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What is an inverse problem ?

Mars express

Retrieving the CMB

From microwave observations Hyperspectral data in astrophysics

Mars Express, Cassini, etc.

o
8

Amplitude
e
N

| | [ Untangling the components
L }\\ l of a supernova remnant

0 20 40 B0 80 100
Enerqy band

April, 7th 2022 2



What is an inverse problem ?
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Detection of a Massive Black Hole Binary signal from interferometric data
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Let’s start from a simple example

b=x+n n~N(0,0?)
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More generally, we will focus on linear inverse problems where :

signal to be retrieved

b= Ax +n
/ \

data, observations, etc. observation operator noise, model imperfections, etc

This models many inverse problems arising in physics :

= Denoising (A is the identity operator)

= Deconvolution (A is the convolution kernel)

= Inpainting/missing data interpolation (A is a binary mask)

= Tomographic reconstruction (A is the partial Radon transform)

= Radio-interferometric reconstruction (A is the partial Fourier transform)
= Compressed sensing

= Blind source separation
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Where it started

There are many ways to tackle inverse problems (IP). So far, the vast majority of methods which

have been proposed to solve (IP) boil down to finding some solution/estimator which minimizes
some cost function:

z = Argmin, J(x)
Probably the most popular estimator in Physics is the least-square estimator :
# = Argmin, ||b — Az||5

which minimizes the Euclidean norm between the observations and the model.

In the previous example: X LS — b

Remark: in case the noise is additive and Gaussian, the LS estimator is equivalent to the celebrated
Maximum Likelihood estimator in statistics.
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The need for a regularization

The least-square estimator does not assume any prior assumption about the signal to be retrieved.
Including such kind of prior information can be done by penalizing/favoring certain desired signal

properties in the estimate procedure. This is done by adding a prior/penalization term in the cost
function:

£ = Argmin, P(z)+ J(x)

penalty term data fidelity term
(penalizes/favors certain signal properties) (measures how well the model fits the data)

Again, many penalization/penalty terms have been proposed in the literature (ex: energy, entropy, signal

smoothness, positivity, etc). Probably the simplest penalty is the one that penalizes high-energy
solutions:

t = Argmin, Allz]|3 +[|b — |3

Remark: in statistics, the use of prior knowledge arises naturally in the Bayesian inference framework. The aforementioned estimator
is then better known as the maximum a posteriori estimator (MAP).
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A simple application

The least-square estimator does not assume any prior assumption about the signal to be retrieved.
Including such kind of prior information can be done by penalizing/favoring certain desired signal
properties in the estimate procedure. This is done by adding a prior/penalization term in the cost

function: T = Argminx P($) + j($)
— T~

penalty term data fidelity term
(penalizes/favors certain signal properties) (measures how well the model fits the data)

Again, many penalization/penalty terms have been proposed in the literature (ex: energy, entropy, signal

smoothness, positivity, etc). Probably the simplest penalty is the one that penalizes high-energy
solutions:

t = Argmin, Allz[3 + [Ib — 2|3

1

€Tr = b Remark: this is best known as the Wiener filter

A1

Remark: in statistics, the use of prior knowledge arises naturally in the Bayesian inference framework. The aforementioned estimator
is then better known as the maximum a posteriori estimator (MAP).

April, 7th 2022 8



Sparsity and compressibility

In the last two decades, the most dramatic advances in signal estimation have focused on using
prior information enforcing signal properties based on desired geometrical/morphological

properties.

Gist of the sparsity : signals can be sparsely represented in representations (basis, etc.) that
efficiently encode their geometrical/morphological properties.

| | | | ey
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Discrete cosine transform
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Sparse modelling

Basis, frame, dictionary
(Fourier, wavelets, curvelets .... )

/ " })efﬁcients
= {p1, 1) v =) i

Sparse Model 1 :

x is assumed to have only £ non zero entries s
|

1 B
&l
I IWI BT I;:-IMAI Q

x IS said to be exactly k-sparse in P !

Prior: Data Representation
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Sparse modelling

many small coefficients

sorted coefficients
for clarity w;|t] — o|k]

lalk]| < Ck=Ya

Sparse Model 2 :

X IS approximately sparse in @

Starlet transform A mmEmmEEEEsssssEEEEEE====--
(isotropic undecimated wavelet transform)
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Sparse modelling

wavelet transform

u U's 1 1.

sorted wavelet coefficients

1% 0.1% 0.01%
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Sparse modelling

JPEG VS JPEG 2000

Original BMP J
300x300x24
270056 bytes

JPEG2000 1:70
3876 bytes

JPEG 1:68
3983 bytes

Based on an harmonic basis Based on the wavelet transform
(Discrete Cosine Transform)
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Sparse modelling

In general, sparse representations should be chosen based on the desired morphology

Oscillating/periodic structures

Cosine transform Textures SHI|EEE
ij i
wii i
N A H
Wavelets Singularities, point-like
structures
CUI'VCICtS Contours

... and many more
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Sparse solutions to inverse problems

Let’s assume x is sparse is some orthogonal basis: (v = P

T = Argmin__g4, Pla)+||b — ®al3
_— \

sparsity-enforcing penalty data fidelity term
(measures how well the model fits the data)

Examples of penalty terms:

Pla) = ||afle, Pla) = ||ale,

The 0-norm counts the number of nonzero elements lalle, = Z |auld]|
7
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Sparse solutions to inverse problems

Denoising as a linear inverse problem:
b=x4+n

The observation matrix A is the identity matrix.

The noise is assumed to be additive, white and Gaussian: 71 ~ N (0, 02)

SNR =1dB
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Sparse solutions to inverse problems

It can be recovered from the noisy data by solving the following linear inverse problem:

N . 1
T = Argmin, A||z||¢, + §Hb — |5

1/p
with:  llelle, = (Z xW)

p=2

1.5F p=0.5 | The solution amounts to a thresholding

or shrinkage of b :
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Sparse solutions to inverse problems

The most common sparse regularizers are the L1 norm and the L0O-“pseudo” norm:

A | 1 , - 1
= Argming  Allzlle, + 5|0 - z|3 T = Argmin, Allz|le, + §Hb — |3
Sy ‘. [AV6Y
- ) VAl VA
& = Sy(b) z =7 /5(0)

i 1

soft-thresholding operator hard-thresholding operator
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Sparse solutions to inverse problems

b=x-+n

In case sparsity in enforced in some signal representation, the problem to be solved is the following:

) . 1 ) . 1
T = Argmin )\H(I)TCBng + §||b — 2|3 * T = Argmin,_g, A|all,, + §||<I>Tb —all5

orthogonal case

=@ TP (@)
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Sparse solutions to inverse problems
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Sparse solutions to inverse problems
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Beyond denoising: deblurring/deconvolution

Simulations of image from the Hubble Space Telescope
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Beyond denoising: deblurring/deconvolution
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Beyond denoising: deblurring/deconvolution

In imaging science, the (spatial) resolution of the images/signals is limited by the instrument/
sensotr/... etc.

The loss of resolution is mathematically described by the convolution of the signal with the point-

spread-function (PSF) of the optical device:
Hubble space telescope

b=hxx+n

\

Impulsive response/PSF

b=Hx +n

\

Toeplitz-circulant matrix
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Beyond denoising: deblurring/deconvolution

GOOD NEWS: Toeplitz-circulant matrices are diagonalized by the Fourier transform:

b=Hr+n e ]-"b:li]:xqt]-"n
F

Fourier transform Diagonal matrix

PSF in pixel domain

70 : : . . |
60|
50
401
PSF in Fourier domain 301

20 Noise level
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o
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Frequencies

Deblurring/deconvolution is an ill-posed inverse problem
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Deblurring/deconvolution: ML estimator

Let’s turn to the classical maximum likelihood estimator. In case of additive Gaussian noise, it is
fully equivalent to a least-square estimator:

~ L . 2
T\, = Argmin, ||b — Hz||,,
which can be recast in the Fourier domain as follows:

TMI, = F_lArgminu | Fb— DuH%2

which now fully separable in u:

v = Fb o

60

Vn = N

40r

A U[k] il oise leve

.f% ML — F —1 ?:\L -&oo —dll)() ~2(I)0 (I) zclm cul)n 600
Highly amplifies noise !
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Beyond denoising: Wiener filter

One of the most common Bayesian estimator is the Wiener filter, which obtained when the signal x is
assumed to be a Gaussian random field (GRF) that is described by its power spectrum P:

) .1 _ 1
TWiener = Argmin, —z” F' W~ Fz A 5110 — Hz|,

xz/v \20n

Inverse covariance matrix Fourier transform
of x in the Fourier domain

GRF: diagonal matrix

WI[k,k] = P[k]

After some basic calculation, we can show that in the Fourier domain:

VE; UwWiener k] =

ML estimator
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Beyond denoising: deblurring/deconvolution

Similarly to the case of denoising, the state-of-art deconvolution methods are based on sparsity-
constrained least-square solution.

It allows to better account for the sparsity of the signal x in some sparse representation (e.g.

wavelet, ... X-let) as well as noise through the data fidelity term and a choice of the regularization
parameter.

1
£ = Argmin,, )\HCIJT:Eng + §Hb — Hz||5

No explicit solution !

This can be solved using an iterative thresholded Landweber scheme (Bertero 98):

Adjoint of H, here transpose-conjuguate

~
= 08, 070 B )

thresholding in the sparse domain thresholding in the sparse domain
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Beyond denoising: deblurring/deconvolution

Sparsity-based
deconvolution
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Beyond denoising: deblurring/deconvolution

Observation

Richardson-Lucy Wavelets
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Beyond denoising: inpainting
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Beyond denoising: inpainting

Inpainting has been tackled by solving a L1-penalized least-square problem of the form:

mask recast as a diagonal matrix

1 -
r—da Mol + §Hb — M®a||7,

/ N

convex and differentiable
with 1-Lipschitz gradient

T = Argmin

convex but not differentiable

The forward-backward algorithm then reads:

ot = prox.. s (Oé(t) +v®L (b — M@a)))
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Beyond denoising: deblurring/deconvolution
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Blind source separation
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Analysing multispectral data

Mars express

Hyperspectral data in astrophysics
Mars Express, Cassini, etc.

Courtesy of M. Lennon

Hyperspectral data
remote sensing, aerial data, etc.

(=} [«]
£<} (4]
E— —
—

Multispectral data in astrophysics
Planck, Fermi, radio-interferometry (Lofar/SKA/...), etc.
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Analysing multispectral data
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Biology

Exoplanet detection Retrieving metabolite MS spectra from LC/MS data

From transit observations

Different scientific fields but ...

common problems: mixtures of elementary signals or sources
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The underlying mixture model

The linear mixture model

The sources

The mixture weights

e.g. spectral signatures, electromagnetic spectra, etc.
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Unsupervised matrix factorisation

The source matrix

rd
X=AS+N

A N

The mixing matrix Noise

Blind Source Separation:

Estimation both A and S from X only

This is an ill-posed matrix factorization problem

Non-negative Matrix Factorization, Dictionary Learning, ...
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A complex problem to be tackled

min Z(A) + 7 (S) + 2 (X, AS)

—_—yd
Regularization Data fidelity term
Terms
Data fidelity term: - measures a discrepancy between the data and the model

- allows to account for the noise statistics

- general formulation for various mixture models

Instantaneous mixture, non-stationary mixture (e.g. Planck),
Joint convolution/mixing (radio), non-linear mixtures, ...

Regularization terms: - make “better”-posed an ill-posed problem

- favour solution properties for increased interpretability
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Sparse BSS - a building block

1
min R(A) + J(8) + 5 [IX - AS|%

A.S
—( ¢
Regularization Data fidelity term
Terms

This is an ill-posed matrix factorization problem

Regularization terms: - sparsity of the sources in some signal representation

- scaling of the mixing matrix is constrained
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Sparse source separation

Changing the way the sources are represented
to get a sparse/compressed representation
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Sparse source separation

Morphological
diversity

Wavelet coefficients




Sparse source separation

Gist: looking for the

T sparsest sources
Regularization params.,

weight matrix, etc. \

. 1 ,
mip A © SWI, + 3 X - AS|[}
p—( Pl
Sparse regularization Data fidelity term

Generalized Morphological Component Analysis (GMCA):
- §-BSS with redundant sparse representations

- Iterative soft/hard thresholding algorithm

- Thresholding strategy, robustness to Gaussian noise/local stationary points

- No parameters to tune

Bobin, Starck, Fadili, and Moudden, Sparsity, Morphological Diversity and Blind Source Separation, IEEE Trans. on Image Processing, Vol
16, No 11, pp 2662 - 2674, 2007.

Bobin, Starck, Fadili, and Moudden, Blind Source Separation: The Sparsity Revolution, Advances in Imaging and Electron Physics , Vol 152,
pp 221 -- 306, 2008.
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Unmixing X-ray images

NASA - Chandra

ESA - Athena
launch in 2034
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Unmixing X-ray images

CasA with Chandra
1 Ms observation
~1 billions counts !

10’ E

10° E

10%

EnergylkeVv)

 Ejecta thermal emission gives insight on :
— Individual elements distribution
— Morphology, asymmetries
— Velocities
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Application to the Chandra data
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Application to the Chandra data

Integration . Red-shifted Blue-shifted
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Picquenot et al, A&A, 2019. Blindly estimates red/blue-shifted atomic components !
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Beyond sparse modelling
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Sparse modelling

All along these courses, we have explored how signals representations can be
built to obtain sparse representations.

All these representations are built on certain generic morphological/geometrical
specificities of the signal to be modeled.

‘ ridgelets, curvelets, contourlets, bandelettes. etc.

Main advantage: they are adapted to the content of a very large span of “natural” images, they come
with fast transforms.

Main drawback: they are not specifically adapted to the content of individual signal/images/... which
might typical of specific data/applications, etc.
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Sparse modelling

All these signal representations can be combined to sparsely represent more complex images that
combines morphologies of various nature; see Morphological Component Analysis (MCA), etc.

iy

' OLEPETIT
ROBERT

A AN e

I

e
p

l Curvelets X-lets ...
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Dictionary learning

What about this very specific signals ?

Tissue observed through Simulation of the Cosmic Simulation of cosmic strings
a confocal microscope Web (galaxy distribution)

Ideally, one would like to learn a dictionary/sparse representation that is adapted to the specific
morphological component of a single image or a class of images.
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Dictionary learning

The question of learning a “relevant” representation for natural images first was first raised in the
field of neuroscience by Olshausen & Fields.

Their work focused on understanding the kind of patterns in natural
images the primary visual cortex (V1) is sensitive to.

Learning experiment:

eye t;'z'

Polyak, 1957

. L ) .
min [X — S| + A; f(S:)

each image is divide into small patches

and stored in some matrix X i .
Signal representation Expansion coefficient

of each data patch

Olshausen & Fields, Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ?, 1997
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Dictionary learning

In their experiment, they chose the penalization f so as to promote sparseness since it is believed
that the primary visual cortex compresses information into a few significant features.

: B 2
min [ X —S®[7 +2 ) f(S.

(S

1
.--"F:.

i

They found that the learnt dictionary contains
oriented/elongated/oscillatory features which
are reminiscent of Gabor-wavelets.

.

L
F T,
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Dictionary learning

In the setting of imaging processing, the use of overcomplete representations has long been
advocated as a mean to provide sparser and therefore more efficient signal representations.

Learning sparse overcomplete signal representation has been introduced by Elad and Aharon in
2006.

. A

Expansion coefficient Signal representation
of each data patch

Images are modeled in a patch-based
representation

Elad & Abaron, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006
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Dictionary learning

The K-SVD algorithm can be described as follows:

- Initialization, @ is set to an overcomplete DCT
- Sparse coding:
Decompose each data patch in the current dictionary:
min ||al|¢, s.t. ||z; — Pajlle < e
a .

J
- Dictionary update:

For each atom (element of the dictionary), build the residual:

k'#k j

part of thé data “explained” the
atoms except atom #k

The atom and the corresponding decomposing are updated via SVD:
- 1
¢]§ — Uk

Ckk — Vk,1

take the principal
eigenvectors

R, = U,S, V), =
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Dictionary learning
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Elad & Abaron, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006
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Dictionary learning

Original Image Nmsy Ima e (22. 1307 dB 0—20)

Created Adaptive Dictionary
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Elad & Abaron, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006
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Dictionary learning
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Dictionary learning

From sparse modelling to learning-based representations
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Representation learning and plug&play methods

Let’s go back to the basics,

, 1
min A||X]||; + =||Y — XH%
X 2

Classically gives

X =&, (Y)

Basically, the regularisation often boils down to a denoiser, or more generally
to providing a low-dimensional approximation of the signal.
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Representation learning and plug&play methods

Gist of plug&play methods (in this context) is to learn denoisers
Romano et al. 2016

X =2,(Y)
and plug them in classical solvers:

S « P, (S +aA (X — AS))

here in a forward-backward splitting algorithm

which could be interpreted as some regularization

, 1
min 74(S) + X - AS||3
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Representation learning and plug&play methods

uml I - Rew 'T. Lt "R LPY ]
- Virtually any denoiser architecture can be R S

o O '¢.

Mvﬁ;'t:gu“rh.hh i
- U-Net quite popular for image denoising T o
(Though being highly over-parameterized) <E> ____________________________ ¢
- Applied to denoising, deconvolution, e ‘ e
tomographic reconstruction, etc. but not to
BSS o e

Sureau et al. 2019
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Representation learning and plug&play methods

U-Net architectures for galaxy image denoising

Target Noisy U-Net XDense U-Net
| ‘ 0.4
. 0.3
’ "-, o'&; " . 0.2
' 0.1

Target Noisy U-Net XDense U-Net
0.4
0.3
3 o X X 0.2
0.1

Sureau et al. 2019
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Sureau et al. 2019 ;,_7.;: : ,
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Representation learning and plug&play methods

U-Net architectures for galaxy image deconvolution

Target Noisy Sparse Low-Rank Tikhonet ADMMnet
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Learning non-linear signal representations

Physically relevant signals generally belong to

a smooth low-dimensional manifold
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Synchrotron spectra seen by Chandra

Learning a signal representation = learning to “navigate” on the manifold
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Learning non-linear signal representations

@ Manifold unfolding
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{4}, PX) = Z A P(p;)
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Learning non-linear signal representations

@ FEncoder

Linear interpolation

{4}, PX) = Z A P(p;)

W Decoder
Learn W and D

Bobin, Carloni-Gertosio, Bobin, Thiam, 2021
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Combining with unmixing

sGMCA : a semi-blind sparse unsupervised matrix factorization method
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Sparsity Oblique Barycentric span Data fidelity
regularization constraint constraint

- With the exception of the barycentric constraint, the problem is multi-convex

- In practice, the barycentric constraint seems to behave like a convex constraint

- For its robustness, the minoration scheme is based on an alternate least-squares

Carloni-Gertosio, Bobin, Acero, submitted to DSP, 2022
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Unsupervised matrix factorisation

Perseus galaxy cluster

Integrated image 0.5 - 8keV
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Only the thermal emission is constrained

20

X-ray filaments have~50-100 counts
buried under 10* counts
Finding features with contrast < 1%
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