $\Delta S = \Delta S_{SM}$ QCDF Beneke, PLB620, 143 (2005) SCET/QCDF, Williamson and Zupan, PRD74, 014003 (2006) QCDF Cheng, Chua and Soni, PRD72, 014006 (2005) SU(3) Gronau, Rosner and Zupan, PRD74, 093003 (2006)

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

• Theoretically pristine $B \rightarrow DK$ approach • Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

 $B^{\pm} \rightarrow DK^{\pm}$ $B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\pi^{0}$ $B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\gamma$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{0} \rightarrow DK^{*0}$ $B^{\pm} \rightarrow DK \pi\pi$ $B \rightarrow \dots$

 $D \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-} \dots$ $D \rightarrow K_{s} \pi^{0}, K_{s} \eta \dots$ $D \rightarrow K K \pi^{0}, \pi \pi \pi^{0} \dots$ $D \rightarrow K_{s} \pi \pi, K_{s} K K$ $D \rightarrow K_{s} \pi \pi \pi^{0} \dots$ $D \rightarrow \dots$

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

• Theoretically pristine $B \rightarrow DK$ approach

∘ Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

Semileptonic and leptonic

	Process	Obser.	Theory	Discovery	v Sys.	vs	vs	Anomaly	NP
				(ab^{-1})	limit	LHCb	Belle		
				1 F	(ab^{-1})	BESⅢ			
	$B \to \pi l \nu_l$	$ V_{ub} $	***	-	10	***	***	**	*
	$B \rightarrow X_u l \nu_l$	$ V_{ub} $	**	-	2	***	**	***	*
	B ightarrow au u	Br.	***	2	50	***	***	*	***
•	$B ightarrow \mu u$	Br.	***	5	50	***	***	*	***
•	$B ightarrow D^{(*)} l u_l$	$ V_{cb} $	***	-	1	***	*	*	
•	$B \rightarrow X_c l \nu_l$	$ V_{cb} $	***	-	1	**	**	**	**
•	$B ightarrow D^{(*)} au u_{ au}$	$R(D^{(*)})$	***	-	5	**	***	***	***
	$B ightarrow D^{(*)} au u_{ au}$	P_{τ}	***	-	15	***	***	**	***
	$B \rightarrow D^{**} l \nu_l$	$ V_{cb} $	*	-	-	**	***	**	
				15					

Lepton (non) universality using $B^+ \rightarrow K^{(*)} l^+ l^-$ decays

no evidence of New Physics in a series of ''clean'' flavor-changing observables, such as $\Delta F=2$, also $b \rightarrow s \gamma$ but ...

Event reconstruction in B \rightarrow D^{(*)} \tau \gamma at B factories

with $B \rightarrow Dl \nu$ (more form factors in $B \rightarrow D^* \tau \nu$)

uncertainties from form factors F_v and F_s can be studied

Hadronic full reconstruction at Belle II

Particle	# channels (Belle)	# channels (Belle II)
D*/D**/D _s *	18	26
D ⁰ /D* ⁰	12	17
B+	17	29
B ⁰	14	26

Algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut based (Vcb)		
Belle v3 (2007)	Cut based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BDT	1 0.5	0.25
		/	

Improvement to tagging efficiency in Belle II

 $\circ~$ More modes used for tag-side hadronic B than Belle , multiple classifiers

 Good performances on Belle II predicted beam background conditions:

Lepton (non) universality using $B^+ \rightarrow K^{(*)} l^+ l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- \checkmark With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

(see D.Becirevic, S.Descotes-Genon's work)

G.Isidori , FPCP 2020: correlations among $b \rightarrow s(d)ll'$ within the U(2)-based EFT

	μμ (ee)	ττ	vv	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$\frac{B \to K^{(*)} \tau \tau}{\to 100 \times SM}$	$B \rightarrow K^{(*)} \nu \nu$ $O(1)$	$\begin{array}{c} B \rightarrow K \tau \mu \\ \hline \rightarrow 10^{-6} \end{array}$	В → К µе ???
$b \rightarrow d$	$\begin{split} B_{d} &\to \mu \mu \\ B &\to \pi \ \mu \mu \\ B_{s} &\to K^{(*)} \ \mu \mu \\ O(20\%) \ [R_{K} = R_{\pi}] \end{split}$	$B \rightarrow \pi \tau\tau$ $\rightarrow 100 \times SM$	$B \rightarrow \pi \nu \nu$ $O(1)$	$\frac{B \to \pi \tau \mu}{\to 10^{-7}}$	$B \rightarrow \pi \mu e$???

 q^2 range for predictions for $B \rightarrow H\tau^+\tau^-$: from $4 m_{\tau}^2 (\sim 12.6 \text{ GeV}^2)$ to $(m_B - m_H)^2$

[B.Capdevila et al, arXiv:1712.01919]

to avoid contributions from resonant decay greatly enhanced in NP models... through $\psi(2S)$, $B \rightarrow H \psi(2S)$, $\psi(2S) \rightarrow \tau^+ \tau^$ predictions restricted to $q^2 > 15 \text{ GeV}^2$: 10 $B(B \rightarrow K \tau^{+} \tau^{-})_{SM} = (1.2 \pm 0.1) \ 10^{-7}$ 8 $B(B \rightarrow K^* \tau^+ \tau^-)_{SM} = (1.0 \pm 0.1) 10^{-7}$ R_{n(*)}&R_J/ψ 2σ $Br \times 10^4$ 6 R_n(*)&R_J/ψ 1σ \blacksquare Br[$B_s \rightarrow \tau \tau$] Br[B→ K^* ττ] 4 strategy used: [BaBar, arXiv:1605.09637] Br[B→Kττ] \square Br[B_s $\rightarrow \phi \tau \tau$] B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_l \nu_{\tau}$ 2 Entries/0.04 background: 250 mostly $B \rightarrow D^{(*)} l \overline{v_1}, D^{(*)} \rightarrow K l' \overline{v_{1'}}$ 1.2 1.3 1.4 1.5 1.1 R_X/R_X^{SM} 150 100 0.4 0 0.2 0.6 0.8 1.2 1.4 -0.2- 1 MLP output

BaBar's result with had tag: $B(B^+ \rightarrow K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90%CL

[Belle II, arXiv:1808.10567]

this is the result with had tag.... (on-going thesis at IJCLab from G.de Marino)

specific to PS^3

- hierarchical symmetry breaking pattern relates flavour-dependent LQ couplings to Yukawa hierarchies
- LQ coupling also to right-handed fermions

LFV $B \rightarrow K \tau l (l = e, \mu)$ decays

[BaBar, arXiv:1204.2852] strategy used: B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_1 \nu_{\tau}$, $(n \pi^0) \pi \nu$, with $n \ge 0$ using momenta of K, l and B, **can fully determine the** τ **four-momentum** unique system: no other neutrino than the ones from one tau ($\neq B \rightarrow \tau \nu$, D^(*) $\tau \nu$...)

B(**B**⁺→**K**⁺τ⁻μ⁺) < 4.5 × 10⁻⁵ at 90%CL, **B**(**B**⁺→**K**⁺τ⁺μ⁻) < 2.8 × 10⁻⁵ at 90%CL (also results for B→K⁺τ[±]e[∓], B→π⁺τ[±]μ[∓], B→π⁺τ[±]e[∓] modes)

[LHCb, arXiv:2003.04352]

Search for the lepton favour violating decay $B^+ \rightarrow K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays, $B_{s2}^{*0} \rightarrow B^+ K^- Br(K^+ \tau^+ \mu^-) < 3.9 \times 10^{-5}$ at 90%CL

⇒ can we do better ? combining hadronic tag with an more inclusive tag ?...

B-tagging...

[Belle (II), G.de Marino]

standard tagging methods: hadronic and semi-leptonic other possibilities ? semi-inclusive, a.k.a c-tag...

 \Rightarrow B-tagging... but better to talk about charged B tag or neutral B tag

- Exploit the high B.R. of $B^+ \rightarrow \overline{D}^0 X$
- → reconstruct D^0 + inclusive X

semi-inclusive, intermediate tagging method
way to probe the tag side

- Application in $B \rightarrow K \tau l$, where the topology with K+l allows looser reconstruction in B_{tag} side
 - 1) D is reconstructed
 - 2) Primary K and l, and τ decay prong are chosen
 - 3) ''D + X'' provides the tag side B

⇒ promising avenue as much higher efficiency, though with larger background

26

<u>cLFV: beyond the Standard Model</u>

long-standing, and well motivated (particularly since the discovery of neutrino oscillations) programme of searches for charged Lepton Flavour Violation less stringent limits in 3rd generation, but here BSM effects may be higher $3\alpha \mid_{U^*U} \Delta m_{3i}^2 \mid_{10-40}^2 \qquad \qquad \mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda}O^{(5)} + \sum_{i=1}^{C_i^{(6)}} \frac{C_i^{(6)}}{\Lambda^2}O_i^{(6)} + \sum_{i=1}^{C_i^{(6)}}$

$$\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_W^2} \right|^2 < 10^{-40}$$

	I					$\tau \rightarrow 3\mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^+ \pi^-$	$\tau \rightarrow \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$	
Model	Reference	τ→μγ	т→µµµ	4-lepton —	→O ^{4ℓ} _{S,V}	✓	_	_	_	_	-	ľ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10 ⁴⁰	dipole -	→ O _D	✓	1	1	1	—	—	
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10-10		$O_V^q \leftarrow$ $O_V^q \leftarrow$		_	✓ (I=1) ✓ (I=0)	\checkmark (I=0,1) \checkmark (I=0,1)	_	_	
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8	pton-gluon –	◆O _{GG}	_	_	 (1=0) ✓ 	 (1=0,1) ✓ 	_	_	
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10		$O_A^q \leftarrow$	-	-	_	_	✓ (I=1)	✓ (I=0)	
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹		0 ⁴ P ◆0 _{GĜ}	_	_	_	_	✓ (1=1) -	✓ (1=0) ✓	
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7		30	lepton-	quark		Celis, C	irigliano, Pas	ssemar (2014	4)

cLFV: beyond the Standard Model

 τ LFV searches at Belle II will be extremely clean with very little background (if any), thanks to pair production and double-tag analysis technique.

how to improve further ?

... considering $\tau \rightarrow \mu/eh^+h^$ in function of one prong tag categories ... for $\tau \rightarrow 3$ muons, improve μ -ID at low mom (ECL info)

In contrast, hadron collider experiments must contend with larger combinatorial and specific backgrounds

Background modes normalised to $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ (BR ~ 10⁻⁵)

Relative

abundance

1

0.87

0.13

0.13

0.06

0.05

Most improvement in coming decade is expected from Belle II, which can reach 1×10^{-9} [arXiv:1011.0352] and will do even better if can achieve ~ zero bckgd

Many more interesting τ topics

<u>CP</u> asymmetry (CPV not yet observed in the lepton sector)

$$A_{\tau} \equiv \frac{\Gamma(\tau^{+} \rightarrow \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) - \Gamma(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \rightarrow \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) + \Gamma(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} \nu_{\tau})} \qquad A_{\tau} \equiv (-3.6 \pm 2.3 \pm 1.1) \ 10^{-5} \\ (\ge 0 \pi^{0}) [Babar, PRD85, 031102 (2012)] \\ A_{\tau}^{SM} \equiv (+3.6 \pm 0.1) \ 10^{-3} \\ (CPV \text{ in } K^{0} \text{ system}) \\ [Bigi-Sanda, Grossman-Nir] \end{cases}$$

Belle shows no indication of CP aymmetry in angular distribution of τ⁻→K_Sπ⁻ν_τ
a variety of CPV observables to be studied: τ→Kππν_τ, τ→πππν_τ rate, angular asymmetries, triple products...

EDM (CPV in tau pair production), <u>τ Anomalous Magnetic Moment</u>

S.Eidelman	, M.Passera
$10^{8} \cdot a_{\tau}^{\text{th}} = 117\ 324 \pm 2 \\ + 47.4 \pm 0.5 \\ + 337.5 \pm 3.7 \\ + 7.6 \pm 0.2 \\ + 5 \pm 3 \\ = 117\ 721\ \pm\ 5$	QED EW hvp hvp NLO light-by-light

 $\circ~$ difficult to measure , a_{τ}^{exp} = (-0.018 ± 0.017) , DELPHI , EPJC 35 (2004) 159

Belle II's first steps...

20

10

0

-8

 $N_{_{+/-}}$

-6

-2

0

 $\Delta t [ps]$

2

6

 $\frac{\exp(-|\Delta t|/\tau)}{4\tau} \left\{ 1 \pm (1-2w) \sin(2\phi_1) \sin(\Delta m_d \Delta t) \right\} \otimes R(\Delta t)$

4

8

Asymmetry 0.0 2.0 0.0 0.0

(WA=0.691±0.017)

 $B^0 \to f : B^0 \to \overline{B^0} \to f$

Flavor Tagging (b quark or anti-b quark ?)

FIG. 4: Post-fit M_{miss}^2 distribution in 34.6 fb⁻¹ of data.

 $BF(B^0 \to \pi^- l^+ \nu) = [1.58 \pm 0.43(stat) \pm 0.07(sys)] \times 10^{-4}$

arXiv:2008.08819 [hep-ex]

Tau Mass Measurement

Use 1 prong vs 3-prong tau pair events from e+e- $\rightarrow \tau^+ \tau^-$

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le m_{\tau}$$

 $m(\tau) = 1777.28 \pm 0.75(stat) \pm 0.33(sys) \text{MeV/c}^2$

600

500

400

300

200

100

Data

N_{evts} = 8742

 χ^2 /dof = 349.680

Events / (50 MeV/c²)

Pull

1.8

Belle II (Preliminary)

 $Ldt = 8.8 \text{ fb}^{-1}$

1.82

1.84

 $m_r = 1777.28 \pm 0.75 \text{ MeV/c}^2$

M_{min} [GeV/c²]

Conclusion

- Few tantalizing results on rare decays in B sector covered in this talk... but much more in B decays: LFV searches, $B \rightarrow K^{(*)} \nu \overline{\nu}$, $B \rightarrow \tau \nu$, $\mu \nu$... also in charm, charmonium, bottomonium, light Higgs, τ , DS, kaon sectors...
- Definitely not only complementary, but stimulating competition between (super) B-factory and LHCb (upgrade):
 - for the expected: results on $B_{(s)} \rightarrow \mu \mu$, $B \rightarrow K^* \mu \mu$, γ angle...
 - for the less expected : results on $|V_{ub}|$, $D^{*}\tau\nu...$

Few words on Belle II detector

• collecting $50ab^{-1}$ from 2019 to 2030...(or until we get 50 ab^{-1} ?)

Time-dependent CP asymmetries in decays to CP eigenstates

 $\sin 2\phi_1$ from $B \rightarrow f_{CP} + B \leftrightarrow \overline{B} \rightarrow f_{CP}$ interf.

Þ ∆t

[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$	-
$R_K \ ([1.0, 6.0] \text{GeV}^2)$	28%	11%	3.6%	-
$R_K \ (> 14.4 {\rm GeV^2})$	30%	12%	3.6%	$> 5\sigma$ confirmation
$R_{K^{\star}}$ ([1.0, 6.0] GeV ²)	26%	10%	3.2%	possible with Belle II 20 ab ⁺
$R_{K^*} \ (> 14.4 \text{GeV}^2)$	24%	9.2%	2.8%	
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%	
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%	_

Tauonic B decays: $B \rightarrow \tau \nu$

2 HDM (type II):
$$B(B^+ \rightarrow \tau^+ \nu) = B_{SM} \times (1 - \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)^2$$

 $B_{SM}(B^+ \rightarrow \tau^+ \nu) = \frac{G_F^2 m_B m_\tau^2}{8 \pi} (1 - \frac{m_\tau^2}{m_B^2}) f_B^2 |V_{ub}|^2 \tau_B$

2

uncertainties from f_B and $|V_{ub}|$ can be reduced to B_B and other CKM uncertainties by combining with precise $\Delta\,m_d$

$B \rightarrow \tau \nu$ status and projections

p-value

more observables...

C.Hati et al, arXiv:1806.10146

A.Datta et al, arXiv:1609.09078: interesting modes are $\tau \rightarrow 3\mu$, and $Y(3S) \rightarrow \mu \tau$

Dark Sector Physics

exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

search for a dark photon decaying invisibly, and the search for an axion-like particle may be possible even in "Phase 2"