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Solving inverse problems  
Olds and new
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What is an inverse problem ?
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Retrieving the CMB
From microwave observations

Mars express

Hyperspectral data in astrophysics
Mars Express, Cassini, etc.

Chandra

Untangling the components
of a supernova remnant 
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What is an inverse problem ?
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Exoplanet detection
From transit observations

Spectral unmixing

Detection of a Massive Black Hole Binary signal from interferometric data
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Let’s start from a simple example
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b = x+ n n ⇠ N (0,�2)
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Formalism
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More generally, we will focus on linear inverse problems where : 

b = Ax+ n

data, observations, etc. observation operator

signal to be retrieved

noise, model imperfections, etc

This models many inverse problems arising in physics :

- Denoising (A is the identity operator)
- Deconvolution (A is the convolution kernel)
- Inpainting/missing data interpolation (A is a binary mask)
- Tomographic reconstruction (A is the partial Radon transform)
- Radio-interferometric reconstruction (A is the partial Fourier transform)
- Compressed sensing 
- Blind source separation
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Where it started
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There are many ways to tackle inverse problems (IP). So far, the vast majority of methods which 
have been proposed to solve (IP) boil down to finding some solution/estimator which minimizes 
some cost function:

x̂ = Argminx J (x)

Probably the most popular estimator in Physics is the least-square estimator :

which minimizes the Euclidean norm between the observations and the model.

x̂ = Argminx kb�Axk22

x̂LS = bIn the previous example:

Remark: in case the noise is additive and Gaussian, the LS estimator is equivalent to the celebrated 
Maximum Likelihood estimator in statistics.
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The need for a regularization
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The least-square estimator does not assume any prior assumption about the signal to be retrieved. 
Including such kind of prior information can be done by penalizing/favoring certain desired signal 
properties in the estimate procedure. This is done by adding a prior/penalization term in the cost 
function:

x̂ = Argminx P(x) + J (x)

data fidelity term
(measures how well the model fits the data)

penalty term
(penalizes/favors certain signal properties)

Again, many penalization/penalty terms have been proposed in the literature (ex: energy, entropy, signal 
smoothness, positivity, etc). Probably the simplest penalty is the one that penalizes high-energy 
solutions:

x̂ = Argminx �kxk22 + kb� xk22

Remark: in statistics, the use of prior knowledge arises naturally in the Bayesian inference framework. The aforementioned estimator 
is then better known as the maximum a posteriori estimator (MAP).
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A simple application
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The least-square estimator does not assume any prior assumption about the signal to be retrieved. 
Including such kind of prior information can be done by penalizing/favoring certain desired signal 
properties in the estimate procedure. This is done by adding a prior/penalization term in the cost 
function:

x̂ = Argminx P(x) + J (x)

data fidelity term
(measures how well the model fits the data)

penalty term
(penalizes/favors certain signal properties)

Again, many penalization/penalty terms have been proposed in the literature (ex: energy, entropy, signal 
smoothness, positivity, etc). Probably the simplest penalty is the one that penalizes high-energy 
solutions:

x̂ = Argminx �kxk22 + kb� xk22

Remark: in statistics, the use of prior knowledge arises naturally in the Bayesian inference framework. The aforementioned estimator 
is then better known as the maximum a posteriori estimator (MAP).

x̂ =
1

�+ 1
b Remark: this is best known as the Wiener filter
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Sparsity and compressibility
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In the last two decades, the most dramatic advances in signal estimation have focused on using 
prior information enforcing signal properties based on desired geometrical/morphological 
properties.

Gist of the sparsity : signals can be sparsely represented in representations (basis, etc.) that 
efficiently encode their geometrical/morphological properties.
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Sparse modelling
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Basis, frame, dictionary  
(Fourier, wavelets, curvelets .... )

coefficients

� = {�1, · · · ,�t}

Prior: Data Representation

x = x is assumed to have only     non zero entriesk

x is said to be exactly k-sparse in Φ

Sparse Model 1 :

x =
tX

j=1

↵j�j
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Sparse modelling
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Starlet transform
(isotropic undecimated wavelet transform)

x is approximately sparse in Φ

Sparse Model 2 :

sorted coefficients

|wj [i]|
many small coefficients

wj [i] ! ↵[k]for clarity

|↵[k]|  Ck�1/q
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Sparse modelling
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wavelet transform

sorted wavelet coefficients

1% 0.1% 0.01%
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Sparse modelling
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Original BMP
300x300x24
270056 bytes

JPEG 1:68
3983 bytes

JPEG2000 1:70
3876 bytes

JPEG VS JPEG 2000

Based on an harmonic basis 
(Discrete Cosine Transform)

Based on the wavelet transform
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Sparse modelling
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Cosine transform

Wavelets

Curvelets Contours

Singularities, point-like 
structures

Oscillating/periodic structures

Textures

In general, sparse representations should be chosen based on the desired morphology

… and many more
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Sparse solutions to inverse problems
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Let’s assume x is sparse is some orthogonal basis: ↵ = �x

data fidelity term
(measures how well the model fits the data)

sparsity-enforcing penalty

Examples of penalty terms:

k↵k`1 =
X

i

|↵[i]|

P(↵) = k↵k`1
The 0-norm counts the number of nonzero elements

P(↵) = k↵k`0

x̂ = Argminx=�↵ P(↵) + kb��↵k22
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Sparse solutions to inverse problems
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Denoising as a linear inverse problem:

b = x+ n

n ⇠ N (0,�2)

The observation matrix A is the identity matrix.

The noise is assumed to be additive, white and Gaussian: 

SNR = 1dB
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Sparse solutions to inverse problems
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Here 0 < p ≤ 1 is the interesting range of p, giving a very powerful sparsity constraint.
The weak !p norm is a popular measure of sparsity in the mathematical analysis
community; models of cartoon images have sparse representations as measured in
weak !p [26, 13].

Almost equivalent are the usual !p norms, defined by

‖x‖p =

(

∑

i

|xi|p
)1/p

.

These will seem more familiar objects than the weak !p norms, in the range 1 ≤ p ≤ ∞;
however, for measuring sparsity, 0 < p < 1 is of most interest.

It would seem very natural, based on our discussion of media sparsity, to attempt
to solve a problem of the form

(Pp) : min ‖x‖p subject to Ax = b,(3)

for example, with p = 1/2 or p = 2/3. Unfortunately, each choice 0 < p < 1 leads to
a nonconvex optimization problem which is very difficult to solve in general.

At this point, our discussion of the !0 norm in section 1.1 can be brought to bear.
The !0 norm is naturally related to the !p norms with 0 < p < 1; all are measures of
sparsity and, in fact, the !0 norm is the limit as p → 0 of the !p norms in the following
sense:

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

m
∑

k=1

|xk|p.(4)

Figure 1 presents the behavior of the scalar weight function |x|p—the core of the norm
computation—for various values of p, showing that as p goes to zero, this measure
becomes a count of the nonzeros in x.
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Fig. 1 The behavior of |x|p for various values of p. As p tends to zero, |x|p approaches the indicator
function, which is 0 for x = 0 and 1 elsewhere.

Note that among the !p norms, the choice p = 1 gives a convex functional, while
every choice 0 < p < 1 yields a concave functional. We have already mentioned
that solving (P0) can sometimes be attacked by solving (P1) instead, or by using an
appropriate heuristic GA; the same lesson applies here: although we might want to
solve (Pp) we should do better by instead solving (P1) or by applying an appropriate
heuristic GA.

1.4. This Paper. The keywords “sparse,” “sparsity,” “sparse representations,”
“sparse approximations,” and “sparse decompositions” are increasingly popular; the

with: kxk`p =

 
X

i

|x[i]|p
!1/p

x̂ = T (p)
� (b)

The solution amounts to a thresholding
or shrinkage of b :

It can be recovered from the noisy data by solving the following linear inverse problem:

x̂ = Argminx �kxk`p +
1

2
kb� xk22



April, 7th 2022

Sparse solutions to inverse problems
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The most common sparse regularizers are the L1 norm and the L0-“pseudo” norm:

soft-thresholding operator

S�

���

hard-thresholding operator

Hp
�

x̂ = Argminx �kxk`1 +
1

2
kb� xk22 x̂ = Argminx �kxk`0 +

1

2
kb� xk22

x̂ = Hp
�(b)x̂ = S�(b)

�
p
�

p
�
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Sparse solutions to inverse problems
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In case sparsity in enforced in some signal representation, the problem to be solved is the following:

x b = x+ n

x̂ = Argminx �k�Txk`p +
1

2
kb� xk22 x̂ = Argminx=�↵ �k↵k`p +

1

2
k�T b� ↵k22

orthogonal case

x̂ = � T (p)
� (�T b)
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Sparse solutions to inverse problems
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x b = x+ n

x̂ = �S�(�
T b)

L1 L0

x̂ = �H�(�
T b)
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Sparse solutions to inverse problems
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b� x̂`1

x� x̂`1 x� x̂`0

b� x̂`0
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Beyond denoising: deblurring/deconvolution
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1064 STARCK, PANTIN, & MURTAGH

2002 PASP, 114:1051–1069

Fig. 8a Fig. 8b

Fig. 8c Fig. 8d

Fig. 8e Fig. 8f

Fig. 8.—Simulated Hubble Space Telescope Wide Field Camera image of a distant cluster of galaxies. (a) Original, unaberrated, and noise-free. (b) Input,
aberrated, noise added. (c) Restoration, Richardson-Lucy. (d) Restoration, Pixon method. (e) Restoration, wavelet-vaguelette. ( f ) Restoration, wavelet-Lucy.
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Simulations of image from the Hubble Space Telescope

x b
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Beyond denoising: deblurring/deconvolution
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x b
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Beyond denoising: deblurring/deconvolution
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In imaging science, the (spatial) resolution of the images/signals is limited by the instrument/
sensor/… etc. 

The loss of resolution is mathematically described by the convolution of the signal with the point-
spread-function (PSF) of the optical device:

Hubble space telescope

Airy function

r ⇠ 1.22
�

D

b = Hx+ n

b = h ? x+ n

Impulsive response/PSF

Toeplitz-circulant matrix
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Beyond denoising: deblurring/deconvolution
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b = Hx+ n

GOOD NEWS: Toeplitz-circulant matrices are diagonalized by the Fourier transform:

F
Fourier transform

Fb = DFx+ Fn

Diagonal matrixPSF in pixel domain

PSF in Fourier domain
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Frequencies

Noise level 

Deblurring/deconvolution is an ill-posed inverse problem
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Deblurring/deconvolution: ML estimator
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Let’s turn to the classical maximum likelihood estimator. In case of additive Gaussian noise, it is 
fully equivalent  to a least-square estimator:

which can be recast in the Fourier domain as follows:

x̂ML = F�1Argminu kFb�Duk2`2

which now fully separable in u:

x̂ML = F�1û

v = Fb

8k; û[k] = v[k]

D[k, k]
ï600 ï400 ï200 0 200 400 600
0
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vn = Fn

Noise level 

8k; û[k] = u?[k] +
vn[k]

D[k, k]

Highly amplifies noise !

x̂ML = Argminxkb�Hxk2`2
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Beyond denoising: Wiener filter
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One of the most common Bayesian estimator is the Wiener filter, which obtained when the signal x is 
assumed to be a Gaussian random field (GRF) that is described by its power spectrum P:

Fourier transformInverse covariance matrix
of x in the Fourier domain
GRF: diagonal matrix
W[k,k] = P[k]

x̂Wiener = Argminx
1

2
x
TFT

W
�1Fx+

1

2�2
n

kb�Hxk2`2

After some basic calculation, we can show that in the Fourier domain:

8k; ûWiener[k] =
P [k]

P [k] + �2
n

D[k,k]2

v[k]

D[k, k]

ML estimator
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Beyond denoising: deblurring/deconvolution
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x̂ = Argminx �k�T
xk`p +

1

2
kb�Hxk22

Similarly to the case of denoising, the state-of-art deconvolution methods are based on sparsity-
constrained least-square solution.

It allows to better account for the sparsity of the signal x in some sparse representation (e.g. 
wavelet, … X-let) as well as noise through the data fidelity term and a choice of the regularization 
parameter.

No explicit solution !

This can be solved using an iterative thresholded Landweber scheme (Bertero 98):

x
+ = �S�

⇥
�T (x� +H

?(b�Hx
�))

⇤

thresholding in the sparse domain

Adjoint of H, here transpose-conjuguate

thresholding in the sparse domain
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Beyond denoising: deblurring/deconvolution
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x b x̂
Sparsity-based
deconvolution
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Beyond denoising: deblurring/deconvolution
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Input Observation

Richardson-Lucy Wavelets
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Beyond denoising: inpainting
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Beyond denoising: inpainting
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Inpainting has been tackled by solving a L1-penalized least-square problem of the form:

convex and differentiable
with 1-Lipschitz gradientconvex but not differentiable

The forward-backward algorithm then reads:

x̂ = Argminx=�↵ �k↵k`1 +
1

2
kb�M�↵k2`2

mask recast as a diagonal matrix

↵(t+1) = prox�f

⇣
↵(t) + ��T (b�M�↵))

⌘
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Beyond denoising: deblurring/deconvolution
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𝚽 = [Curvelets, Local DCT]
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Blind source separation
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Analysing multispectral data
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Hyperspectral data
remote sensing, aerial data, etc.

Courtesy of M. Lennon

Mars express

Hyperspectral data in astrophysics
Mars Express, Cassini, etc.

Multispectral data in astrophysics
Planck, Fermi, radio-interferometry (Lofar/SKA/…), etc.

Chandra
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Analysing multispectral data
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Different scientific fields but …

common problems: mixtures of elementary signals or sources

Biology
Retrieving metabolite MS spectra from LC/MS data

Unmixing gravitational wave signals
From the LISA data

Black holes
coalescence

Galactic binary

Unmixing -ray spectra
to recover radionuclides’activities 

γ

Exoplanet detection
From transit observations
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The underlying mixture model
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The linear mixture model
The sources 

The mixture weights 
e.g. spectral signatures, electromagnetic spectra, etc. 
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Unsupervised matrix factorisation
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The source matrix 

The mixing matrix Noise 

Blind Source Separation: 
Estimation both A and S from X only

Non-negative Matrix Factorization, Dictionary Learning, …

This is an ill-posed matrix factorization problem
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A complex problem to be tackled
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Data fidelity term Regularization 
Terms 

min
A,S

ℛ(A) + 𝒥(S) + 𝒟 (X, AS)

Data fidelity term: - measures a discrepancy between the data and the model

- allows to account for the noise statistics

- general formulation for various mixture models

Instantaneous mixture, non-stationary mixture (e.g. Planck),  
Joint convolution/mixing (radio), non-linear mixtures, … 

- make “better”-posed an ill-posed problem

- favour solution properties for increased interpretability

Regularization terms: 
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Sparse BSS - a building block

40

Data fidelity term Regularization 
Terms 

<latexit sha1_base64="6WCXCyHiKwx57zPnO5xQ/ENtm14="></latexit>

min
A,S

R(A) + J (S) +
1

2
kX�ASk2F

This is an ill-posed matrix factorization problem

- sparsity of the sources in some signal representation

- scaling of the mixing matrix is constrained

Regularization terms: 
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Sparse source separation
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Wavelet transform for spherical data 

sparse  
representation

Histogram in the wavelet domain

Changing the way the sources are represented
to get a sparse/compressed representation
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Sparse source separation
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Wavelet coefficients
Morphological 

diversity
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Sparse source separation
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Gist: looking for the  
sparsest sources

Regularization params., 
weight matrix, etc. 

Data fidelity term Sparse regularization 

Bobin, Starck, Fadili, and Moudden, Sparsity, Morphological Diversity and Blind Source Separation, IEEE Trans. on Image Processing,  Vol 
16, No 11, pp 2662 - 2674, 2007. 
Bobin, Starck, Fadili, and Moudden, Blind Source Separation: The Sparsity Revolution, Advances in Imaging and Electron Physics , Vol 152, 
pp 221 -- 306, 2008.

Generalized Morphological Component Analysis (GMCA):

- Thresholding strategy, robustness to Gaussian noise/local stationary points

- Iterative soft/hard thresholding algorithm

- No parameters to tune

- S-BSS with redundant sparse representations
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Unmixing X-ray images
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NASA - Chandra

ESA - Athena 
launch in 2034
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Unmixing X-ray images
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• Ejecta thermal emission gives insight on : 
– Individual elements distribution 
– Morphology, asymmetries  
– Velocities

N
e

M
g

S

A

C
a

Fe

(keV)

CasA with Chandra  
1 Ms observation 

~1 billions counts !!
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Application to the Chandra data
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N
e

M
g

S

Ar

C
a

Fe

Si

Synchrotron

Blue-Fe Red-Fe
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Application to the Chandra data
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Picquenot et al, A&A, 2019. Blindly estimates red/blue-shifted atomic components !

Red-shifted Blue-shiftedIntegration
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Beyond sparse modelling
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Sparse modelling
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All along these courses, we have explored how signals representations can be 
built to obtain sparse representations.

All these representations are built on certain generic morphological/geometrical 
specificities of the signal to be modeled.

wavelet/starlet transform

Main advantage: they are adapted to the content of a very large span of “natural” images, they come 
with fast transforms.

Main drawback: they are not specifically adapted to the content of individual signal/images/… which 
might typical of specific data/applications, etc.
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Sparse modelling
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X-lets ...Curvelets

DCT Wavelets

All these signal representations can be combined to sparsely represent more complex images that
combines morphologies of various nature; see Morphological Component Analysis (MCA), etc.
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Dictionary learning
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What about this very specific signals ?

Ideally, one would like to learn a dictionary/sparse representation that is adapted to the specific 
morphological component of a single image or a class of images.

Tissue observed through 
a confocal microscope

First row : original central frame of the CDM data cube, and degraded version with missing voxels in red. 
Bottom row : the filtered results using the RidCurvelets (left) and the BeamCurvelets (right).

Simulation of the Cosmic 
Web (galaxy distribution)

Simulation of cosmic strings
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Dictionary learning
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Olshausen & Fields, Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ?, 1997

The question of learning a “relevant” representation for natural images first was first raised in the 
field of neuroscience by Olshausen & Fields.

Their work focused on understanding the kind of patterns in natural 
images the primary visual cortex  (V1) is sensitive to. 

Learning experiment:2

algorithm, referred to as hypGMCA was devised to account for the
additional a priori sparsity constraint on the mixing matrix i.e. to
enforce that columns ak have a sparse representation in Ψ, a given
dictionary of spectral waveforms.

Commonly used methods for hyperspectral source separation
includes standard blind source separation methods such as ICA
[6]. Minimum enclosing volume methods [7], [8] have also been
proposed. The latter methods aim at enclosing the data set into a
polytope with minimum volume. The axes of this polytope then
provide estimators for the columns of the mixing matrix. Very
different from these methods, hypGMCA is able to account for
physically meaningful prior information including the spatial and
spectral sparsity behavior of the components and/or their positivity.
Taking advantage of the double spatial and spectral sparsity of
the sources, hypGMCA is able to better discriminate between the
components and thus achieve better separation results and it is more
robust to instrumental noise.

In the next section, we discuss and build a modified MAP ob-
jective function which formalizes the desired spatio-spectral sparsity
constraint. The resulting hypGMCA algorithm is given in section III.
Finally, in section IV, numerical experiments with synthetic and real
hyperspectral data illustrate the efficiency of the proposed algorithm.

II. OBJECTIVE FUNCTION

With the above spatio-spectral sparsity assumptions, equation (1)
is rewritten as follows :

X =
∑

k

Xk +N =
∑

k

ΨγkνkΦ+N (3)

where Xk = aksk are rank one matrices sparse in Ω = Ψ⊗Φ such
that ak has a sparse representation γk in Ψ while sk has a sparse
representation νk in Φ. Denote αk = γkνk the rank one matrix of
coefficients representing Xk in Ω .

Initially, the objective of the GMCA algorithm is as follows :

min
A,S

∑

k

λk‖νk‖1 +
1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

aksk

∥

∥

∥

∥

∥

2

2

with sk = νkΦ (4)

which is derived as a MAP estimation of the model parameters A and
S where the 1 penalty terms imposing sparsity come from Laplacian
priors on the sparse representation νk of sk in Φ. Interestingly, the
treatment of A and S in the above is asymmetric. This is a common
feature of the great majority of BSS methods which invoke a uniform
improper prior distribution for the spectral parameters A. Truly, A
and S often have different roles in the model and very different
sizes. However, dealing with so-called hyperspectral data, assuming
that the spectral signatures ak also have sparse representations γk in
spectral dictionary Ψ, this asymmetry is no longer so obvious. Also,
a well known property of the linear mixture model (1) is its scale
and permutation invariance : without additional prior information, the
indexing of the Xk in the decomposition of data X is not meaningful
and ak, sk can trade a scale factor in full impunity. A consequence is
that unless a priori specified otherwise, information on the separate
scales of ak and sk is lost due to the multiplicative mixing, and
only a joint scale parameter for ak, sk can be estimated. This loss
of information needs to be translated into a practical prior on Xk =
aksk = ΨγkνkΦ. Unfortunately, deriving the distribution of the
product of two independent random variables γk and νk based on
their marginal densities can be cumbersome. We propose instead that
the following pπ is a good and practical candidate joint sparse prior

Figure 1. Image data set used in the experiments. Each image contains
128 by 128 pixels. They all have zero mean and are normalized to have unit
variance.

for γk and νk after the loss of information induced by multiplication :

pπ(γ
k, νk) ∝ exp(−λk‖γkνk‖1) ∝ exp(−λk

∑

i,j

|γk
i ν

j
k|) (5)

where γk
i is the ith entry in γk and νj

k is the jth entry in νk. Note
that the proposed distribution has the nice property, for subsequent
derivations, that the conditional distributions of γk given νk and of
νk given γk are both Laplacian distributions which are commonly
and conveniently used to model sparse distributions. Finally, inserting
the latter prior distribution in a Bayesian MAP estimator leads to the
following minimization problem :

min
{γk,νk}

1
2σ2

∥

∥

∥

∥

∥

X−
∑

k

ΨγkνkΦ

∥

∥

∥

∥

∥

2

2

+
∑

k

λk‖γkνk‖1 (6)

Let us first note that the above can be expressed slightly differently
as follows :

min{αk}
1

2σ2

∥

∥X−
∑

k Xk

∥

∥

2

2
+

∑

k λk‖αk‖1

with Xk = ΨαkΦ and ∀k, rank(Xk) ≤ 1
(7)

which uncovers a nice interpretation of our problem as that of
approximating the data X by a sum of rank one matrices Xk which
are sparse in the specified dictionary of rank one matrices. This is the
usual 1 minimization problem [9] but with the additional constraint
that the Xk are all rank one at most. The latter constraint is enforced
here mechanically through a proper parametric representation of
Xk = aksk or αk = γkνk. A similar problem was previously
investigated by [10] with a very different approach.
We also note that rescaling the columns of A← ρA while applying
the proper inverse scaling to the lines of S← 1/ρS, leaves both the
quadratic measure of fit and the 1 sparsity measure in equation (6)
unaltered. Although renormalizing is still worthwhile numerically, it
is no longer dictated by the lack of scale invariance of the objective
function and the need to stay away from trivial solutions, as in
GMCA.
There have been previous reports of a symmetric treatment of A and
S for BSS [11]–[13] however in the noiseless case. We also note
that very recently, the objective function (6) was proposed in [14]
for dictionary learning oriented applications. However, the algorithm
derived in [14] is very different from the method proposed here which
benefits from all the good properties of GMCA, notably its speed
and robustness which come along the iterative thresholding with a
decreasing threshold.

III. GMCA ALGORITHM FOR hyperspectral DATA
For the sake of simplicity, consider now that the multichannel

dictionary Ω = Ψ⊗Φ reduces to a single orthonormal basis, tensor

each image is divide into small patches 
and stored in some matrix X

min
�,S

kX� S�k2F + �
X

i

f(Si)

Signal representation Expansion coefficient
of each data patch
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min
�,S

kX� S�k2F + �
X

i

f(Si)

In their experiment, they chose the penalization f so as to promote sparseness since it is believed 
that the primary visual cortex compresses information into a few significant features.
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cation will be to choose, in the case of overlaps, which 
bases are most effective for describing a given image 
structure. This interaction between bases will cause the 
outputs to be a somewhat non-linear function of the 
inputs. Note also that there is no closed-form solution for 
the ai in terms of the input, I ( ~ ) .  Rather, the ai are 
determined as the result of a recurrent computation. The 
form of this computation is very similar to an "analysis/ 
synthesis loop", which has been proposed by Mumford 
(1994) as a way that cortical feedback could be used to 
perform inference on images. In this case, the system is 
trying to infer which bases are most appropriate for 
explaining a given image. 
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FIGURE 4. The effect of the sparseness cost function on the input-  
output relationship of  each unit. (a) The sparseness cost function, 
S(x) = log(1 + x2). (b) The derivative of  the sparseness cost function 
utilized in gradient descent, S'. The effect of  S' will be to differentially 

suppress values near zero. 

accomplished by simple gradient descent. This yields the 
learning rule: 

A ~ i ( - ~  =- ~ l (a i r (~)  ) , (17) 

where r/ is the learning rate. In terms of the network 
implementation shown in Fig. 5, the q~i are updated by 
simple Hebbian learning between the outputs computed 
for each image, ai, and the resulting residual image, 
r ( ~ ) .  As mentioned above, though, doing this alone will 
result in the q~i growing without bound, and so to prevent 
this from happening the L2 norm of each basis function, 
2 --+ 2 l i = ~-~ x~ [0i(x)l  , is separately adapted so that the 

output variance of each ai is held at an appropriate level: 

, (18) 

where ~r2oal is the desired variance of the coefficients. 
An intuitive interpretation of the algorithm is that on 

each image presentation, the gradient of S "sparsifies" the 
distribution of activity on the ai by differentially reducing 
the value of low-activity coefficients more than high- 
activity coefficients. The q~i then learn on the error 
induced by this sparsification process, resulting in a set of 
bases that can tolerate sparsification with minimum mean 
square reconstruction error. When the basis set is 
overcomplete and non-orthogonal, the effect of sparsifi- 

SIMULATION METHODS 

In order to confirm that the algorithm is capable of 
recovering sparse, independent structure, we tested it on a 
number of artificial data sets containing known forms of 
sparse structure. The method and results of these tests are 
described elsewhere (Olshausen & Field, 1996a). Here, 
we focus on applying the algorithm to natural images. 

The data for training were taken from ten 512 × 512 
pixel images of natural surroundings (trees, rocks, 
mountain scenes, etc.). These data in their raw form 
pose potential problems, however, because of vast 
inequities in variance along different directions of the 
input space, and also because of corrupted and artifactual 
data at the highest image spatial-frequencies. The large 
inequities in variance are due to the 1/f2 power spectrum 
of natural images. (Because the image statistics are 
roughly stationary, the eigenvectors of the covariance 
matrix will essentially be equivalent to the Fourier bases. 
Thus, the variance along the low-frequency eigenvectors 
will be much larger than the variance along the high- 
frequency eigenvectors.) This produces huge differences 
in the variance along different directions, which will be 
troublesome for gradient descent techniques searching 
for structure in this space. A standard technique to 
ameliorate these effects is to "sphere" the data by 
equalizing the variance in all directions (Friedman, 
1987), as schematically illustrated in Fig. 6(a). Since 
the amplitude spectrum falls as roughly 1/f at all 
orientations in the 2D frequency plane, sphering may 
be accomplished by filtering with a circularly symmetric 
"whitening filter" with frequency response, Wq)=f ,  
thereby attenuating the low frequencies and boosting 
the high frequencies so as to yield a roughly flat 
amplitude spectrum across all spatial frequencies. How- 
ever, it is not wise to boost all high frequencies 
indiscriminately for several reasons: one is that the 
highest spatial frequencies in most digitized images will 
typically be corrupted by noise and effects of aliasing*. 

*In order to avoid aliasing, an image should be sufficiently blurred 
before sampling so that the power spectrum is reduced to nearly 
zero by the Nyquist frequency corresponding to the largest sample 
spacing in the grid. In order to do this, though, the resulting 
sampled image will end up looking blurred, and so more often than 
not the integrity of data at the highest spatial frequencies is 
sacrificed in order to make the image look "sharp". 
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FIGURE 7. The set of 144 basis functions learned by the sparse coding algorithm. The basis functions are totally overlapping 
(i.e., the entire set codes for the same image patch). All have been normalized to fill the grey scale, but with zero always 

represented by the same grey level. 

1994; Daugman, 1989). Shown in Fig. 8 is the 
distribution of the basis functions in spatial frequency 
and orientation. The vast majority lie within the high 
spatial-frequency bands, as expected of a wavelet code in 
order to form a complete tiling of space and spatial 
frequency. Note, however, that the basis functions 
deviate somewhat from strict self-similarity in that the 
high spatial-frequency functions have more wobbles (are 
more narrowly tuned in log-frequency) than the low 
spatial-frequency functions. Characterizing the band- 
width vs spatial-frequency relationship more adequately 
will require simulations over larger window sizes in order 
to span a larger range of spatial frequencies. 

Although the number of basis functions equals the 
number of input pixels, the representation is effectively 
about 1.5-times overcomplete (this one can discern by 
observing that the eigenvalues of the input covariance 
matrix, as well as the singular values of the 4) matrix, 

begin to drop off sharply at about 100 dimensions). The 
effect of sparsification with an overcomplete representa- 
tion is demonstrated in Fig. 9. Here we compare the 
distribution of activity obtained with a purely feedfor- 
ward computation: 

bi ~- Z ~ i ( - ~ ) / ( " ~ )  (22)  

to the sparsified coefficient values, ai. One can readily see 
that in the latter case, the sparseness cost function shifts 
the responsibility for coding the structure onto only those 
units that best match the structure, silencing the other 
units. Thus, the input-output relationship for any given 
unit will be somewhat non-linear, with units becoming 
more selective in what aspects of the image they respond 
to. Because of this non-linear response property, and 
because there is no closed-form solution for the response 
of each ai to any given image, the "receptive field" of 

They found that the learnt dictionary contains 
oriented/elongated/oscillatory features which 
are reminiscent of Gabor-wavelets.



April, 7th 2022

Dictionary learning

54

In the setting of imaging processing, the use of overcomplete representations has long been 
advocated as a mean to provide sparser and therefore more efficient signal representations.

Learning sparse overcomplete signal representation has been introduced by Elad and Aharon in 
2006.

Elad & Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006

Images are modeled in a patch-based
representation

min
�,↵

X

j

µjk↵jk`0 + kxj ��↵jk22

Signal representationExpansion coefficient
of each data patch
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The K-SVD algorithm can be described as follows:

- Initialization, 𝛷 is set to an overcomplete DCT
- Sparse coding:

Decompose each data patch in the current dictionary:

min
↵j

k↵jk`0 s.t. kxj ��↵jk2  ✏

- Dictionary update:

For each atom (element of the dictionary), build the residual:

Rk = X�
X

k0 6=k

X

j

↵j [k
0]�k0

part of the data “explained” the 
atoms except atom #k

The atom and the corresponding decomposing are updated via SVD:

Rk = Uk⌃kVk
�k = U1

k

↵k = Vk,1

take the principal 
eigenvectors
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ELAD AND AHARON: IMAGE DENOISING VIA SPARSE AND REDUNDANT REPRESENTATIONS 3741

Fig. 2. Left: Overcomplete DCT dictionary. Right: Globally trained dictionary.

Fig. 3. Sample from the images used for training the global dictionary.

number of nonzero elements in each coefficient vector. de-
pends strongly on the noise level, e.g., for , the average

is 2.96, and for , the average is 1.12.

IV. RESULTS

In this section, we demonstrate the results achieved by ap-
plying the above methods on several test images, and with sev-
eral dictionaries. The tested images, as also the tested noise
levels, are all the same ones as those used in the denoising ex-
periments reported in [23], in order to enable a fair comparison.

Table I summarizes these denoising results for the DCT dic-
tionary, the globally trained dictionary, and training on the cor-
rupted images directly (referred to hereafter as the adaptive dic-
tionary). In all this set of experiments, the dictionaries used were
of size 64 256, designed to handle image patches of size 8 8
pixels . Every result reported is an average
over 5 experiments, having different realizations of the noise.

The redundant DCT dictionary is described on the left side
of Fig. 2, each of its atoms shown as an 8 8 pixel image. This
dictionary was also used as the initialization for all the training
algorithms that follow. The globally trained dictionary is shown
on the right side of Fig. 2. This dictionary was produced by

the K-SVD algorithm (executed 180 iterations, using OMP for
sparse coding with ), trained on a data-set of 100 000
8 8 patches. Those patches were taken from an arbitrary set
of clean natural images (unrelated to the test images), some of
which are shown in Fig. 3.

In all experiments, the denoising process included a sparse-
coding of each patch of size 8 8 pixels from the noisy image.
Using the OMP, atoms were accumulated till the average error
passed the threshold, chosen empirically to be . This
means that our algorithm assumes the knowledge of —very
much like that assumed in [23]. The denoised patches were av-
eraged, as described in (8), using (see below for an
explanation for this choice of ). We chose to apply only one
iteration in the iterative process suggested in Section II-C. Fol-
lowing iterations requires knowledge of the new noisy param-
eter , which is unknown after first changing .

When training the dictionary on overlapping patches from
the noisy image itself, each such experiment included

patches (all available patches from the 256 256
images, and every second patch from every second row in the
512 512 size images). The algorithm described in detail in
Fig. 1 was applied.

Elad & Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006

ELAD AND AHARON: IMAGE DENOISING VIA SPARSE AND REDUNDANT REPRESENTATIONS 3741

Fig. 2. Left: Overcomplete DCT dictionary. Right: Globally trained dictionary.

Fig. 3. Sample from the images used for training the global dictionary.

number of nonzero elements in each coefficient vector. de-
pends strongly on the noise level, e.g., for , the average

is 2.96, and for , the average is 1.12.

IV. RESULTS

In this section, we demonstrate the results achieved by ap-
plying the above methods on several test images, and with sev-
eral dictionaries. The tested images, as also the tested noise
levels, are all the same ones as those used in the denoising ex-
periments reported in [23], in order to enable a fair comparison.

Table I summarizes these denoising results for the DCT dic-
tionary, the globally trained dictionary, and training on the cor-
rupted images directly (referred to hereafter as the adaptive dic-
tionary). In all this set of experiments, the dictionaries used were
of size 64 256, designed to handle image patches of size 8 8
pixels . Every result reported is an average
over 5 experiments, having different realizations of the noise.

The redundant DCT dictionary is described on the left side
of Fig. 2, each of its atoms shown as an 8 8 pixel image. This
dictionary was also used as the initialization for all the training
algorithms that follow. The globally trained dictionary is shown
on the right side of Fig. 2. This dictionary was produced by

the K-SVD algorithm (executed 180 iterations, using OMP for
sparse coding with ), trained on a data-set of 100 000
8 8 patches. Those patches were taken from an arbitrary set
of clean natural images (unrelated to the test images), some of
which are shown in Fig. 3.

In all experiments, the denoising process included a sparse-
coding of each patch of size 8 8 pixels from the noisy image.
Using the OMP, atoms were accumulated till the average error
passed the threshold, chosen empirically to be . This
means that our algorithm assumes the knowledge of —very
much like that assumed in [23]. The denoised patches were av-
eraged, as described in (8), using (see below for an
explanation for this choice of ). We chose to apply only one
iteration in the iterative process suggested in Section II-C. Fol-
lowing iterations requires knowledge of the new noisy param-
eter , which is unknown after first changing .

When training the dictionary on overlapping patches from
the noisy image itself, each such experiment included

patches (all available patches from the 256 256
images, and every second patch from every second row in the
512 512 size images). The algorithm described in detail in
Fig. 1 was applied.

Sample images

Overcomplete DCT dictionary Learnt dictionary with K-SVD
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ELAD AND AHARON: IMAGE DENOISING VIA SPARSE AND REDUNDANT REPRESENTATIONS 3743

Fig. 6. Example of the denoising results for the image “Barbara” with —the original, the noisy, and two restoration results.

Fig. 7. Example of the denoising results for the image “Barbara” with
—the adaptively trained dictionary.

with small values of , and vice versa. This is, indeed, expected,
as relatively “clean” images should have a stronger effect on
the outcome, while very noisy ones should effect the outcome

weakly, if at all. We tested several values for this parameter, and
found empirically that the best results are achieved with

. It is interesting to see that all three denoising methods
(overcomplete DCT, global dictionary, and adaptive dictionary
trained on noisy patches), and all noise levels generally agree
with this choice. In Fig. 8, we present the improvement (and
later, deterioration) achieved when increasing the value of in
the averaging process (8). In Fig. 8, one image (“Peppers”) was
tested with four noise levels and with all
three methods, resulting with 12 curves. The choice
seems to be near the peak for all these graphs.

To conclude this experimental section, we refer to our arbi-
trary choice of dictionary atoms (this choice had an
effect over all three experimented methods). We conducted an-
other experiment, which compares between several values of .
In this experiment, we tested the denoising results of the three
proposed methods on the image “House” for an initial noise
level of (24.61 dB) and . The tested re-
dundancy values (of ) were 64, 128, 256, and 512. The av-
erage results of four executions (per each test) are presented in
Fig. 9. As can be seen, the increase of the number of dictionary
elements generally improves the results, although this improve-
ment is small (0–0.16 dB). This increase is most effective in the
adaptive dictionary method.
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the outcome, while very noisy ones should effect the outcome

weakly, if at all. We tested several values for this parameter, and
found empirically that the best results are achieved with

. It is interesting to see that all three denoising methods
(overcomplete DCT, global dictionary, and adaptive dictionary
trained on noisy patches), and all noise levels generally agree
with this choice. In Fig. 8, we present the improvement (and
later, deterioration) achieved when increasing the value of in
the averaging process (8). In Fig. 8, one image (“Peppers”) was
tested with four noise levels and with all
three methods, resulting with 12 curves. The choice
seems to be near the peak for all these graphs.

To conclude this experimental section, we refer to our arbi-
trary choice of dictionary atoms (this choice had an
effect over all three experimented methods). We conducted an-
other experiment, which compares between several values of .
In this experiment, we tested the denoising results of the three
proposed methods on the image “House” for an initial noise
level of (24.61 dB) and . The tested re-
dundancy values (of ) were 64, 128, 256, and 512. The av-
erage results of four executions (per each test) are presented in
Fig. 9. As can be seen, the increase of the number of dictionary
elements generally improves the results, although this improve-
ment is small (0–0.16 dB). This increase is most effective in the
adaptive dictionary method.

Elad & Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006
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From sparse modelling to learning-based representations
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Let’s go back to the basics,

min
X

λ∥X∥1 +
1
2

∥Y − X∥2
2

X = 𝒮λ (Y)

Classically gives

Basically, the regularisation often boils down to a denoiser, or more generally 
to providing a low-dimensional approximation of the signal.
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which could be interpreted as some regularization

min
S

𝒥θ(S) +
1
2

∥X − AS∥2
2

X = 𝒟θ (Y)

Gist of plug&play methods (in this context) is to learn denoisers

S ← 𝒟θ (S + αAT(X − AS))
and plug them in classical solvers:

here in a forward-backward splitting algorithm 

Romano et al. 2016 
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Sureau et al. 2019 

- Virtually any denoiser architecture can be 
used

- U-Net quite popular for image denoising 
(Though being highly over-parameterized)

- Applied to denoising, deconvolution, 
tomographic reconstruction, etc. but not to 
BSS
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Sureau et al. 2019 

U-Net architectures for galaxy image denoising 
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U-Net architectures for galaxy image deconvolution 

Sureau et al. 2019 
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Physically relevant signals generally belong to  

a smooth low-dimensional manifold

Synchrotron spectra seen by Chandra

ℳ

Learning a signal representation  learning to “navigate” on the manifold≡
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ℳ

φ2

φ3

x
φ1

φ2
φ3

x

φ1

Φ Manifold unfolding

Ψ Backprojection

∃{λi}i, Φ(xi) = ∑
i

λiΦ(φi)

Linear interpolation 

Learning non-linear signal representations
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ℳ

φ2

φ3

x
φ1

φ2
φ3

x

φ1

∃{λi}i, Φ(xi) = ∑
i

λiΦ(φi)

Linear interpolation 

Φ Encoder

Ψ Decoder

ΦΨLearn and

Learning non-linear signal representations

Bobin, Carloni-Gertosio, Bobin, Thiam, 2021
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Carloni-Gertosio, Bobin, Acero, submitted to DSP, 2022

argminA,S∥Λ ⊙ SW∥1 + ∑
j≠ℐ

ι𝒮m (Aj) + ∑
j∈ℐ

ιℬϕj({φe
ℳj

}) (Aj) +
1
2

X − AS
2
F

Barycentric span 
constraint 

Data fidelity 

sGMCA : a semi-blind sparse unsupervised matrix factorization method

Oblique 
constraint 

Sparsity 
regularization 

- With the exception of the barycentric constraint, the problem is multi-convex 

- In practice, the barycentric constraint seems to behave like a convex constraint

- For its robustness, the minoration scheme is based on an alternate least-squares



April,7th 2022

Unsupervised matrix factorisation

69

X-ray filaments have~50-100 counts 
buried under 104 counts 

Finding features with contrast < 1%

Hα filaments

Perseus galaxy cluster

Integrated image 0.5 - 8keV

Only the thermal emission is constrained

visible


