

Etude du transport d'un faisceau d'électrons dans un accélérateur linéaire à induction dans le cadre de la radiographie éclair multi-temps

C-M. Alvinerie, R. Delaunay and R. Maisonny



### Principe de la radiographie éclair

**Objectif**: « caractériser l'état de la matière soumise à des chocs forts ou à une densification importante sous l'effet d'explosifs »

- ➤ Nécessite une source de rayonnement X aux propriétés spécifiques
  - Faible dimension : mm
  - Impulsionnelle : quelques dizaines de ns (~60ns)
  - De haute énergie : plusieurs MeV (~20 MeV)
  - Intense : plusieurs kA (~2kA)
  - Dose à 1m élevée : plusieurs centaines de rads (~500 rads)
  - Fiable
- ➤ Source X produite par l'interaction d'un faisceau d'électrons de haute énergie dans un matériau de numéro atomique élevé → rayonnement de freinage
- Expériences de radiographie éclair réalisées sur l'installation EPURE (Expérience de Physique Utilisant la Radiographie Eclair), grand instrument du CEA



# Transport de deux faisceaux d'électrons au sein d'un accélérateur linéaire à induction conceptuel





# Etude de l'évolution des propriétés entre les deux faisceaux selon le délai $\Delta t$

- 1) Production de deux faisceaux d'électrons à partir d'une cathode en plasma de velours avec un Inductive Voltage Adder, pour une énergie initiale de 2.6 MeV
  - Modification de la géométrie de la diode due à l'expansion du plasma de velours au sein du gap entre les deux pulses



- 2) Etude de la dynamique du faisceau à 2.6 MeV grâce à une modélisation Particle-In-Cell avec le code LSP
- 3) Quantification de l'évolution du courant entre les deux faisceaux à la fin de l'injecteur selon le délai  $\Delta t$





## Deux méthodes pour étudier la dynamique du faisceau dans le LIA

#### **Code enveloppe EVOLI**

Prédiction du rayon rms du faisceau d'électrons

Résolution de l'équation d'enveloppe à l'aide d'un solveur ODE du second ordre :

$$\begin{split} &\frac{d^2R_{env}}{dz^2} \\ &= -\frac{1}{\beta^2\gamma}\frac{d\gamma}{dz}\frac{dR_{env}}{dz} - \frac{1}{2\beta^2\gamma}\frac{d^2\gamma}{dz^2}R_{env} - k_{\beta}^2R_{env} + \frac{K}{R_{env}} + \left(\frac{\varepsilon_n}{\beta\gamma}\right)^2\frac{1}{R_{env}^3} \\ &+ \frac{P_{\theta}}{(\gamma\beta m_e c)^2}\frac{1}{R_{env}^3} \end{split}$$

- Inclusion des termes correctifs du second ordre
  - Effet dû à la charge d'espace

$$\phi(\mathbf{r}) = \frac{2I_b}{4\pi\varepsilon_0\beta c} \ln\left(\frac{b}{r}\right)$$

• Effet dû au diamagnétisme du faisceau

$$\frac{\Delta B}{B} = \left(\frac{R}{b}\right)^2 \frac{I_b}{2I_A}$$

#### Code Particle-In-Cell LSP-Slice

Modélisation d'une unique tranche du faisceau

- Les particules sont avancées le long d'une coordonnée axiale
- Résolution des champs magnétiques sur une grille transverse se déplaçant avec la tranche du faisceau

Etude de l'accroissement de l'émittance et les évolutions du profil d'une tranche pendant son transport





 $\rightarrow$  Délais entre 500 et 2000 ns avec E<sub>1</sub> = 2,6 MeV, I<sub>1</sub> = 2,6kA et  $\epsilon_1$  = 441 mm.mrad

### • <u>Cas 2</u>

$$\Delta t = 500 \text{ ns}$$

$$E_2 = E_1 = 2,6 \text{ MeV}$$

$$I_2 = 1,05*I_1$$

$$\varepsilon_2$$
= 1,1\* $\varepsilon_1$ 



$$\Delta t = 2000 \text{ ns}$$

$$E_2 = E_1 = 2,6 \text{ MeV}$$

$$I_2 = 1,15*I_1$$

$$\varepsilon_2 = 1,3*\varepsilon_1$$









6

## cea

## **Perspectives**

- Consolidation des premiers résultats par :
  - Etude complète avec le code PIC LSP
  - Poursuite du développement du code enveloppe EVOLI résolu en temps en y intégrant les modèles d'instabilités du faisceau

- > Applications des outils développés dans un cadre expérimental par :
  - Réalisation de transports d'études
  - Confrontation par des mesures

