Cible cryogénique pour l'accélération d'ions par interaction laser-plasma

Cea

DE LA RECHERCHE À L'INDUSTRIE

J. Viswanathan^{1,2}, D. Garcia¹, A. Girard¹, N. Luchier¹, F. Julien², F. Millet¹, D. Chatain¹, F. Souris¹ Collaborateurs ELI Beamlines : T. Chagovets³, A. Velyhan³, M. Tryus³, F. Grepl³, D. Margarone³

¹ Département Systèmes Basses Températures (D-SBT), CEA Grenoble ² Laboratoire pour l'Utilisation des Laser Intenses (LULI), Palaiseau ³ ELI Beamlines, Institute of Physics, Prague, Czech Republic

Basses Températures (D-SBT)

Laboratoire pour l'Utilisation des Laser Intenses(LULI) Présentation pour les journées accélérateurs le 13/10/2021

Technique d'accélération laser-plasma

Technique d'accélération laser-plasma

Principe **d'extrusion thermomécanique** sans parties mobiles (Brevet CEA-DSBT EP 2 682 695 A1)

Campagnes collaboratives

• 5 campagnes de mesures menées avec succès : France, République Tchèque, Royaume-Uni

Première accélération laser-plasma d'H₂ solide

- Preuve de principe
- Margarone et al., PRX (2016)
- * 1 kJ, 330 ps, 3 TW, 3 $\,\times\,10^{16}$ W.cm^-2

2015

• 1 MeV protons

PALS

Campagnes collaboratives

• 5 campagnes de mesures menées avec succès : France, République Tchèque, Royaume-Uni

Première accélération laser-plasma d'H₂ solide

- Preuve de principe
- Margarone et al., PRX (2016)
- 1 kJ, 330 ps, 3 TW, 3 $\times 10^{16}$ W.cm⁻²
- 1 MeV protons

P/LS

Augmentation des énergies

de protons

- Plus grande intensité laser
- 20 J, 200 fs, 100 TW, 10¹⁹ W.cm⁻²
- Protons 15 MeV
- Kraft et al., Plasma Physics And Fusion Control (2018)

2016

100

<u>Campagnes collaboratives</u>

5 campagnes de mesures menées avec succès : France, • République Tchèque, Royaume-Uni

- Preuve de principe
- Margarone et al., PRX (2016) •
- 1 kJ, 330 ps, 3 TW, 3×10^{16} W.cm⁻²
- 1 MeV protons

Augmentation des énergies de protons

- Plus grande intensité laser
- 20 J, 200 fs, 100 TW, 10¹⁹ W.cm⁻²
- Protons 15 MeV
- Kraft et al., Plasma Physics And • Fusion Control (2018)

Augmentation des énergies de protons/production de neutrons

- Article dans les mains des referees
- Extrusion H₂ et D₂
- 1 kJ, 1 ps, 1 PW
- Protons 55 MeV

2018

201

100

Campagnes collaboratives

• 5 campagnes de mesures menées avec succès : France, République Tchèque, Royaume-Uni

Première accélération laser-plasma d'H₂ solide

- Preuve de principe
- Margarone et al., PRX (2016)
- 1 kJ, 330 ps, 3 TW, 3 $\times 10^{16}$ W.cm⁻²

2015

• 1 MeV protons

PILS

Augmentation des énergies de protons

2016

thickness [µm]

Plus grande intensité laser

ELFIE

aluminum ref. measurement

gold ref. measurement

- 20 J, 200 fs, 100 TW, 10¹⁹ W.cm⁻²
- Protons 15 MeV

20

[MeV]

energy

proton

10

gold
 plastic
 hydrogen

• Kraft et al., Plasma Physics And Fusion Control (2018)

Augmentation des énergies de protons/production de neutrons

201

2018

• Article dans les mains des referees

VULCAN

75 um

100um

200

400

E laser (J)

600

800

- Extrusion H₂ et D₂
- 1 kJ, 1 ps, 1 PW
- Protons 55 MeV

60

50

40 30

20

10

0

proton (MeV)

ш

Premiers tirs à haute cadence

- Article dans les mains des referees
- Fréquence de tir **jusqu'à 3 Hz**

e

13

• 700 tirs, 1 J, 50 TW, 3×10^{19} W.cm⁻²

Preuve *Marga*

1 kJ, 331 MeV

Campagnes collaboratives

• 5 campagnes de mesures menées avec succès : France, République Tchèque, Royaume-Uni

Augmentation des énergies

Première accélération laser-plasma d'H₂ solide

- de protonsPlus grande intensité laser
- 20 J, 200 fs, 100 TW, 10¹⁹ W.cm⁻²

Augmentation des énergies de protons/production de neutrons

- Article dans les mains des referees
- Extrusion H₂ et D₂
- 1 kJ, 1 ps, 1 PW
- Protons 55 MeV

Premiers tirs à haute cadence

- Article dans les mains des referees
- Fréquence de tir **jusqu'à 3 Hz**
- 700 tirs, 1 J, 50 TW, 3×10^{19} W.cm⁻²

Objectif Des **épaisseurs micrométriques de cibles** permettraient d'améliorer l'énergie des ions produits

8

ELISE II

Collimation et

Sublimation du ruban par un laser Mid-IR à 2,22 μm

 Un laser infrarouge accordé sur une raie vibrationnelle de l'H₂ permet de chauffer localement le ruban pour le sublimer.

Sublimation d'un ruban d'hydrogène (durée 0,5 s)

Imagerie interférométrique à deux longueurs d'onde

- Une longueur d'onde permet de déterminer l'épaisseur optique modulo λ_1
- Une seconde mesure à λ_2 permet d'augmenter la plage de mesure accessible, jusqu'à l'épaisseur du ruban.
- L'imagerie interférométrique révèle un état de surface dépendant des conditions d'extrusion.

Cartographie interférométrique de la surface du ruban

- L'accélération laser-plasma est en plein essor avec le développement des lasers de puissance à haut taux de répétition
- Les cibles d'hydrogène solide répondent à certaines problématiques des tirs à haute cadence (renouvellement rapide, pureté, propreté, niveau de vide)
- Plusieurs campagnes d'essais ont permis de :

 -produire des faisceaux de protons jusqu'à des énergies de 55 MeV
 -démontrer la compatibilité de l'installation avec des tirs à haute cadence
- Atteindre des épaisseurs micrométriques optimiserait le processus d'accélération laser-plasma, il faut encore:
 - -Maitriser la réduction d'épaisseur (sublimation par laser Mid-IR)
 - -Mesurer in-situ l'épaisseur du ruban

Merci de votre attention

Un grand merci à :

CEA Grenoble : F. Viargues, J Manzagol, JP Périn, F. Bancel, B. Rollet, T. Goy, P. Bonnay, J.M. Mathonnet, J. Ceszkowsky, S. Michaux
ELI Beamlines : T. Chagovets, M. Tryus, F. Grepl, A. Velyhan, D. Margarone
Queen's University Belfast : H. Ahmed, S. Kar, M. Borghesi
PALS team
HZDR Dresde : S. Kraft, T. Cowan, et al, and M. Gauthier (SLAC).
LULI : ELFIE team