SEISM : Source d'ions à 60 GHz pour les accélérateurs du futur

T. André¹, T. Thuillier¹, P. Sole¹, M. Baylac¹, J. Angot¹, F. Debray², I. Izotov³, V. Skalyga³

¹Université Grenoble-Alpes, CNRS-IN2P3, Grenoble Institute of Engineering (INP), LPSC, 38000 Grenoble, France ²LNCMI, CNRS-UGA-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble, France ³Institute of Applied Physics, RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russian Federation

Journée Accélérateurs SFP, Roscoff, 13-15 octobre 2021

1 Introduction aux source d'ions RCE

- Principe de fonctionnement
- Configuartions magnétiques
- Propriétiés des sources RCE

2 Motivations pour des source hautes fréquences RCE

3 Historique et perspectives de la source RCE 60 GHz

- Précédentes expériences (2014)
- Futures Expériences
- Installation des équipements

Créés par R. Geller au CEA Grenoble dans les années 1960

RCE = Résonance Cyclotronique Electronique

Le piège magnétique est créé par une combinaison de différents éléments magnétiques :

- Bobines pour le confinement axial
- Hexapôle pour le confinement radial

Table: Configuration magnétique pour une source d'ions RCE à minimum B

Composantes	Intensité
B _{inj}	3-4 B _{RCE}
B _{med}	0.4-0.8 B _{RCE}
B _{ext}	2 B _{RCE}
Br	2 B _{RCE}

Courant d'ions extrait d'une source

 $I_{faisceau} \propto n_{plasma} \propto f_{RCE}^2 \propto B_{RCE}^2$

Champ magnétique pour 60 $\rm GHz$

$$f_{RCE}=60\,\mathrm{GHz}\rightarrow B_{RCE}=2.14\,\mathrm{T}$$

 Nouvelles générations d'accélérateurs demandent de faisceaux de hautes intensités

270 U³³⁺+ 270 U³⁴⁺ CW with two charge states

Le plasma RCE est qualitativement compris mais de nombreuses questions demeurent

Intérêt d'étudier la physique des plasmas RCE dans une source de grand volume

- Capable de fonctionner de $2.45\,\mathrm{GHz}$ to $60\,\mathrm{GHz}$
- Accès facile pour les diagnostic plasma : diffusion Thomson, interférométrie...

Historique

- SEISM : Sixty gigahErtz Ion Source using Megawatt magnets.
- Bobines construites avec le LNCMI, où l'expérience est installée.
- Pour la production de micro-ondes, un Gyrotron, une ligne de transport, une injection optique dans la source fournie par IAP RAS Nizhny Novgorod
 - 60 $\rm GHz$ / 300 $\rm kW$ / 1 $\rm ms$ pulses / 2 $\rm Hz$
- Premières expériences réalisées en 2014 mais arrêtée à cause d'un fil métallique présent dans le refroidissement qui a détruit 2 des 4 bobines.
- Le projet a redémarré en 2019 avec de nouveaux fonds de l'IN2P3.

- Électrode d'extraction de 1 mm de diamètre
- Observation de densité de courant jusqu'à $900 \,\mathrm{mA/cm^2}$ (Oxygène)

Journée Accélérateurs SFP, Roscoff, 13-15 octobre 2021

- Observation de pics d'afterglow
- Démonstration d'un confinement des ions dans un CUSP RCE!

Les pics d'afterglow ne sont pas synchronisé dans un CUSP

- Le délai de sortie des ions ∆t des pics Afterglow ne semble pas provenir d'un champ électrique
- Autres possibilités:
 - 1. les ions proviennent d'endroits différents.
 - 2. la température des ions dans le plasma dépend de leur état de charge \rightarrow leur temps de diffusion est alors différent
- À étudier dans les futures sessions expérimentales

- Les campagnes expérimentales sont prévues en 2021 et 2022
- Améliorer les équipements:
 - Nouvelle chambre à plasma \to améliorer le niveau de vide (1 \times 10 $^{-5}{\to}$ 1 \times 10 $^{-7}\,\rm mbar)$
 - Augmenter la gamme de haute tension ($30 \rightarrow 40 \, \mathrm{kV}$)
 - Conception d'une nouvelle ligne de transport \rightarrow ajout d'un triplet de quadrupole et d'un dipole avec une ouverture plus importante (60 \rightarrow 90 mm) \rightarrow transmission améliorée
 - Installation d'un pont roulant \rightarrow optimiser l'implantation de l'expérience

Objectifs des futures campagnes

- Reproduire les anciennes données
- Poursuivre les mesures sur les pics afterglow
- Effectuer des mesures systématiques en fonction des paramètres de la source:
 - Champ magnétique, pression, puissance RF, bias disque
- Measurer l'émittance avec un pepperpot
- Étudier la stabilité du plasma avec des détecteurs appropriés
 - RF, Mesures de rayon X
- Mesurer les distribution d'électrons

Chambre plasma de la source SEISM construite en aluminium par procédé additif

- 2014 Pas de focalisation, dipole de faible ouverture \rightarrow 15 % de transmission
- + 2021 Avec la nouvelle ligne de transport \rightarrow 100 % de transmission théorique

Journée Accélérateurs SFP, Roscoff, 13-15 octobre 2021

Enveloppe faisceau calculée pour la nouvelle ligne de transport

Mesure d'émittance avec un pepperpot

Photo du pepperpot

- plaque en cuivre
 - matrice de 2 mm
 - trous de 0.5 mm de diamètre
- Csl(Na) écran scintillateur
- CCD camera pour l'acquisition
- Image CCD déclenchée par le signal RF

Script de reconstruction d'émittance

$\label{eq:positionnement} \text{Positionnement du dipole} \rightarrow \text{Référencement des axes faisceaux}$

Nouvelle ligne de transport - Alignement

Alignement des équipements :

- Theodolite pour l'alignement
- Niveau optique pour ajuster l'altitude

Intérieur des échangeurs

Intérieur de la source

Nouvelle ligne de transport - Évolution de l'installation

Nouvelle ligne de transport - Évolution de l'installation

Premières mesures

- 1 octobre 2021 : Premiers faisceaux dans la CF source
 - 18000 A de courant dans les bobines
 - $\bullet~\approx 5kW$ de puissance HF
 - 20 kV de haute tension

EQUIPEX + PACIFICS :

- Programme de recherche commun CEA / IN2P3 financé par l'ANR en 2020

- WP4 dédié à la R&D des sources d'ions \to développement des faisceaux de haute intensité pour les acclélérateurs du futurs

- Remplacer les bobines résistives par des supraconductices \rightarrow Rapatrier la source au LPSC
- Améliorer les alimentations du gyrotron 60 $\rm GHz$ pour obtenir 20 $\rm kW$ CW
- Ouvrir un programme de RD accélérateurs

Objectifs :

- Produire ${>}100\,{\rm mA}$ de faisceau d'ions lourds multichargés.
- Etudier les plasmas RCE à 60 $\rm GHz$ avec des diagnostiques
- Etudier l'emittance du faisceau et la neutralisation de charge d'espace

- Design du CUSP à finaliser, cable en NbTi @4K considérés
 - Objectif: CUSP fermé avec une surface à 60 $\rm GHz$ avec de larges accès radiaux pour installer des diagnotics
 - Example: Source avec une chambre à plasma de $200 \,\mathrm{mm}$ de diamètre

Schéma de principe de l'expérience

Merci de votre attention

