Front-to-end simulations of the Energy Recovery Linac for the LHeC project

K.D.J. André for the LHeC collaboration

Journées Accélérateurs 2021 - Roscoff

ERL lattice and optics design specifics

ERL specifics of the LHeC project

- Arcs (Isochronous and "TME")
- One-step achromatic vertical deflection
- Linacs with minimized

$$\frac{\beta}{E} ds$$

- Particle detector bypass
- Interaction region with 3 beams that provides head-on collision and features an optimised separation scheme

Incoherent Synchrotron Radiation

Emission of radiation in the arcs, the particle detector bypass, the spreaders/recombiners and the interaction region in the vicinity of the particle detector.

Extra RF cavities required, especially in arc6

It produces an **emittance growth** and an **energy spread** leading to bunch elongation.

 $\Delta \mathbf{E} = \frac{e^2}{6\epsilon_0} \frac{\gamma^4}{\rho}$ $\mathcal{H} = \gamma D^2 + 2\alpha D D' + \beta D'^2$

Beam-beam interaction and optimisation

Scenario	Optical matching	Luminosity optimum	unit
$\begin{array}{c} \text{Luminosity} \\ \Delta \gamma \varepsilon \end{array}$	8.2×10^{33} 15	$9.3{ imes}10^{33}\ 0.1$	$cm^{-2} s^{-1}$ mm mrad

The beam-beam interaction gives the starting conditions for the tracking simulations of the deceleration.

Optimisation of luminosity, emittance growth and distortion of the phase space. A capture optics improves the transmission.

Tracking results and conclusion

The ERLs have been designed and optimised such that an excellent beam transmission and energy recovery efficiency is achieved, including synchrotron radiation and beam-beam disruption.

ERL size	$\mid 1/3 \; \mathrm{C_{LHC}}$	$1/4~\mathrm{C_{LHC}}$	$1/5~\mathrm{C_{LHC}}$
$\gamma \varepsilon_x^{\text{inj}} \; [\mu \mathrm{m rad}]$	25.4	22.7	15.1
$\Delta p/p$ at IP	0.021~%	0.029~%	0.041~%
transmission	99.93~%	98.89~%	98.40~%
energy recovery	97.9~%	96.7~%	95.4~%

Tracking results including beam-beam interaction and synchrotron radiation

