

DES SCIENCES

université

Université de Paris

Study of a 5-Cell Elliptical Superconducting Cavity for a Multi-turn Energy Recovery Linac

Carmelo Barbagallo, Patricia Duchesne, Ningyuan Hu, Guillaume Olry, Walid Kaabi, Fabian Zomer

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) - Accelerator Physics group – RF section Université Paris-Saclay, Orsay, France

Journées Accélérateurs 2021 de la SFP, 13 October 2021 – 15 October 2021, Roscoff (France)

PERLE and 5-cell SRF cavity

PERLE (Powerful Energy Recovery Linac for Experiments): multi-turn ERL (Energy Recovery Linac) based on Superconducting RF (SRF) technology to be studied and later host at Orsay (France).

Target Parameter [2]	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalized Emittance Υε _{x.v}	mm∙mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor	CW (Continuous Wave)	

universite

Cnrs

FACULTÉ

DOPSAY

DES SCIENCES

Université de Paris

• The first 801.58 MHz 5-cell elliptical Nb cavity has already been fabricated at JLab on October 2017 [2]

٠

- HOM-damping for ERLs is a challenge due to the presence of many turns (multi-bunch beam instabilities)
- Aim of the numerical study (CST Studio Suite[®]):
 1) Identification of HOMs, 2) Analysis of the transmission curves of HOM couplers, 3) HOM-damping schemes

The first Nb 801.58 MHz 5-cell elliptical cavity fabricated at JLab [3].

Cavity Parameters	JLab Cavity
Frequency [MHz]	801.58
Temperature [K]	2.0
Cavity active length [mm]	917.911
R/Q [Ω]	524.25
Geometry Factor (G) [Ω]	274.505
$B_{\rm mb}/E_{\rm max}$ (mid-cell) [mT/(MV/m)]	4.62
^{μλ} $E_{\mu\nu}/E_{\mu\nu}$ (mid-cell) [-]	2.38
Îris radius [mm]	65
Beam Pipe radius [mm]	65
Mid-cell equator diameter [mm]	328
End-cell equator diameter [mm]	328
Wall angle [degree]	0
Cutoff TE ₁₁ [GHz]	1.35
Cutoff TM ₀₁ [GHz]	1.77

- HOMs: consequences and damping mechanisms
- **HOMs** (Higher Order Modes) are parasitic excited eigenmodes in a resonant accelerating RF cavity, other than and with frequency greater than the operational mode (**FM** = Fundamental Mode) [4].

 TM01-π mode (FM) – f =801.58 MHz
 TE111 mode (Dipole HOM) – f =933.53 MHz
 TM011 mode (Monopole HOM) – f =1374.73 MHz

 Image: Comparison of the tensor of ten

Why are HOMs dangerous for beam dynamics?

- Monopole HOMs:
 - can lead to **timing/phase errors** and **energy spread**
 - contribute to extra dynamic heat losses in cavity walls
- Dipole HOMs:
 - can **deflect the beam** from its reference orbit: instable beam motion, transverse emittance growth, beam loss

How can we damp HOMs in SRF cavities?

- Coaxial HOM coupler on beam tubes
 - Hook-type LHC coupler
 - Probe-type LHC coupler
 - DQW HOM coupler
- Waveguide dampers on beam tubes

DQW HOM Coupler

FACULTÉ

universite

DES SCIENCES

Université de Paris

Absorbers in cavity-interconnecting beam tubes

CNrs

Coupling through Fundamental Power Coupler

13/10/2021

The **eigenmodes** of a resonator in a non-excited source-free and lossless medium are computed by solving the Helmholtz equations:

Helmholtz equations Boundary conditions

٠

$$\nabla^2 \underline{\mathbf{H}} + \omega^2 \mu \varepsilon \underline{\mathbf{H}} = 0$$

 $\nabla^2 \underline{\mathbf{E}} + \omega^2 \mu \varepsilon \underline{\mathbf{E}} = 0$ $\mathbf{n} \times \underline{\mathbf{E}} = 0$ and $\mathbf{n} \cdot \underline{\mathbf{H}} = 0$ on $\partial \Omega_{\text{PEC}}$

$$\mathbf{n}\cdot \mathbf{\underline{E}}=0$$
 and $\mathbf{n} imes \mathbf{\underline{H}}=0$ on $\partial \mathbf{\Omega}_{ extsf{PMC}}$

TM01-π mode (FM) – f =801.58 MHz PEC

université

CNrs

FACULTÉ

DES SCIENCES

Université de Paris

Cavity-beam interaction: wakefields in time domain or impedances in frequency domain. The long-range wakefield commonly corresponds to the high impedance peaks and can lead to coupled-bunch instability issues [4].

Assumption: PEC (Perfect Electric Conductor) on conducting walls (Nb) and interior domain of vacuum

Identification of dangerous HOMs – HOM coupler transmission

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

TM monopole modes (like TM010, TM011, TM020, T012)

- · E-field component along cavity axis
- Trapped mode can interact with the subsequent bunch

TM dipole modes (like TM110, TM111, TM120)

- · Strong longitudinal E-field component off axis
- Possible deflection and subsequent beam resonant
 effect

TE dipole modes (like TE111, TE112)

• Theoretically no longitudinal E-field component on and off axis (possible deflection)

TM01-TEM transmission

- The notch effect is tuned to 801.58 MHz for monopole coupling.
- Couplers optimization needed to deliver a higher value of transmission.

TE11-TEM transmission

• Hook coupler: higher transmission than DQW coupler for the TE111-type and TM110-type passband.

13/10/2021

HOM-damping studies

Objective: extract the energy of the HOMs from the cavity.

HOM-damping schemes

université

FACULTÉ

DES SCIENCES

Université

de Paris

Preliminary results for the two investigated configurations:

- 2 Hook + 2 Probe couplers configuration provides a better damping of both monopole and dipole HOMs than the 2DQW couplers
- However, the trapped TM012 mode was not damped in the two configurations (modification of the end-cells is needed to enhance the coupling to the beam tube)

Université de Paris

7

DES SCIENCES

CINIS

université

- Potentially dangerous monopole and dipole HOMs were identified and classified until 2.4 GHz. A trapped monopole HOM was found at ~2.25 GHz
- HOM-damping scheme studies: 2 Hook + 2 Probe couplers configuration gives a better damping of both monopole and dipole HOMs than the 2DQW couplers

Future perspectives:

- Optimization of the cavity end-cells to improve the coupling of the TM012 π -mode to the beam tubes
- Optimization of HOM couplers, and study of other HOM couplers (JLAB, TESLA)
- Thermal studies for HOM couplers (HOM power and dissipation)

- [1] D. Angal-Kalinin et al., PERLE, Powerful Energy Recovery Linac for Experiments, CDR, Journal of Physics G: Nuclear and Particle Physics, 45(6):065003, 2018.
- [2] W. Kaabi, PERLE: A High-Power Energy Recovery Facility at Orsay, February 2021.
- [3] F. Marhauser, PERLE Cavity Design and Results and First Thoughts on HOM-Couplers, *PERLE HOM Coupler Meeting*, October 2019, CERN.
- [4] T. Wangler, RF Linear Acceleratos, John Wiley & Sons, 2008.
- [5] CST Studio Suite manual, *CST Studio*, 2021.

Thank you for your attention!

Laboratoire de Physique des 2 Infinis

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab - UMR9012 - Bât. 100 - 15 rue Georges Clémenceau 91405 Orsay cedex

Université de Paris