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A word of caution

“Students who analyze data, or who aspire to develop new methods for analyzing
data, should be well grounded in basic probability and mathematical statistics.

Using fancy tools like neural nets, boosting, and support vector machines without
understanding basic statistics is like doing brain surgery before knowing how to use

a band-aid.”

—Larry Wasserman, Professor of Statistics and Data Science, Carnegie Mellon University,




Covered topics in this lecture

Statistical inference
Probability reminders

Parameter estimation
Least squares & Maximum likelihood

Hypothesis testing

Interval estimation



Why probability and statistics in Physics

Rand introd d in physics antum mechanics
andomness introduced in physics (quantu ics) ; data are random

and also in detection process (random experimental errors)

Laws of physics

Known Advance with
Experimental physics Hypothesis

measurement (QM, QED, of interest ———  Detector —_— Data

process GR,...) and nuisance
effects

once collected = fixed

Random because: repeat the experiment in same conditions but get different outputs = they are certain
i.e. no more random

Not possible to predict a given data set, as the collected experimental data.

However, possible to attribute probability statements to the ensemble of possible data from given hypothesis and
experimental conditions



Forward and Backward information flow

Experimental
measurement
process

Laws of physics

Known Advance with
physics Hypothesis

(QM, QED, of interest ————  Detector — Data
GR,...) and nuisance

effects

Forward process (hypothesis — data) makes possible estimation of [P [ data | hypothesis |

Occurs in real experiment BUT the original conditions (hypotheses) are unknown to us...

Occurs in simulations WHERE the original conditions (hypotheses) are known to us, but
not necessarily the ones of Nature.

Backward process (data — hypothesis) is called Statistical Inference

Monte Carlo
simulations



Statistical inference

There are 2 different ways of inverting
the forward reasoning to do statistics:

The Bayesian way and the Frequentist way

/ \

~ subjective ~ objective



Reminders on
probability



Probability

All statistical methods are based on probability computations.

Common basis of all probabilities Set of exclusive events Kolmogorov axioms about P [ X ]
X;€Qie. X;NnX; = @) 5 (MP[X,]>
( )P [X UX = [|3>[Xi]+|]3>[Xj]

. 2 P [X =1
Mathematical abstract statements. Formal measure theory, etc.

Two main classes of interpretation for experimental use:

SUCCess
v 7
Frequentist probability is defined as the limiting frequency of favourable P[A] = lim —=
outcomes in a large number of identical experiments Noeo N N .
trials
Bayesian probability is defined as the degree of belief in a favourable P[Hyp | Data |

outcome of a single experiment.



Some properties of any probability

Properties derived from Kolmogorov axioms.
(non exclusive sets)

P[AorB]| meansA or B or both
P|AandB | means both A and B

From the Venn diagram, we have:
P[AorB]|=P[A]+P[B]—P[Aand B |

PlA,B]

Conditional probability: P [ A | B | means the probability that A is true, given that Bistrue. P[A | B] = P51

It A and B are independent, then P[A|B]=P[A]

An example of conditional probability:
Consider a human being HB and the 2 statements: A: "HB is pregnant” ; B:"HB is a woman".

Then, P[A|B]~1% but P[B|A]=1
This example clearly illustrates the conditioning property is not symmetric in the exchange of A with B.



Bayes theorem

Bayes’ Theorem says that the probability of both A and B being true simultaneously
can be written:

here A and B are statements
PIA,B]=P[A|B]P[B] i.e. either True or False

PA,B]=P[B|A]P[A]

P[B|A]P[A]

which can be written as: P[A|B] =
P[B]

and P[B]can be expandedas: P[B]|=P[B|A]P[A]+P[B|not A]P[not A]

(law of total probability)

NOTE: for valid statement A, B this can be applied for any probability definition

|10



Note on use of Bayes’ theorem

Frequentist can use Bayes' theorem as soon as the statements A and B appearing in the probability are sound
for a frequentist interpretation.

Question: "Do a hypothesis or a parameter have a long run frequency limit?"
Answer: NO!

So the Bayes formula can’t be used to revert the probability statement such as [P(data | hypothesis) into
P(hypothesis | data) within the frequentist framework.

In frequentist interpretation: hypothesis define the probability but is not a random variable. Note: often in
frequentist context, the probability of data observation is written

[P(data ; hypothesis) But P(data | hypothesis) still tolerated

to emphasise the hypothesis fixing is not a probability conditioning as in the Bayesian case.
Within frequentist framework, parameters, hypotheses are fixed.

The trick to revert the probability statement and infer hypotheses or parameters from data is to use some
"metric" to compare between different parameter/hypotheses. This trick is called the Likelihood.



Probability distributions

Probability laws for a random variable X Probability Mass Function (PMF)
A
. fx(x) = PX = x]
X discrete set of values: {x, ..., xy} ¢
could be countable infinite set T
KRN
71

Example: Cumulative distribution
Bernoulli, Binomial, Poisson, ... PlX € Al = fo(x) function (CDF)

Fy(x) = PIX < x]

Probability Density Function (PDF)

X continuous  range of values: [X;; Xyax] PIX=x]=0...!
could be infinite e.g. R, ...

P [X € [x;x + dx]| = fx(x) dx

Example:
Normal ( A7), Chi square ()(2 ), Student (1),
Exponential, Gamma (17),...
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Properties of sampling distributions

Mean EX]=(X)=X=pu, = foX(x) dx

"centrality"
Linearity property: E[ X+ ...+ X |=E[X;]+ ... +E[X JandE[cX]=cE[X]

it X;,...,X areindependent, thenE[X,.. X |=E[X,]...E[X,], e g E[XY]=E[X]E[Y]

Variance V[X] = E[(X — E[X])?] = E[X*] - E[X]* = 03 = J(x — py)” f(x) dx
"dispersion”

it X,...,X areindependentV[X;+ ...+ X |=V[X;]+ ...+ V[X ]

Covariance/Correlation  covariance  Cov[X,Y]|=V[X, Y] =E[(X -E[XDX - E[Y]D] = E[XY] - E[X]E[Y]

"relation, association" V[X,Y
correlation Cor[ X, Y]|=C[X, Y] = Pxy = [ | el[—1;1]

VVIXIV[Y]
Covariance VIXD VIAL X VXX, in thi
. VX, X,1 VIX] .. V[X.X, —— in this case: n
matrix V = 2 1 .2 [ 2 | \/[X1+...+Xn]=2\/[Xi,Xj]
ij=1

\/[X,;,Xl] \/[X,;,Xz] \/[.Xn] 13



Other useful properties of sampling distributions

Higher moments ", = E [(X = [X])n] m, = E [ n]
central moment raw moment
— ik 0"My_, (1)
Moment generating function My (1) = E |[e”] = Z E [Xk]y ;(tnﬂ =E [(X - uy)"]
k=0 ' =0

MX1+X2(f) — Mxl(t) ' sz(t)

Cumulant generating function Kx(1) = In Mx(2)
Ky (1) = Ky (1) + Ky (1)

1

Characteristic function py(1) = E [eitX] = [ e™ dFy(x) = [e”x fy(x)dx = J e CxP) gp
closely related to Fourier R 0
transform of fi(x) My (1) = px(—it)

Each one of this quantity fully specify the distribution fx Fy Oy My Ky Px



Histograms

Histograms
> Representation of the frequencies of
the numerical outcome of a random
phenomenon

PDF = histogram for
> infinite data sample
> zero bin width
> normalized to unit area

N(x)
nAx

Jx(x) =

n = total number of entries
in the histogram

Ax = bin width

N(x)
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Sampling from an histogram or a PDF

10 - o Inverse transform sampling
o Basic histogram

Pyl X < x]=Fyxx)

Py[Fx(X) < x]1=Py[ X< Fy' ()] =Fy(Fy' () =x
= Fy (X) is a uniform random variable U on [0; 1]
Fy(X)~U=> X~ F;'(U)

= F)}l(U) follows the
probability distribution of X

Random number generator Stacked & normalized Cumulative histogram
between 0 and 1 1]

ae
%

&

Fy(x) =x

NN

Q
S
-

Continuous PDF case:
Inverse transform sampling

Take randomly p € [0; 1]
F3'(p) = interpolate (Fy (x,),x;) at p

|6




Multivariate
probabilities

Joint probability P [ X, Y ] Joint density f; , (x,y)



Conditional probabilities

"Conditioning is the soul of statistics” — J. Blitzstein (Harvard prof. of stats.)

Marginal probability

Conditional random variables

Conditional expectation

Conditional variance

Joint probability P[ X, Y |

P[X]=) P[X.Y=y]
Y

discrete
PX=x,Y=1y)

PY|X(Y|X)=P(Y=)’|X=X)= Po(x)
X

E[X|Y=y] function notation "f(y)"

E[X]|Y] random variable "f(Y)"

E[X|Y]=) xP[X=x|Y]

X

V[X|Y]=E [(X—[E[X|Y])2|Y]

Joint density fy  (x, y)

fx[X] = fx,y(XaY=)’) dy
vy

continuous
fX,Y (X, y)
Jx &)

fY|X()’|X) =

E[X|Y]=foX(X=x|Y)dx

X

|18



Conditional expectation and variance

E(X]=E|E[X]|Y]]
VIYI=E|V[Y|X]|+V|[E[Y|X]]

Law of total expectation
Law of total variance

mnemonic trick: "Eve’s law or EVV E's law"
N

Sy = ZXi

i=1

Typical example

Nis fixed: Sum of a fixed number of X iid. random variables E[Sy]l=NE[X] and V[Sy]l=N V[X]

Nisrandom:  Sum of a random number of X. iid. random variables

N N

Sv=.%  E[Sy]1=E| )X

N N |
E[Sy]=E ZXi =FE |E ZXl-lN =E|[NE[X|N]|=E[NE[X]]=E[N]-E[X]
=1 _ i _i=1 4
V[Sy]1=E[NV[X]]+V[NE[X]]
=E[N]XV[X]+V[N]x(E[X])

= Every time random variables are compounded like with Sy, example, conditioning is very handy tool

N

=1

efx] NO!!'

Nis random




Central role of
Normal distribution



The Central Limit Theorem (CLT)

Suppose X, X,, ... are iid random variables
suchthat E[X ] =pu, V[X,] = 6% < .
n

]
Rl
a0
A
Kl
o

4 8 12 16 20 24

Let S, = ZXl— the sum of the n random

i=1
variables X, then the ratio g,:-., + o
.‘ .‘ ’/I . ’/I
N oy +ey . TN Ll
won ~ E [ZS”] _ Su—np ’ ’ 2 4 6 8 10 12 -I-Qf-,";i-i‘-:’; 5 10 15 20 25 30

V| — o % oy %o
\/ [15] Vne o e 5T LY,
\‘ '+ °o.+\.‘/,;--IIII|||||III._ \-i- °‘..°\-|,- S0 ..|I”|| ||”|II...

® 7/ 4
converges to a standard normal distribution \. 9 12 15 18 +’..‘-.’+ ’..‘-., 6 12 18 24 30 36
(normal distribution with zero mean and unit \/” \,”
variance)
Note 1: the mathematical proof uses the characteristic function function @y(7) = E [e™] @5, (1) = H%((f)

Note 2: Finite variance = important! Otherwise if variance not finite => Look at Lévy stable distributions (heavily used in Finance)
21



Normal distribution

Probability Density Function

1 (x — p)*
exp| —
\ 270 202

Standard normal distribution ¢p(x) = fy (x; u = 0,0 = 1)

fX (X; U, O-) —

Cumulative Distribution Function

Fy (x;u,0) = PIX < x] =[ fx (u) du =5 1 +erf

\ "\/5)

4 Cumulative
Fy:x— p=FxXx)

Density
] 50 I T

Quantile
Oy :p+ x(p) = F;'(p)

X
Ox(p) = p+oy/2erf™ (2p—1)

location parameter u

H1 < Hy < U3

scale parameter o

03 < 0p < 0

Standard normal cumulative distribution ®(x) = Fy (x; 4 = 0,06 = 1)

Standard normal interval: 1o, 20, 36
u=0ando=1

2 erf™! (p)

and p = erf o
2

22

34.19 34.1%




0.4

0.3

0.2

0.1

0.0

Multivariate normal distribution

1 —
fx(xpy o0 x) = | 22V]72 - o~ 1)V (x—p) =

Marginal distributions

3
2
> 1
0
-1
'I
2 0.0
>
=
n
-
)
©

Marginal distribution of X

fx&x) =

A /QJTVX,X

exp

(2 = P‘X>2

ZVX, X

=== ply)

0.2
density

0.4

-0.256 __
) N

0.224
- 0.192 5
-0.160 5
-0.128 o
- 0.096 &
-0.064 2
_ ()}

0.032
- 0.000

Conditional distributions

—2

0.6

0.4

0.2

0.0 =====~
—2

\

1 2
\ === plx|ly=1.0)
\
\
\
\
\
\
\
\
\
\
N\
\\
1 2

1

v/ (2r)* det(V)

W

N

> 1

=== plylx= -1.0)

0.25 0.50
density

- 0.256
-0.224
-0.192 x
-0.160 o
-0.128 3,
-0.096 =
-0.064 S
-0.032 O

- 0.000

1 n
exp | = 2 Vi (= m)(x — )

iji=1

Important properties:
- Linear combinations of multivariate normals
- Marginal 1D distribution
- Conditional distributions

are all normally distributec

Conditional distribution in 2 dimensions
Mx 0% P OxOy
U= , V= )
Ky p 0x0y Oy

_ Ox 2\ 2
XY=y ~ /V</4X+O_—P()’—ﬂy),(1—P)GX>
Y

Conditional distribution in n dimensions
Mx|y=y = Hx T Vx,YV; l(y — Hy)
—1
VX|Y = Vy— VX,YVY VY,X

X|Y=y ~ */V</4X|Y’VX|Y> 23



Useful trick: conditional covariance

Each element V; ; of covariance matrix V contains the TOTAL covariance, i.e. the direct covariance between i and j but also the

ones indirectly induced by all the other variables... !

free variables
pr——

X X
l,j O K

fixed variables

" < ‘ ’
TR .
.\_. .

Generic case in n-dim for free variables Z = (3(1, LLX LY,

V (i —tij)

V_ iy

For instance, i and j could be directly uncorrelated

but still have a non-zero associated V; ; element.

At To understand from where the covariance come from: look at
| conditional covariance
# 2 dimensional conditional covariances: _1
Viji-tijy = Vij = Vi-tijy (V—{i,j},—{i,j}) Ve tij)i
also works whenj =1 _1
Vi | —{i} = Vii— Vi (V—{i},—{i}) V_tiy
X Y
X VY, )

The double inversion method VXlY —

S pxp

((V)X)_1

24


https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Woodbury_matrix_identity

Estimation of
parameters

Note: In the remaining of this lecture, we focus on the frequentist interpretation of probability

25



Ordinary least squares estimation (OLS)

Simply compute the sum of the squared distances
bet dat ints and model:
Y 4 (xi ’yi) etween data points and mode

n

Z (i - ﬂi(e))z =1

S

Here the model is a line where generic parameters "0"
are slope a and interceptb

//ll(o) —_ axi + b

the quantity 7, = y, — () is called the i residual

The best model is the one which is the closest on average to the data, thus which minimizes this sum of the
squared residuals

26



Generalisation of least squares

Weighted least squares (WLS)

Weights on data entries: from frequencies, uncertainties, priors on data (robust fitting) etc.

Z W, ,btl(g) e.g. least squares with uncertainties on y; values o; then use w; = l/al.2

Generalised least squares (GLS) Full covariance V, , = V[ Y;, Y] 2 Vi i = 1:0)) (0 — 1, (0)) = (v — M(Q))T V="' (y— )
Caution: in all the previous cases, weights and covariance do not depend on &

Otherwise, use the following:

Iteratively reweighted least squares (IRLS) for handling the case when the covariance matrix depends on parameters
(y—pu®) VO (y-u®) —_, decouple meanand variance (y- u(@" ) v (19(”))_1 (y = (0" )

IRLS Algorithm: 1/ Fix 0V at some a priori initial value. Fit O in u(0M)
2/ Replace 8V by 8V in V(0) and fix it. Fit 0% in u(6?),...
.. Proceed iteratively with fitting 8" with V(0) fixed at @ = 8" obtained from previous step

until reaching convergence i.e. ||t — ™| < tolerance.
27



Probabilities with least squares

y* and the statistical interpretation of the Least squares

()(2 pronounced "khi" square, and often written chi square)

Hypothesis
ot 12
A Yo 1368 éé\ Assume normal distribution of errors
-\ assume Y =u0) +¢&  with e ~ N (0, 67)

2

/"‘ ““\ d
Qb1 T asbx Q'bxnf\

y; — 1(0)

n
Then the quantity 2
i=1

is distributed as the sum of n squared standard normal

O;

l‘Y(é}-a- b XU
Yi5)-a-bxis)

41 \
e \ ' n
“Y()-a- bxt
\ , FESEE 2% withZ ~ 40, 1)

_____ iy “Y(3)-a- bx(s) i=1

\ \
: ~Y2)-a-bxe2) This distribution is a known as a y* distribution with
\

parameter n, called degrees of freedom

- Y(1)-a- bxn

} 4 + 4 + ! 4 >
1 f2 13 1y 5 {6 17 8 T Xc2)
total length

28



Chi square ( )(2 ) distribution

n random variable X. ~ ' (u,;, 67) normal distribution of mean y; and standard deviation ¢

X. — .
= 2R 0,1

Centered and reduced random variables Z; =
O;

2
n n )
Then the quantity y? = Y Z? = i follows a y* distribution with parameter n (degrees of freedom)
g YX i P 9

i=1 i=1 Oi
In Pyth pdt
f,2 () 2(n) Chi square PDF nTYEen
PEAAIN X , , cdf
scipy.stats.chi2(n).
n . ppt
5_ e 2 > 0: rvs
fotoin) = 2 (;)
otherwise.

Expectation [E [)(2] =n

Variance \/[)(2] =2n

29




Minimum chi square szin and Delta chi square Ay’

follows a y? with n degrees of freedom (dof)

ifv. ~ V(). 6
| yl. (1i(0), 07) \I\ n (O : follows a y* with n — p degrees of freedom
fori=1,...,n 2 Yi — 1 (0) 2, .2 e—+—
o x (v u(0)) = Z =AY+ Yoin Used to assess agreement between model & data
0 = (81, cees gp) i=1 0;
/ Why n — p? Because we impose p restrictions
follows a y* with p degrees of freedom 0x°(y; 0) — Owith k = 1
Used to extract uncertainty on parameters 00, A e b
0=0
" .0y 0) |
Why p? Because we get  estimate from p equations 0 =0withk=1,...,p
k

2 2 . 2 :
Ay~ and y;. are independent y“ random variables (Cochran theorem) Chi square profile

>

x* (1)1
A 2 ou |
. ol 2/, [ K H ) < >/
Ex: single parameter case y*(y; u) = ( ) + \
0]
/ \ Xmin |7 H Agreement
y? with 1 dof y? with n — 1 dof | with data
[ T 30

=To find 16 uncertainty on u use Ay? = y? —)(I%lin =41



Goodness of fit with )(2

The y? PDF has an expectation value equal to the number of degrees of freedom n — p

2
1 )( . LI | T
SO n‘;(r%ﬂn ~ n —p orthe reduced )(éd = - T“;? ~ ] — the fit is "good
More precisely:
s
xoy=——~1—>allis as expected
n—p
Y
)(rzed = “—— <« 1 —> the fit is better than expected given the measurement uncertainties.
n—p

This is not bad in the sense of providing evidence against the model, but it is usually better to check if the uncertainties o;

have not been overestimated or are not correlated...

2
Xmin

n—p

2
)(red T

Note that each statement can be quantitatively assessed using the y* CDF

The p-value is defined as

r 4+ 00

J 2
)(min

> ] — then there is some reason to doubt the model in use...

]}z(l‘;n —p)dt=1 - F;(Z()(r%nn?n —P)

31



Example of )(2 contours in 2D

X

g

v =2+ 11.8 [99.73%)]

= 2. +6.17 [95.45%] -

V= 4 2.30

) o
2 — 498
Xmin = 4.28

68.27%) .

Example of contours with 2 degrees of
freedom (i.e. 2 parameters) with different
probability content corresponding to what

we call 1, 2 and 36

The offset levels correspond to the inverse

CDF of the y? (also known as the quantile

distribution function of the »?) for 2
degrees of freedom

0.5-
0.4 -
0.3 -
0.2 -
0.1-

0.0 -

]3(2 (X > Maof = 2)

68.27%

95.45%

10
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Profiling the y*

, ” u is the parameter of interest (POI)
Consider the case of a y“ with 2 parameters: , .
0 is a nuisance parameter (NP)

0 can be for instance a systematic effect parameter.

A systematic error is, in any statistical inference procedure, the error due to the incomplete
knowledge of the probability distribution of the observables. It could be a fixed effect, like a

bias, or a random effect.
2

5 Yi — 8i (/’ta 9)
i) =) -

=1 !

The generic receipt in frequentist context to get rid of 8 parameter but to still take into account its effect is
to minimize the y* with respect to 0 for each value of

N2
A L yi R gi (,l/l, H )
T APEDD —

=1 !

This profiled y?is now only a function of u which keep asymptotic y* properties

33



Profiling the )(2 - illustration close to best fit

1 parameter of interest (POI) u and 1 nuisance parameter (NP) 6 Parameter cc?zvariance matrix
vV — o, ,00%09
P 0,00 o)

ST

T
L[ p= 1 B . . ,
5 ( 9 _ ) V ( 0_ 0 ) defines ellipses in (p,0) parameter space

Generic ellipse definition

Fisher (Information) matrix

F:<FW Fu@) F=v~"
Fo Foe

A

Fluu(p— 1) + 2Fu0(pn — [1)(0 — 0) + Fpg(6 — 6)?

Uncertainty on u: 0
e From V, with @ included: o,

34




Profiling the )(2 - illustration close to best fit

A A

Fuu(p— 1)? + 2F, (e — 1) (0 — 6) + Fyo (0 — 6)°

N\
/

Profiled 8 (minimise at fixed u):

éu :é_Fe_elFHM(M—ﬂ)

AN\ 2
. _ A _ ) ow— [ _

Uncertainty on u:

e From V, with 6 included: o,

e From profiled y*: o,

Protfiled @ crosses ellipse at
vertical tangents by definition
(y* is higher at other points on the tangent)

35



Profiling the )(2 - illustration close to best fit

Fuu(p— 1)? + 2F, (e — 1) (0 — 6) + Fyo (0 — 6)°

Now, for fixed 8 = 0 (i.e. conditioning),
defines another interval:

2
. p—
Fuu(p—f)° =
MM(M IIL) (O'Iu\/l — p2>

Uncertainty on p:
e From V, with @ included: o,

e From profiled y*: o, total uncertainty

¢ From fixed 6 = 6: O \/1 — p? conditional uncertainty

Op = \/(Uu\/l — /02)2 + (Pgu)z

SN

Total uncertainty conditional A uncertainty from

uncertainty on @ = @ nuisance effect

Profiling on nuisance parameters indeed takes into
account nuisance effects

A

A

—p/0u09

)
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The covariance and the pull approach in )(2

Consider for instance the case where we would like to determine the mean u of the data y,
But our experiment is subject to some systematic effect S,
We think we have caretully removed the systematic effect but there remains some uncertainty oy

We think the effect is fully correlated across y; values subject to +o6¢ X S..
We have good reason to assume these systematic uncertainty follow a normal distribution

We can model this situation with the following )(2

2(y: 1. 0) zn: ()’i—ﬂ ~ Si9)2+ ( 0 )2 n+ 1 degrees of freedom
X1, 0) = —

= o; 2 parameters
1=

N often called "pull term"

Iif we minimise this y? with respect to 8 (profiling to get rid of nuisance parameter) we can demonstrate
that the obtained y* is

) n ) | n degrees of freedom
77, 0) = Z Vi = 1) Vi,jl Oj=—n)  with V;; = 0;6; ; + 6S2 5i 3 °

- 1 parameter

This equivalence is exact in linear parameter case, approximate in non-linear case.
The pulls approach is often preferred



Maximum
Likelihood
Estimation



The Likelihood function

It in P(data | hypothesis), we put in the values of the data observed in the experiment, and
consider the resulting function as a function of the unknown parameter(s), it becomes

P(data | hypothesis)

= Z(hypothesis)

data obs.

< is called the Likelihood Function.

R. A. Fisher, the first person to use it, knew that it was not a probability, so he
called it a likelihood. It will turn out to have some important properties.

39



Maximum Likelihood Estimation

Detine the likelihood of the sample with x = (x;, ..., xy) independent and
identically distributed (iid) random variables from the same PDF fy (x; ; 0)

N
Ly xy:0) = | | f5:0)
i=1

The Maximum Likelihood Estimator (MLE) of the parameter 0™ is the value 0
for which £(x;, ...,xy;60) has its maximum given the sample (x;, ..., Xy)

N
The log-likelihood is called the score, S(x;6) = In Z(x;0) = ) In Z(x;0),
=1
0S(x;6) _ In ag(x 0) ZN: d1n f(xl - )
00

The likelihood estimating equation is
=1

and the estimator @ of @ is a root of the likelihood estimating equation, when it exists.

=0

40



MLE properties

- consistent
- asymptotically normally distributed, with minimum variance

- for finite N, optimal under Darmois theorem with exponential family distributions
f(x;0) = exp (a(x) -a(f) + b(x) + ,B(@)), sufficient statistics, Cramer-Rao Lower Bound.
- invariant under transformation of the parameter: the MLE of 7 of 7(0) is T = T(é’)

lng(x,e) S =ln3maX=1an(x1,...,xN;é) lng(-x;l—) Smaxzlngmaleng(xla'ua-x]\];%)

max

InZ(x,...,x5;0)

--------l-----

\ 0 — r(@)%d conversely = can find a

transformation that makes & gaussian
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MLE uncertainty on 0

In Z(x; 6) S =InZ. . =InZ(x,....xy;0)

InZL(xy, ...,

XN;H)

R\

Since & is asymptotically gaussian (CLT)
and we can always reparameterize

0 — 1(0) to get a gaussian profile for the

1

parameter. Then, S .. — > =InZ . — =

gives the 1o uncertainty on 6 through:

1
InZx,0x0y) =InL_,, — >

The interval [@ — 6, 0 + 6,] obtained this way is called the likelihood interval

Even with non-gaussian likelihood function (i.e. non-parabolic In &)

Use of invariance property allows to find a transformation that
makes & gaussian and the content of the interval is preserved.
Can be used to determine the confidence intervals without
actually making the transformation to gaussian.

Caution: these confidence intervals are only approximate for N finite!
They are the asymptotic likelihood confidence intervals




Approaching )(2 with the likelihood

For several reason it is convenient to take £(x;0) = — 2 1In £ (x; )

We further define the deviance function as: D(x;0) =C(x;0) — C(x;x)

where £(x; x) stands for the likelihood of the data sample with a saturated model (a model with a free parameter

for each data point whose best fit reproduce exactly the data set). The deviance measures the departure of the
model from data.

With a sample (x;, ..., x,) of independent random variables: D(x,, ..., x,;0) = Z D(x;; 0)
i=1

ZL(x;0)
D(x; 0) ; —2In T Advantage of the deviance:

can check the agreement with the data with
P . which should follow a y* distribution with

parameter (degrees of freedom) n — p where n

R T G : is the number of data points, and p the number
o ‘ _____ | of fitted parameters
— - : :A :A > With deviance you inherit from the)(2 setup
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Deviance of some standard distributions

. . A
Poisson deviance Dn; ) =0, A) —C(nyn) = — 2 (n —A+nln (—))
n
AT £ A)==2InP[n;A]=24—-2nlni + 2In(n!)
Plni]=—e™*
n! C(n;n)=—-—2InP[n;n]=2n—-2nlnn+ 2In(n!)

N 1.

Ad)==2) n—A+nln=
n.

=1 !

Case of a sample of Nindependent i D
Poisson variables (n, ..., ny) -

N N —N,
Binomial deviance Dn;N,p) =¢(m;N,p) —£(n;N,p) = =2 <nln (_P> +(V=n)ln ( N ; ))
» —n

° ° ° . K Npk
Multinomial deviance 9(n,,....,ng; N,py,...p) = ... = =2 E nln| —
My
k=1

N

o) N j— ’
Normal deviance Dy . 0) = (y —ﬂ) —— Dp) = Z D (x;5p) = Z (x, M)




Some usual ways to define likelihoods
S, B: expected signal & background

Description Observable
Counting n: measured
number of
events
Unbinned Xj. |=1 ,...,nevents
shape observable value
analysis for each event
Binned n;:i=1,....N bins
shape measured events
analysis in each bin

Likelihood

Poisson

P(n;S,B) = (5 Z'B) e~ (5+B)

Extended Unbinned Likelihood

6_(S+B) Nevts
H (SP(xi|S) + BP(xi|B))
=1

P(X|S,B) = ——

P(z;|S), P(x;|B) PDFsfor observing x,
in signal, background

Poisson product

N .
Sps,: + Bppi) " _ | |
P({nz}zzl 77777 N’S7 B) — H [( pS’ + pB’ ) e (SpS,z‘l'BpB,z)

SJUDAD JO Jaquinu Buisealdul YyIm as

Psi & pg,i : probability of signal,
background in each bin
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lllustrating the maximum likelihood estimation

Model describes the distribution of the observable: P(n; S) = P(data; parameters)

< Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF: generate "pseudo-data"
or synthetic data

PDF Each entry = separate "experiment"

P()\ — 5) generate> observedn=27.29435 ..

Forward process
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lllustrating the maximum likelihood estimation

Model describes the distribution of the observable: P(n; S) = P(data; parameters)

< Possible outcomes of the experiment, for given parameter values

We want the other direction: use data to get information on parameters

PDE Experimental observation

P()\ :7) <estimate 5

Backward process

< Likelihood: function of parameters = P(data;parameters)

Same as PDF, but "seen" as a function of the parameters only

(The likelihood is not a probability distribution over the parameters)

47



Likelihood - Poisson example

Assume Poisson distribution with B=0

P(n;S)

qn
p— —e_S
n!

In a given experiment we observe n=5 want to infer parameter S value

P(n)

0.6

0.5
0.4
0.3
0.2
0.1+

< Try different values of S for a fixed data value n=5 I
> Varying parameter, fixed data = Likelihood framework | £(n = 5;5) = ye—s
P(n:S) with $S=0.5
low likelihood
L(S)  Likelihood: L(n = 5;5)
0.2 -

o 10 15 20

n
L Observed value
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Likelihood - Poisson example

Assume Poisson distribution with B=0

P(n;S)

qn
— —e_S
n!

In a given experiment we observe n=5 want to infer parameter S value

P(n)

0.6
0.5
0.4
0.3
0.2
0.1+

< Try different values of S for a fixed data value n=5 I
> Varying parameter, fixed data = Likelihood framework | £(n = 5;5) = ye—s
P(n;S) with $=3
high likelihood
L(S)  Likelihood: L(n = 5;5)
0.2 -

o 10 15 20

n
L Observed value
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Likelihood - Poisson example

Assume Poisson distribution with B=0

P(n;S)

qn
p— —e_S
n!

In a given experiment we observe n=5 want to infer parameter S value

P(n)

0.6
0.5
0.4
0.3
0.2
0.1+

< Try different values of S for a fixed data value n=5 I
> Varying parameter, fixed data = Likelihood framework | £(n = 5;5) = ye—s
P(n:S) with S=5
max likelihood
L(S)  Likelihood: L(n = 5;5)
0.2 -

{he,

o 10 15 20

n
L Observed value
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Likelihood - Poisson example

STL
Assume Poisson distribution with B=0 P(n; S) — —'e_s
.

In a given experiment we observe n=5 want to infer parameter S value

< Try different values of S for a fixed data value n=5 I
> Varying parameter, fixed data = Likelihood framework | £(n = 5;5) = ye—s
P(n;S) with S=7
P(n) high likelihood
06 L(S)  Likelihood: L(n = 5;5)

0.2
0.5-

0.4
0.3
0.2
0.1 £}Ei t:
0 .
0 S 10 15 20

n
L Observed value




Likelihood - Poisson example

STL
Assume Poisson distribution with B=0 P(n; S) — —'e_S
.

In a given experiment we observe n=5 want to infer parameter S value

< Try different values of S for a fixed data value n=5 I
> Varying parameter, fixed data = Likelihood framework | £(n = 5;5) = ye—s
P(n;S) with S=10
P(n) low likelihood
06 L(S)  Likelihood: L(n = 5;5)

0.2
0.5-

0.4
0.3
0.2
0.1 éitj iii Ej ::
0 .
0 S 10 15 20

L Observed value




Maximum Likelihood Estimator (MLE)

Estimate a parameter p = Find the value that maximizes L(p)

> the value of y for which this data was most likely to occur

A

> Maximum Likelihood Estimator | (1 = argmax L(u)

L
P(n:S) with S=5 o
P(n) n:3) L;(ﬁ) Likelihood: ,C(n = 9; S)
00 Likelihood
0.15 1
0.5 of S for n=5
0.4 -
0.1-
0.3
021 :[ 0.05 -
0.1
0 , i 0 u |
0 5 10 15 - 20 0 5 10 15 S 20
T— Observed Value S =5, Maxumuim for n=5

2> the MILE is a function of the data © it is it self an observable

=~ no guarantee itis the true value (data may be "unlikely") but sensible estimate



Likelihood - Poisson example

with several measured values

5136_33
Ex: 3 observed values: 5,1, 7. L({5; 1; 7}; S) — 511171
107 Likelihood
Maximum

L({5;1;7};5)

4.33... S

S value when Likelihood is max: S
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Testing hypotheses



Hypotheses testing

Hypothesis: assumption on model (parameters), e.g. Ho: $=0

> Goal = to determine if Hy is true or false using a test based on data
= take a decision

Data output

Possible .

outcomes Data favors Ho Data disfavors Ho
: . Error (Type |)

Hols true Nothing new ® > false discovery

= what we already know
o p-value

Truth

Error (Type Il)

2 missed discovery

1-B

Discovery

Ho is false ®

new effect, new signal # 0

decision

To make a discovery, you have to prove the null hypothesis, Hg is false

2 You want to minimize Type | error (not to claim a discovery when it's false)

You do not want to publish a result you have to retract afterward... embarrassing...

However by reducing Type | error, there is a price to pay: it increases the Type Il error
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what you observed
is background

<

Fix a decision
threshold value

>

what you observed

is signal

PDF(t|Hois true) PDF(t|Ho is false)
N I /
0.4 :
035t Backgrount :
" g Signal
0.25F
0.2F
0.15F- Type-| error
01 Type-H Error
0.05}- S P-vylue
e th 2 34 %
another threshold
0.4fF
0-()3§§Backgrou C Signail
0.25F-
0.2F
0.15F- Type-| error
0.1 Type-H Error
0.05}- p-velue
05~ =32 4 o0 1 2 3 4775

Could be background
fluctuation

Could be
signal signature

v

Observed value

= Want to fix stringent
discovery criteria

However: lower Type-I errors,
higher Type Il errors

@ Find right balance

many tests possible...

2 Goal: Find test that minimizes
Type Il error for a given level of
Type | error, fixed in advance;;
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Hypotheses testing with Likelihood

Neyman-Pearson Lemma

When comparing two hypotheses H, and H,, the 2 (data; Hy)
optimal discriminator is the Likelihood ratio (LR) Z(data; Hy)

< (data; H)
As for MLE, choose the hypothesis tThat is more likely for the data. —21In

Z(data; Hy)

— Minimizes Type-ll errors for given level of Type-| errors
— Always need an alternate hypothesis to test against.

Caveat: Strictly frue only for simple hypotheses (no free parameters)

— In the following: all tests based on LR, will focus on p-values (Type-l errors),
trusting that Type-Il errors are anyway as small as they can be...

Finding better criteria is specific to the problem at hand
<> work to find some criteria better than the LR in composite hypotheses (converse

of simple hypothesis) 58



Statistical result as hypothesis test

Z(data; H) )

It is usual in particle/astroparticle physics to recast results in terms of hypothesis testing: —2In
Z(data; Hy)

* Discovery: is the data compatible with background-only ?
— H, : only background is present

— How well can we reject H, ? — p-value (significance)

* Upper limits: no excess observed — how small must the signal be ?
— H,(S) : B + some signal S

— How small can we make S, and still reject H_(S) at 95% C.L. (p=5%) 7
C.L. = confidence level p-value

 Parameter measurement

— H,(W): some parameter value H is chosen as

the best fit fo the data
— What values p are not rejected at 68% C.L. (p=32%) ? Ho different possibilities

= 10 confidence interval on M following what we want

In all cases, H, : null hypothesis — what we are frying fo disprove 59



Example of confidence region construction

A

0 probability contour

First a confidence level is

fixed. Say 90% CL. confidence contour

2

A, B, C, D are 4 different
(0,,0,) parameters
hypotheses (H,).

For each of these hypotheses the best fit (black dot) is compatible with the hypothesis (i.e. within the dashed blue contour)
Thus A, B, C and D are inside the confidence region around the best fit.

Test every point in the plane (8,, 6,). The points which are compatible (within the specitied confidence level) with the best fit are
within the gray shaded area on this plot whose edge is the red contour.

60



Take home concepts

Statistical inference is a vast topic. We focused on frequentist approach in this lecture.

For a good introduction to Bayesian approach check reference [7] (next slide).
We reviewed basic probability, which are fundamental for statistical interence

We discussed two major ways to estimate parameters: the least squares and the
maximum likelihood. We presented the approximate likelihood and y? intervals, and
goodness of fit to validate fitted model.

When addressing hypothesis testing, we also illustrated how to build confidence
regions.

Final advice: when you explore statistical questions.
1/ simplity your problem to take the essence
2/ simulate with a Monte Carlo to check your understanding.
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