

Journées Accélérateurs, Roscoff 2021

DYVACS (DYnamic VACuum Simulation) code Calculation of gas density profiles in presence of Electron Cloud

Suheyla BILGEN – Bruno MERCIER – Gaël SATTONNAY

MAVERICS team at IJCLab October 15, 2021

Université

October 15, 2021

Materials for accelerators

Dynamic vacuum study

Stimulated Desorption

Materials for accelerators

Dynamic vacuum study

Secondary particles creation

Materials for accelerators

Dynamic vacuum study

Limitation of accelerator performance

Materials for accelerators

Dynamic vacuum study

<u>Goals</u>: \rightarrow Limitation of unwanted collective effects inside the beamlines (materials)

Goals: \rightarrow Limitation of unwanted collective effects inside the beamlines (materials) \rightarrow The study of the surface chemistry modification under irradiation

Materials for accelerators

Dynamic vacuum study

Material characterization

Goals: \rightarrow Limitation of unwanted collective effects inside the beamlines (materials) \rightarrow The study of the surface chemistry modification under irradiation

Analytical model of the dynamic pressure – DYVACS – DYnamic VACuum Simulation code $C_{i}\frac{\partial^{2}n_{j}}{\partial v^{2}} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_{j} = 0$

> DYVACS is based on the gas balance differential equation (VASCO) It is used to compute the gas density n_i

> > for $j = H_2$, CH_4 , CO, CO_2

Boundary conditions: continuity of flux and pressure between each segment

Analytical model of the dynamic pressure – DYVACS – DYnamic VACuum Simulation code $C_j \frac{\partial^2 n_j}{\partial x^2} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_j = 0$

 C_i is the specific conductance for j gas species

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code

$$C_j \frac{\partial^2 n_j}{\partial x^2} + \mathbf{D}_{ion-j} + \mathbf{D}_{e-j} + \mathbf{D}_{ph-j} + \mathbf{D}_{th-j} - S \cdot n_j = 0$$

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code

$$C_j \frac{\partial^2 n_j}{\partial x^2} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_j = 0$$

Inputs: $C_{j}, \eta_{i,j}, \eta_{e,j}, \eta_{ph,j}, \Gamma_i, \Gamma_e, \Gamma_{ph}, q_{th,j},$

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code

$$C_j \frac{\partial^2 n_j}{\partial x^2} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_j = 0$$

S is the wall distributed pumping speed for each gas.

Inputs: $C_{j}, \eta_{i,j}, \eta_{e,j}, \eta_{ph,j}, \Gamma_i, \Gamma_e, \Gamma_{ph}, q_{th,j}, S_j$,

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code $C_{j}\frac{\partial^{2}n_{j}}{\partial x^{2}} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_{j} = 0$ **Residual gas ionization** by the p beam by the EC $D_{ion-j} = \sum \eta_{ion-i \to j} \left(\sigma_{p \to i} \cdot \frac{I_{beam}}{e} + \sigma_{e \to i} \cdot \rho_{e} \cdot \nu_{e} \right) n_{i} \quad \text{ for } i = H_{2}, CH_{4}, CO, CO_{2}$ Synchrotron A Radiation Electron jons cloud

Inputs: $C_{j}, \eta_{i,j}, \eta_{e,j}, \eta_{ph,j}, \Gamma_i, \Gamma_e, \Gamma_{ph}, q_{th,j}, S_j, \sigma_{p \rightarrow i,} \sigma_{e \rightarrow i}$, $I_{\text{beam}}, \rho_e, \nu_e, \sigma_{e,j}$

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code

$$C_j \frac{\partial^2 n_j}{\partial x^2} + D_{ion-j} + \frac{D_{e-j}}{D_{e-j}} + D_{ph-j} + D_{th-j} - S \cdot n_j = 0$$

 $D_{e,j} = \eta_{e,j} \Gamma_e \longrightarrow \Gamma_e$ EC density computed with « the map model » T. Demma *et al.* Model

 Γ_e depends on : - SEY (surface properties),

- beam parameters (nppb, bunch length, beam size, etc.) and

Inputs: C_{j} , $\eta_{i,j}$, $\eta_{e,j}$, $\eta_{ph,j}$, Γ_{i} , Γ_{e} , Γ_{ph} , $q_{th,j}$, S_{j} , $\sigma_{p \rightarrow i}$, $\sigma_{e \rightarrow i}$, I_{beam} , ρ_{e} , v_{e} , a, b, c, size of the segment, radius BP, E_{beam} , time of one turn, etc.

Electronic density build up of the EC computed using the map model

 $\rho_{m+1} = a\rho_m + b\rho_m^2 + c\rho_m^3 \longrightarrow \rho_m$ (10¹¹ e-/m): EC density/meter after the mth passage of bunch

T. Demma et al. Model

Electron density for a nominal LHC fill using 48 bunches followed by 28 empty bunches for the decay

Electronic density build up of the EC computed using the map model

$$ho_{m+1} = a
ho_m + b
ho_m^2 + c
ho_m^3 \longrightarrow
ho_m$$
 (10¹¹ e-/m): EC density/meter after the mth passage of bunch

T. Demma et al. Model

a: linear coefficient

- used to determine the e-gain from one bunch to another.
- a depends strongly on the SEY.

Electron density for a nominal LHC fill using 48 bunches followed by 28 empty bunches for the decay

Electronic density build up of the EC computed using the map model

 $\rho_{m+1} = a\rho_m + b\rho_m^2 + c\rho_m^3 \longrightarrow \rho_m$ (10¹¹ e-/m): EC density/meter after the mth passage of bunch

T. Demma et al. Model

a: linear coefficient

used to determine the e- gain from one bunch to another. a depends strongly on the SEY.

b: quadratic term

- considers the equilibrium density (plateau) of the EC.
- b depends on beam parameters (nppb, bunch length, beam size, etc.) and on vacuum chamber dimensions.

Electron density for a nominal LHC fill using 48 bunches followed by 28 empty bunches for the decay

variation of the b factor computed from in situ measurement of e- current

 $\rho_{m+1} = a\rho_m + \mathbf{b}\rho_m^2 + c\rho_m^3$

October 15, 2021

Electronic density build up of the EC computed using the map model

 $\rho_{m+1} = a\rho_m + b\rho_m^2 + c\rho_m^3 \longrightarrow \rho_m$ (10¹¹ e-/m): EC density/meter after the mth passage of bunch

T. Demma et al. Model

Electron density for a nominal LHC fill using 48 bunches

followed by 28 empty bunches for the decay

a: linear coefficient

used to determine the e- gain from one bunch to another. a depends strongly on the SEY.

b: quadratic term

- considers the equilibrium density (plateau) of the EC.
- b depends on beam parameters (nppb, bunch length, beam size, etc.) and on vacuum chamber dimensions.

c: cubic term

corresponds to a minor correction factor and C=0 for our simulations.

October 15, 2021

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code $C_j \frac{\partial^2 n_j}{\partial x^2} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_j = 0$

 \mathbf{P} Many inputs are necessary \rightarrow measurements in laboratory are needed!

October 15, 2021

S. Bilgen Thèse Université Paris Saclay 2020

Analytical model of the dynamic pressure – DYVACS – Dynamic VACuum Simulation code $C_{i}\frac{\partial^{2}n_{j}}{\partial x^{2}} + D_{ion-j} + D_{e-j} + D_{ph-j} + D_{th-j} - S \cdot n_{j} = 0$ \mathbf{Y} Many inputs are necessary \rightarrow measurements in laboratory are needed! It is possible to play with all phenomena independently! Synchrotron / Radiation Electron <mark>ions</mark> cloud Inputs: C_{j} , $\eta_{i,j}$, $\eta_{e,j}$, $\eta_{ph,j}$, Γ_i , Γ_e , Γ_{ph} , $q_{th,j}$, S_j , $\sigma_{p \rightarrow i}$, $\sigma_{e \rightarrow i}$, I_{beam} , ρ_e , v_e , a, b, c, size of the segment, radius BP, E_{beam} , time of one turn, etc.

Comparison between *in situ* measurements in the LHC and the DYVACS simulation

In situ beam intensity and energy evolution

In situ pressure measurement (VPS Station N°4)

October 15, 2021

Comparison between *in situ* measurements in the LHC and the DYVACS simulation

For a=1,4 (SEY=1,6); b=[0; -5] variation of the b factor by DYVACS; c=0

- Experimental pressure (pink line)
- computed pressure using DYVACS with EC (blue line)
- and without EC (green line)

A **good agreement** was observed in a short computation time, between the *in situ* pressure measurements and DYVACS simulation

October 15, 2021

Pressure time evolution measurements vs DYVACS simulations

inputs:

Same ESD,PSD and ISD used. a fixed for a constant SEY b is computed as a function of nppb.

All calculations reproduce with a good agreement the in situ pressure evolution measured in station 4 (unbaked copper) of VPS in the LHC.

October 15, 2021

V. BAGLIN, meeting, CERN, 5th Dec. 2017

H₂ has the highest partial pressure

October 15, 2021

DYVACS reproduces the evolution of the partial pressures for H₂, CO₂, CO and CH₄ during beam operation

Conclusion

S. Bilgen Thèse Université Paris Saclay 2020

October 15, 2021

Perspectives

- Laboratory measurements :
 - Consolidate ISD yield measurements;
 - Study the **relationship between conditioning effects and surface chemistry** of materials (in particular the NEG coating due to the high SR in FCC-ee);
 - Accumulate experimental data on the desorption yields and conditioning effects;
 - Investigate the effect of cryogenic temperatures.

In situ measurements in the LHC

- Confirm the measurements of the ion current in the next LHC RUN (2022)

Simulation of the dynamic pressure Improve and optimize the DYVACS code; Use the DYVACS code as a predictive tool for future machines such as HL-LHC and FCC-hh (nppb, ESD, PSD etc.); Very preliminary results, Further calculations must be performed :

Vacuum studies constitute an essential issue for all accelerator community and high energy physics field.

Roscoff 12 - 15 octobre 2021

Division Accélérateurs - Société Française d

La Division Accéléra Thank you for your attention !

as et mis Retours o dical et peti

es 25

http://accelera

Journées Accélérateurs 2021 de la SFP

accélérateurs

onnees

October 15, 2021

BACK SLIDES

October 15, 2021

DYVACS inputs

DYVACS DATA

DEBUT SEGMENT	2			
	2	Station 4 (1)		
I IN SEGMENT	5	Station 4 (1)		
	69			
	8			
DISTANCE REF (cm)	200			
TEMPERATURE (K)	300			
surface degaz				
	H2	CH4	СО	CO2
POMPE EXT debut segment, (I/s)	0	0	0	0
POMPAGE REPARTI UNIFORMEMENT				
coefficient de collage	0,00E+00	0,00E+00	0,00E+00	0,00E+00
DEGAZE PONCTUEL EXT (x=0)	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TAUX DECAZ TUERMAL (mbas l/s/am2)	E 00E 12		1 005 14	
	5,00E-13	5,00E-15	1,00E-14	<u> </u>
ISD DEGAZ IONIQUE				
section efficace ionisation (m2)	4,50E-23	0,00E+00	0,00E+00	0,00E+00
	0,00E+00	3,20E-22	0,00E+00	0,00E+00
	0,00E+00	0,00E+00	2,70E-22	0,00E+00
	0,002+00	0,002+00	0,002+00	4,306-22
désorption H2 impact ionique (molé/ion)	5.40E-01	5.40E-01	5.40E-01	5.40E-01
desorption ch4	0,04	0,05	0,07	0,11
desorption CO	0,25	0,29	0,29	0,33
desorption CO2	0,14	0,14	0,14	0,14
PSD DEGAZ PHOTON				
coeff suivant distance	1,00E-02			
rendement mol/ph_à 6,5TeV Ec=35,5 ev .	1,50E-04	1,40E-05	1,00E-05	2,00E-05
ESD DEGAZ ELECTRON				
flux electrons (e-/m/s)	1.00E-10			
désorption H2 impact e- (molé/e-)	0,005	1,00E-04	2,00E-04	1,00E-03
PV rendement e/nh	0.1			
T T Tendement c/ph	0,1			
Paramètre man E cloud a b et				
r arametre map E cloud a, b et	1,4	-0,1	0	
section efficace ionisation (m2)	8.00E-21	0.00E+00	0.00E±00	0.00E+00
section encace ionisation (mz)	0,00E+00	3.04E-20	0.00E+00	0,00E+00
	0.00E+00	0.00E+00	2 48E-20	0.00E+00
	0.00E+00	0.00E+00	0.00E+00	3.60E-20
		-,	-,	-,
désorption H2 impact ionique (molé/ion)	5,40E-01	5,40E-01	5,40E-01	5,40E-01
ch4/H2+ ch4/Ch4+ ch4/Co+ ch4/Co2+	0,04	0,05	0,07	0,11
co/H2+ co/Ch4+ co/Co+ co/Co2+	0,25	0,29	0,29	0,33
	0.14	0.14	0.14	0.14

Nb	ore bunch			Nbre tota	al temps		charge	Press	sion	Energie		
	vide	Nbre bu	unch	Bunch	(heures)	totale	(mbar)ST4	(Gev)	I K11 (A)	
2	2,80E+01	4,80E-	+01	0,00E+00	1,11E-04	t (0,00E+00	8,90E	-11	4,50E+02	0,00E+00	
				1,09E+02	1,26E-01		1,21E+13	8,90E	-11	4,50E+02	2,75E-12	
Nbre	e de mesure	durée entre (s)	e bunch	5,40E+02	1,93E-01		6,10E+13	1,40E	-10	4,50E+02	9,02E-10	
1	,40E+01	2,50E-	-08	1,60E+03	3,56E-01		1,79E+14	7,50E	-10	4,50E+02	9,28E-09	
-				2,56E+03	5,47E-01		2,84E+14	1,10E	-09	4,50E+02	1,35E-08	
Ray	on courbure (m)	LHC circon (m)	iférence	2,56E+03	6,93E-01		2,84E+14	5,60E	-10	2,41E+03	4,37E-09	
2	2784,302	2,70E+	+04	2,56E+03	8,72E-01		2,83E+14	1,30E	-09	6,14E+03	1,32E-08	
				2,56E+03	8,97E-01	2	2,82E+14	1,30E	-09	6,50E+03	1,32E-08	
				2,56E+03	1,10E+0) 2	2,82E+14	1,30E	-09	6,50E+03	1,21E-08	
				2,56E+03	1,29E+0) 2	2,79E+14	1,00E	-09	6,50E+03	7,96E-09	
				2,56E+03	1,77E+0) 2	2,71E+14	4,70E	-10	6,50E+03	1,98E-09	
				2,56E+03	2,34E+0) 2	2,64E+14	3,00E	-10	6,50E+03	5,73E-10	
				2,56E+03	3,57E+0	2	2,49E+14	2,00E	-10	6,50E+03	1,33E-10	
				2,56E+03	1,47E+0	1	1,43E+14	1,00E	-10	6,50E+03	1,00E-11	
	PS	D vs Ec	2		PY vs	Ec				PSD v	vs Dose	
	PSD =	c Ecα	C	X	PY =	A.E _c ²	+ BE _c +	- C		PSD = P	SD ₀ (D/D ₀) ^β	
	pour	H2	7,40	E-01	А		-9.0E	-07		D	o (ph/m)	5,0E+2
	Pour	Ch4	9,40	E-01	D		- / -	-			β	-9,0E-0
	pour	Со	1,01	E+00	В		6, OE	-04				
	Pour	Co2	1,12	E+00	C		1,0E-	-02				
Ecloud map (a,b)												
	Par	calcul	a=1,	4 b ₀ =-	0,1 pour	⁻ np	pb=1,2	.1011		l ₀ = -	1,98.10 ⁸ A	N Contraction of the second se
	Evo	lution of	b para	ameter	b = 1	$b_0 \frac{I_0}{I}$)		=	= I _{k11} <0) measu	rement

5,0E+18 -9,0E-01

FILL INPUT

Variation du facteur B de la map Ecloud

LHC station4

 $PPB \ 1.2.10^{11}$

 $<\rho sat> = 3.8.10^{11} e/m$

HI-LHC station4			
PPB $2.2.10^{11}$	<psat< td=""><td>$> = 7.10^{11} e/m$</td><td></td></psat<>	$> = 7.10^{11} e/m$	
SEY=1,6	a=1,4	b= -0,057	

DYVACS FCC-hh

Parameter	LHC	FCC-hh
Energy [TeV]	7	50
Current [mA]	580	500
Photon flux [ph/(m·s)]	$1\cdot10^{17}$	$1.7 \cdot 10^{17}$
SR power in BM [W/m]	0.22	35.4
Critical energy [eV]	43.8	4286
Cold bore aperture [mm]	50	44
Circumference [km]	26.7	97.75
Number of bunches	2808	10400
Bunch charge (10 ¹¹)	1,15	1
Bunch distance (ns)	25	25
RMS bunch length (cm)	7,55	8
Train (number [bunch / bunch emptyl)	72/28	80/17
Attenuation RS station4	0,01	0,01
Sey (station 4)	1,6	1,6

Ionisation cross-sections for 50 TeV protons σ (m2) H2 5.00·10⁻²³ CH4 3.64·10⁻²² CO 3.15·10⁻²² CO2 4.93·10⁻²²

Section efficace pour des électrons de 150 ev

σ (m2) H2 1.00·10⁻²⁰ CH4 3.8·10⁻¹⁹ CO 2.75·10⁻¹⁹ CO2 4.20·10⁻¹⁹

Rendement de désorption ionique (idem LHC simulation station4)

Rendement de désorption électronique (idem LHC simulation station4)

Rendement de désorption photonique

PSD (cuivre étuvé et non conditionné) Ec=4,3 Kev						
H2	5*10-3					
C0	:	2*10-3				
co2	1,	5*10^-3				
ch4	3	3*10^-4				
ref Go	omez Goni	α				
1	oour H2	7,40E-01				
P	our Ch4	9,40E-01				
	pour Co	1,01E+00				
P	our Co2	1,12E+00				

Rendement de photo électrons

Critical Energy	4.1 keV				
Incident Angle	52 mrad				
	η	R [%]	η*		
Saw-Tooth	0.016	0.18	0.016	C	
Machining	0.04	1.1	0.04		
Smooth	0.29	33.2	0.434	C	

\rightarrow E_{SF} \approx 5eV = constant

Eg is given by the experimental energy spectra of electrons recorded by Elena Buratin in the VPS Same different experimental spectra were recorded by Elena Buratin in different conditions, no significant influence of the nppb is noticed on the electron energy spectrum

 \rightarrow Eg = 150 eV = constant

a = 1.4 = constant in these conditions

October 15, 2021

in this calculation the electr. density is averaged on the **bunch spacing** \rightarrow It is thus lower than the one calculated by DYVACS

if the bunch spacing is used for calculation rather than bunch length, our ρ_{sat} is divided per 25 In this case, the calculated pressure evolution is not in good agreement with the exp. measurements, unless the ESD yields are increased to unrealistic values.

Determination of Ecloud map factors:

$$b_0 \approx \frac{1-a}{\rho_{sat0}}$$
 $\rho_{sat0} = \frac{nppb}{cT} (e - m)$ with c*T= bunch length

 ρ_{sat} is proportional to the electron current measured in the VPS

b factor computed from electrical current measurements as a fonction of nppb

suheyla.bilgen@ijclab.in2p3.fr

 $\rho_{m+1} = a\rho_m + b\rho_m^2 + c\rho_m^3, \tag{1}$

which are seen to reproduce the data quite well. The map idea introduced in [4] with reference to RHIC thus works also for LHC.

simulation for the LHC with a magnetic field in the article

TABLE I. Input parameters for ECLOUD simulations.

Parameter	Units	Value
Beam particle energy	GeV	7000
Bunch spacing	m	7.48
Bunch length	m	0.075
Number of bunches Nb		72
Number of particles per bunch N		8×10^{10} to 1.4×10^{11}
Bending field B	Т	8.4
Length of bending magnet	m	1
Vacuum screen half height	m	0.018
Vacuum screen half width	m	0.022
Circumference	m	27000
Primary photoemission yield	•	8×10^{-4}
Maximum SEY, 8max		1.3 to 1.7
Energy for maximum SEY, Emm	eV	237
Energy width of secondary e	eV	1.8

Our a, b and c factors are in good agreement with those calculated by T. Demma

FIG. 3. (Color) The *a*, *b*, *c* coefficients obtained by fitting the map (1) to the density buildup regime, for several *N*. The bars represent the 95% confidence intervals for $\delta_{\text{max}} = 1.3$ (cyan), $\delta_{\text{max}} = 1.5$ (red), and $\delta_{\text{max}} = 1.7$ (green). All other parameters as in Table I.

Surface property measurements in laboratory

ISD

- base pressure: 5x10⁻¹⁰ mbar
- Gases used: Ar, H2, CO
- Continuous beam
- Beam current: pA up to 300 nA
- Beam energy: 200 eV to 5keV