Galactic sources

Astrophysical sources of cosmic rays **Paris-Saclay ISAPP school**

Emma de Oña Wilhelmi - DESY-Zeuthen, Germany

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES DESY.

Who am I? Presentation

Emma de CTA, H.E. Email

	9:00 - 10:45	11:15 - 13:00	14:15 - 16:00	16:30 - 18:00	19:00 - 20:00
Monday 28/03	Arrival	Arrival	Astrophysics introductory course (H. Dole)		
Tuesday 29/03	Particle physics introductory course (N. Besson)	Radiation mechanisms (R. Aloisio)	Multimessenger astroparticle introductory course (K. Kotera)	Student presentations	
Wednesday 30/03	Physics of high-energy showers (R. Engel)	Statistical methods (G. Mention)	Radiation mechanisms (R. Aloisio)	Student presentations	Public lecture, in Fre La quête de nos orig cosmiques avec le télescope spatial Jan Webb (D. Elbaz)
Thursday 31/03	Particle acceleration and transport (P. Blasi)	Extensive air showers detection (P. Ghia)	Physics of high-energy showers (R. Engel)	Hands-on: high-energy shower modelling (T. Pierog)	
Friday 01/04	Particle acceleration and transport (P. Blasi)	The Cherenkov Telescope Array and its science (W. Hofmann)	Visit to NectarCAM		
Saturday 02/04					
Sunday 03/04					
Monday 04/04	Neutrino Telescopes and Results (M. Ahlers)	Advanced statistical methods (J. Bobin)	Galactic sources (E. de Oña Wilhelmi)	Seminar: SVOM and gamma-ray bursts (F. Daigne)	
Tuesday 05/04	CR probes of fundamental physics (P. Serpico)	Galactic sources (E. de Oña Wilhelmi)	Extragalactic sources (E. Lindfors)	Student presentations	
Wednesday 06/04	CR probes of fundamental physics (P. Serpico)	Cosmic ray and gamma ray detection, space based (M. Tavani)	Gamma ray detection, ground based (K. Kosack)	Hands-on: VHE gamma ray data analysis (R. Terrier)	
Thursday 07/04	Extragalactic sources (E. Lindfors)		Multimessenger approach (M. Santander)	Student presentations	
Friday 08/04	Gravitational wave detectors and results (N. Leroy)	Hands-on: Multimessenger approach (M. Santander)	Departure	Departure	

Büro: 2A/L_

Telefon: 033762 7-7249

High energy astrophysics

more:

- huge gravitational, magnetic and electric fields
- very dense background radiation
- Involves rich interdisciplinary teams
- Generates new statistical problems (very large and very small number of events)
- Is one of the most attractive topics to reach the general public

ray astrophysics, and cosmology.

To radiate high-energy gamma-ray, particles (electrons and hadrons) have to be accelerated to TeV energies or

relativistic bulk motions (black hole jets and pulsar winds) shock waves (SNRs), highly excited (turbulent) media, etc...

Includes: X-ray astronomy, g-ray astronomy (MeV-TeV), neutrino astronomy, gravitational wave astronomy, cosmic

Research topics in VHE (Galactic science) Content of the course

- **Acceleration and propagation of CRs**
 - Galactic CRs : Luminosity, maximum energy, propagation Hadronic accelerator Leptonic accelerators
- Understanding the media in which CRs propagate
 - Targets: Clouds and photon fields
- **Prospects in Galactic physics**

Why are CRs important for the Galaxy?

0

0.00

۰

Galactic gamma-ray disk: not only due to the presence of many (relatively) nearby *discrete* sources, but also due to diffuse emission resulting from the interaction of cosmic rays (mostly p's) with the interstellar medium (ISM), e.g. atomic H, molecular clouds

Basic Component of the ISM:

Matter, GCRs and GMF

Dynamic balance processes triggers instabilities in the Galaxy structure

 ω_{CR} ~1 eV/cm³

 $\omega_{\rm B} = B^2/8\pi$ ~1 eV/cm³

 $\omega^{turb}_{gas} = \rho_{gas} v^2_{turb} \sim 1 \text{ eV/cm}^3$

Dynamic Balance

Gamma-ray

The Quest Cosmic Rays: a driver for the high energy domiain

of 100,000 cosmic rays will hit each this lecture during than (\mathbf{D}) More you

In 1912, after 9 balloon ascents to record ionisation levels, Victor Hess concluded that

"A radiation of very high penetrating power

enters our atmosphere from above".

The newly discovered radiation was dubbed "cosmic" by Robert A. Millikan in 1925.

In 1936, Victor Hess was awarded with the Nobel Prize for his discovery.

The Quest Cosmic Rays: a driver for the high energy domiain

of 100,000 cosmic rays will hit each this lecture during than (\mathbf{D}) More you

In 1912, after 9 balloon ascents to record ionisation levels, Victor Hess concluded that

"A radiation of very high penetrating power

enters our atmosphere from above".

The newly discovered radiation was dubbed "cosmic" by Robert A. Millikan in 1925.

In 1936, Victor Hess was awarded with the Nobel Prize for his discovery.

Cosmic ray Spectrum

Source population that can provide the correct luminosity ~ 1eV/cm³

Acceleration of particles up to knee (~3 PeV ~3x10¹⁵ eV)

CRs Luminosity

CR Energetics

- Energy Density of CRs u_{CR}~1 eV/cm³
- Volume of the Galaxy $V_{gal} = \pi R_{disk}^2(2h) \sim 3x10^{11} pc^3 \sim 10^7 cm^3$
- Luminosity L=u_{CR}*V_{gal}/t_{CR}
- Isotropic in the Galaxy

- If we measure the CR confinement time (nuclear abundance) $t_{\text{CR}}{\sim}10^7$ yrs:

 $L=u_{CR}*V_{gal}/t_{CR} = 5x10^{40} \text{ erg/s}$

We need Galactic accelerators that can provide the right energy budget, up to PeV energies, at the required rate to make the distribution homogeneous.

✓ L=u_{CR}*V_{gal}/t_{CR} = 5x10⁴⁰ erg/s
✓ Homogeneity
✓ Up to PeV energies

What is the maximum energy a particle can reach in a Galactic source? Acceleration is always (expect for non-ideal cases) carried out by an electric field For a particle with charge q, moving a distance L

- $E = q | \vec{E} | L$
- We can define the acceleration efficiency as: • $\eta = \overrightarrow{B} / \overrightarrow{E}$

then:

 $E = q\eta BL$

- L = Size of the source
- B = Magnetic field in the source

This two value will define the maximum energy

We can derive the same condition considering confinement: the Larmour radius should be smaller than the size of the accelerator

$$E_{max} \approx 1 \left(\frac{u}{10^3 \text{ km/s}} \right) \left(\frac{R}{\text{pc}} \right) \left(\frac{B}{\mu \text{G}} \right) \text{TeV}$$

$R_L (=E/qB) < R => E_{max} = \Gamma qBR$

$$E_{max} \approx 1 \left(\frac{u}{10^3 \text{ km/s}} \right) \left(\frac{R}{\text{pc}} \right) \left(\frac{B}{\mu \text{G}} \right) \text{TeV}$$

R_L (=E/qB) < R => E_{max} = ΓqBR

Does this solve the problem then?

Diffusion in the Galaxy

dN/dE ~ \dot{Q} /D(E) ~ E^{-($\alpha + k\delta$)} k=3/2, 1 $D(E) = Do(E/Eo)^{\delta}$, Do ~10²⁸⁻³⁰ cm²s⁻¹

Diffusion in the Galaxy

 $dN/dE \sim \dot{Q}/D(E) \sim E^{-(\alpha + k\delta)} k=3/2, 1$ $D(E) = Do(E/Eo)^{\delta}$, Do ~10²⁸⁻³⁰ cm²s⁻¹

wait but, CRs are charged particles!

b) Gamma-ray Emission from relativistic leptons

Synchrotron radiation

Pion decay

Bremsstrahlung

Synchrotron radiation

Inverse Compton (Self Synchrotron)

Inverse Compton (External)

Bremsstrahlung

b) Gamma-ray Emission from relativistic leptons

Non-thermal high-energy radiation processes

Pion decay

Synchrotron radiation

Bremsstrahlung

Synchrotron radiation

Inverse Compton (Self Synchrotron)

Inverse Compton (External)

Bremsstrahlung

Synchrotron-Curvature

 $e^{\pm} + \mathbf{B} \Rightarrow Y + e^{\pm}_{\text{lowerE}}$

 $dN/dE \propto Q(E)t_{\rm loss}(E) \propto E^{-(s+1)}$

- Thompson approximation (no relativistic): $\phi \sim E^{-(s+1)/2}$
- Klein-Nishina approximation (relativistic): $\phi \sim E^{-(s+1)}$

 $e^{\pm}HE + Y_{LE} \Rightarrow e^{\pm}I_{OWEFE} + Y_{LE}$

- Thompson approximation (no relativistic): $\phi \sim E^{-(s+1)/2}$
- Klein-Nishina approximation (relativistic): $\phi \sim E^{-(s+1)}$

 $e^{\pm}HE + Y_{LE} \Rightarrow e^{\pm}I_{OWEFE} + Y_{LE}$

Bremsstrahlung

 $e^{\pm} + N(e) \Rightarrow e' \gamma N(e) , E\gamma \sim 1/2 Ee$

Galactic Center, dense clouds, SNRs

Regions of high density:

Pair Production: $\gamma N(e) \rightarrow e+e-N(e)$ e+e- annihilations: e+e- $\rightarrow \gamma \gamma$ (511 keV line)

Proton-Proton

 $p + p \rightarrow \pi^{\circ} + \chi + \dots + \pi^{\pm}$ $\mathbf{L} \gamma + \gamma \qquad \mathbf{L} \mathbf{v}_{\tau} + \mathbf{v}_{e}$ 4 e+,e-

Radiation Mechanisms

MAGICII

Satellites

Energy range 100 MeV-100 GeV Area $\sim 1 \text{ m}^2$ Background ~ Diffuse gamma Angular Resolution ~1-0.1° Aperture ~ survey Duty cycle >95%

HESS II

Energy range 0.05-50 TeV $Area > 10^4 m^2$ **Background Rejection > 99%** Angular Resolution ~0.05° Aperture 0.003 sr Duty cycle 10%

LHAASO

AGILE

Water Cherenkov Telescope

Energy range 1-100 TeV $Area > 10^4 m^2$ Background Rejection > 95% Angular Resolution ~0.3-0.7° Aperture > 2 sr Duty cycle 90%

Major HE/VHE Instruments

MAGICII

Satellites

Energy range 100 MeV-100 GeV Area $\sim 1 \text{ m}^2$ Background ~ Diffuse gamma Angular Resolution ~1-0.1° Aperture ~ survey Duty cycle >95%

HESS II

Energy range 0.05-50 TeV $Area > 10^4 m^2$ **Background Rejection > 99%** Angular Resolution ~0.05° Aperture 0.003 sr Duty cycle 10%

LHAASO

AGILE

Water Cherenkov Telescope

Energy range 1-100 TeV $Area > 10^4 m^2$ Background Rejection > 95% Angular Resolution ~0.3-0.7° Aperture > 2 sr Duty cycle 90%

CR Accelerators - hadronic

Hadronic CRs

Hadronic CRs

The Galactic Plane in Gamma-rays H.E.S.S. Galactic Plane Survey (HGPS)

DESY.

The H.E.S.S. GPS **Galactic Population**

DESY.

The standard paradigm: SNRs **CR** Accelerators

- Energetics $E_{kin} = 10^{51} \text{ erg}$ τ~2-3 year $L_{SN} = 10^{51} / \tau = 6 \times 10^{41} \text{ erg/s} => 10\%$ into CRs should be sufficient
- Maximum energy $v_{sh} \sim 10^3$ km/s, B ~few mG => Emax ~ 10^{17} eV

 \checkmark L=u_{CR}*V_{gal}/t_{CR} = 5x10⁴⁰ erg/s ✓ Homogeneity ✓ Up to PeV energies

Chandra (color) **HESS** (contours)

Uchiyama et al, 2017

Decaying = Synchrotron Cooling

 $t_{syn} \sim 1/5 B_{mG}^{-1.5} E_{KeV}^{-0.5}$ years B ~ 1 mG

Brightening = Electrons Acceleration

 $t_{acc} \sim \eta B_{mG}^{-1.5} E^{0.5} V_{3000}$ years B ~ 1 mG (η~1)

The standard paradigm: SNRs **CR** Accelerators

- Energetics $E_{kin} = 10^{51} \text{ erg}$ τ~2-3 year $L_{SN} = 10^{51} / \tau = 6 \times 10^{41} \text{ erg/s} => 10\%$ into CRs should be sufficient
- Maximum energy $v_{sh} \sim 10^3$ km/s, B ~few mG => Emax ~ 10^{17} eV

 \checkmark L=u_{CR}*V_{gal}/t_{CR} = 5x10⁴⁰ erg/s ✓ Homogeneity ✓ Up to PeV energies

CRs accelerators: SNRs Historical SNRs

DESY.

A.D. 1054

3C58 Historical Observers: Chinese, Japanese Likelihood of Identification: Possible Distance Estimate: 10,000 light years Type: Core collapse of massive star

A.D. 1572

Tycho's SNR Historical Observers: European, Chinese, Korean Likelihood of Identification: Definite Distance Estimate: 7,500 light years Type: Thermonuclear explosion of white dwarf

A.D. 1604

A.D. 1680

Cassiopeia A

Historical Observers: European?

Likelihood of Identification: Unlikely

Distance Estimate: 10,000 light years

Type: Core collapse of massive star

Kepler's SNR Historical Observers: European, Chinese, Korean Likelihood of Identification: Definite Distance Estimate: 13,000 light years Type: Thermonuclear explosion of white dwarf?

CRs accelerators: SNRs Historical SNRs

HESS Coll, 2016

HESS Coll, 2018

nat light, moving at a onstant speed of 300,000 n/s, travels in one year. ne light year is just under 0 trillion kilometers.

A.D.185

RCW 86

Historical Observers: Chinese

Likelihood of Identification: Possible

Distance Estimate: 8,200 light years

Type: Core collapse of massive star

A.D. 386

G347.3-0.5 Historical Observers: Chinese Likelihood of Identification: Possible Distance Estimate: 3,000 light years Type: Core collapse of massive star

SN 1006 Historical Observers: Chinese, Japanese, Arabic, European Likelihood of Identification: Definite Distance Estimate: 7,000 light years Type: Thermonuclear explosion of white dwarf

A.D. 1006

Crab Nebula Historical Observers: Chinese, Japanese, Arabic, Native American Likelihood of Identification: Definite Distance Estimate: 6,000 light years Type: Core collapse of massive star

DESY.

HESS Coll, 2010

A.D. 1054

3C58 Historical Observers: Chinese, Japanese Likelihood of Identification: Possible Distance Estimate: 10,000 light years Type: Core collapse of massive star

A.D. 1572

Tycho's SNR Historical Observers: European, Chinese, Korean Likelihood of Identification: Definite Distance Estimate: 7,500 light years Type: Thermonuclear explosion of white dwarf

A.D. 1604

A.D. 1680

Cassiopeia A

Historical Observers: European?

Likelihood of Identification: Unlikely

Distance Estimate: 10,000 light years

Type: Core collapse of massive star

Kepler's SNR Historical Observers: European, Chinese, Korean Likelihood of Identification: Definite Distance Estimate: 13,000 light years Type: Thermonuclear explosion of white dwarf?

Prokhorov et al, ICRC 2021

CRs accelerators: SNRs Historical SNRs

HESS Coll, 2016

HESS Coll, 2018

at light, moving at a Instant speed of 300,000 n/s, travels in one year. ne light year is just under trillion kilometers.

A.D.185

RCW 86

Historical Observers: Chinese

Likelihood of Identification: Possible

Distance Estimate: 8,200 light years

Type: Core collapse of massive star

A.D. 386

G347.3-0.5 Historical Observers: Chinese Likelihood of Identification: Possible Distance Estimate: 3,000 light years Type: Core collapse of massive star

DESY.

We see TeV gamma-ray shells

We see TeV gamma-ray shells

We see GeV gamma-ray shells & pion-peak shape

We see TeV gamma-ray shells

We see GeV gamma-ray shells & pion-peak shape

We see TeV gamma-ray shells

We see GeV gamma-ray shells & pion-peak shape

Evolution

Free Expansion

R ~ t, $M_{ei} >> M_{ISM}$, < 200-300 yrs v ~ 5000 km/s - 10000 km/s M_{ei} ~ few M_{\odot} - 1 M_{\odot}

Adiabatic (Sedov-Taylor)

R ~	t ^{2/5} ,	<mark>M</mark> ei
t _{cool}	>>	t _{dyn}
Expansion		

PeVatron Phase

Highest Gamma-ray Luminosity

DESY

~ M_{ISM}, 10⁴yrs
⇒Adiabatic

Radiative

Dissipation into ISM vsh ~200 km/s

CR Propagation

Free Expansion: PeVatron Phase ?

SN 1987A

L (>1 TeV) < 2.2x10³⁴ erg/s => $W_{pp}(n \sim 10^3 - 10^4 \text{ cm}^{-3}) < 1.4x10^{48} \text{f}^{-1} \text{ erg}$

For f ~ 0.2 (spherical symmetric distribution) => W_{pp} < 9x10⁴⁸erg (1% to nuclei)

Page 5

Free Expansion: PeVatron Phase ?

In strong fields, the maximum Eo results from $t_{cool} = t_{acc} = E_o \propto B^{-1/2} v_{sh} = E_m \propto E_o B^{1/2} \propto v_{sh}$

SNR G1.9+0.3

- Youngest SN in our Galaxy (age ~150 yrs)
- Fast shock $v_{sh} \sim 14000$ km/s (=> $E_o \sim 10$ keV)
- Chandra+nuStar: Cutoff at 1.5 keV => Not an efficient accelerator
- Was it a PeVatron?

 $t_{syn} \sim 1/5 B_{mG}^{-1.5} E_{KeV}^{-0.5}$ years $t_{acc} \sim \eta B_{mG}^{-1.5} E^{0.5} V_{3000}$ years

Free Expansion: PeVatron Phase ?

In strong fields, the maximum Eo results from $t_{cool} = t_{acc} = E_o \propto B^{-1/2} v_{sh} = E_m \propto E_o B^{1/2} \propto v_{sh}$

SNR G1.9+0.3

- Youngest SN in our Galaxy (age ~150 vrs)
- Fast shock $v_{sh} \sim 14000$ km/s (=> $E_o \sim 10$ keV)
- Chandra+nuStar: Cutoff at 1.5 keV => Not an efficient accelerator
- Was it a PeVatron? • Run-away protons R(D=10³⁰cm2/s) <~30pc => 10 arcmin
- <u>W_p(n~100 cm⁻³)<10⁴⁵ erg/s</u>

 $R = \sqrt{2Dt_{cool}}$

Sedov-Taylor phase: Maximum of the gamma-ray emission?

Cassiopeia A

- Age ~ 340 vrs •
- Fast shock v_{sh} ~ 5000 km/s ٠
- Highly turbulent Bfield ~ 0.2-0.3 mG ٠
- Ecut = 3.5 TeV٠
 - Composition: can reduce gamma efficiency by factor 2(٠
 - Spectrum dominated by plateau, shell higher cut off? ٠

Sedov-Taylor phase: Maximum of the gamma-ray emission?

HESS, A&A 2018

Recognized as essential feature: CR escape from remnants e.g. Malkov et al., arXiv:1207.4728

 \rightarrow CR current generates turbulent magnetic fields that are crucial for the acceleration

→ PeV cosmic rays only contained during the first O(100) years (?)

Sedov-Taylor phase: Maximum of the gamma-ray emission?

Did particles run-away?

HESS, A&A 2018

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

Radiative phase: Old CRs reservoirs? Observations of the CR pion peak

Morphological and High resolution spectroscopic Studies

CRs accelerators: Stellar clusters

- Other accelerators Old massive Stars (wind-wind, clusters, collective effects)
- Energy reservoir ~10³⁸⁻³⁹ erg over ages of T≥10⁶ years
- In the GeV range: huge structures covering few degree

Knowing the matter, we can derive the CR image: Planck free-free (HII) and CfA (CO) maps in the [-11,21] km/s.

CRs accelerators: Stellar clusters

- Other accelerators Old massive Stars (wind-wind, clusters, collective effects)
- Energy reservoir ~10³⁸⁻³⁹ erg over ages of T≥10⁶ years
- In the GeV range: huge structures covering few degree too large for leptonic emission

Knowing the matter, we can derive the CR image: Planck free-free (HII) and CfA (CO) maps in the [-11,21] km/s.

CRs accelerators: Stellar clusters

- The spectra (of some of them) extends to high energies
- With remarkably similar shape and spectral index (2.2)
- No indication of energy cutoff (with the available statistics)
- Proton spectrum described with:
- $E^{-2.3}exp(-E/E_o)$ with $E_o = 0.2$ (1), 0.5 (2) PeV
- => For Kolmogorov-type turbulence, $D(E) \propto E^{1/3}$, we arrive at a 'classical' E^{-2} -type acceleration spectrum.

- The CR proton radial distribution follows a 1/r line (>10 TeV) (for the Cygnus Cocoon we extrapolated from LAT energies)
- Exceeding the local CR by a factor of 10 (from AMS)
- We parametrized the CR density as:

$$r) = w_0 (r/r_0)^{-1}$$

$$= 4\pi \int_0^{R_0} w(r) r^2 dr$$

$$\approx 2.7 \times 10^{47} (w_0/1 \text{ eV cm}^{-3}) (R_0/10 \text{ pc})^2 \text{ erg}$$

We define R as the extension of the source (50 and 300 pc), or more conservatively, the maximum given by the diffusion condition:

$$R_{\rm D} = 2\sqrt{T_0 D(E)} \approx 3.6 \times 10^3 (D_{30} T_6)^{1/2} \,\mathrm{pc}$$

Since W_{CR} cannot be larger than $W_{tot} \Rightarrow f(\geq 10 \text{ TeV}) \approx 1 w_0 D_{30} L_{39}^{-1}$

$$W_{\text{tot}} = fL_0T_0 = 3 \times 10^{52} fL_{39}T_6 \text{ erg}$$

Measuring the Local diffuse coefficient: if f=10% => D \sim 10²⁸ cm⁻² s⁻¹

Halos as large as 300 pc and with a density still 2 order of magnitude larger than the local CR density

$$W_{\rm p} = 4\pi \int_0^{R_0} w(r) r^2 \, \mathrm{d}r$$

$$\approx 2.7 \times 10^{47} (w_0/1 \,\mathrm{eV \, cm^{-3}}) (R_0/10 \,\mathrm{pc})^2 \,\mathrm{erg}$$

Extensi Age of

Source

Kinetic

Distance ω_{\circ} (>10

9	Cygnus Cocoon	CMZ	Wd 1 Cocoon
ion (pc)	50	175	60
cluster (Myr) ³⁹	3–6	2–7	4–6
luminosity, L_{kin} , of cluster (erg s ⁻¹)	2×10^{38} (ref. ¹⁷)	1×10^{39} (ref. ⁴⁰)	1×10^{39} (ref. ⁴¹)
ce (kpc)	1.4	8.5	4
0 TeV) (eV cm ⁻³)	0.05	0.07	1.2

What do we see in the VHE with Cherenkov instruments? Look at the most massive SC Westerlund 1

- Complex morphology
- Similar spectra along the 1° (70 pc at 3.9 kpc) source & similar radial profile at different energies
- Dip in the surrounding of Westerlund 1
- Spectrum extends to 100 TeV

• What do we see in the VHE with Cherenkov instruments? **Cygnus Region**

- If PeVatrons: where are particles accelerated and how?
- LHAASO results >> 100 TeV!
- To be continue...

- Energetics Outburst-like event /slow outflows
 - $E_{kin} = 3x10^{54} \text{ erg}$ $L_{IR} \sim 1.6 \times 10^{42} \text{ erg/s}$
- Is there any indication of such behaviour?

• In the TeV regime:

Parent proton population up to 1 PeV: first detection of a PeVatron Constant injection and diffusion for > 1 kyrs

The injection time should be larger than the escape one:

$$\Delta t \ge t_{\text{diff}} \approx R^2/6D \approx 2 \times 10^3 (D/10^{30} \text{ cm}^2 \text{s}^{-1})^{-1} \text{ yr},$$

 $Q_p(\ge 10 \text{ TeV}) \approx 4 \times 10^{37} (D/10^{30} \text{ cm}^2 \text{s}^{-1}) \text{ erg/s}.$

Rather modest injection for thousands of years:

- Galactic center?
- Stellar clusters in the inner region?

The injection time should be larger than the escape one:

$$\Delta t \ge t_{\text{diff}} \approx R^2/6D \approx 2 \times 10^3 (D/10^{30} \text{ cm}^2 \text{s}^{-1})^{-1} \text{ yr},$$

 $Q_p(\ge 10 \text{ TeV}) \approx 4 \times 10^{37} (D/10^{30} \text{ cm}^2 \text{s}^{-1}) \text{ erg/s}.$

Rather modest injection for thousands of years:

- Galactic center?
- Stellar clusters in the inner region?

Parent proton population up to 1 PeV: first detection of a PeVatron Constant injection and diffusion for > 1 kyrs

• In the GeV regime:

Fermi sky above 10 GeV

Gamma-ray emissions

X-ray emissions

Milky Way

Scale of the Fermi bubbles

50,000 light-years

Sun

eROSITA (0.6-1 keV)

CRs accelerators - other hadronic accelerators?

• We see a large number of unidentified sources

CRs accelerators - other hadronic accelerators?

$$\begin{array}{ll} \mbox{hadronic} => E_c \left(\Gamma_p = 2 \right) > 0.83 \mbox{ PeV} & ((1.7)0.55 \mbox{ PeV}, (2.3)1.10 \\ & => W_p \left(E_p > 1 \mbox{ TeV} \right) > 1.8 \times 10^{47} \mbox{ erg} \end{array}$$

CRs accelerators - other hadronic accelerators?

$$\begin{array}{ll} \mbox{hadronic} => E_c \left(\Gamma_p = 2 \right) > 0.83 \mbox{ PeV} & ((1.7)0.55 \mbox{ PeV}, (2.3)1.1 \\ => W_p \left(E_p > 1 \mbox{ TeV} \right) > 1.8 \times 10^{47} \mbox{ erg} \end{array}$$

CR Accelerators - leptonic

CRs accelerators - leptonic accelerators Physic of Compact objets

CRs accelerators - leptonic accelerators Pulsars and Compact Objects

Stage 1 ($t \le 10$ kyr)

Pulsar velocity

ISM density 1 gradient

(in all three panels)

PWN

Compact objects: GeV and TeV Pulsars

• known pulsar.

Compact objects: GeV and TeV Pulsars

• known pulsar.

High energy radiation from pulsars **Radiation mechanisms**

Pulsars

Rotating B-field Magnetic reconnection Poynting fluxes

DESY.

mechanism

 γ rays

0.80	0.90	1.0

High energy radiation from pulsars What have we learnt?

DESY.

Super-exponential cutoff (magnetic absorption)

High energy radiation from pulsars What have we learnt?

Not super-exponential

 Not large differences for different magnetic fields

DESY.

• Evolution of the peaks => Caustic of different size? Deficit at <1 GeV when assuming pure curvature radiation => synchrotron contribution?

and much more about LCs and transitional behaviour...

High energy radiation from pulsars **Surprises at TeV energies**

• A number of bright pulsars detected in the TeV regime

Young, bright GeV pulsar (~10³ yrs) High magnetic field (~5x10⁶⁻⁹ G @ LC) Large low-energy photon field (FIR) Simultaneous light curve across the em spectrum

DESY.

Old, bright GeV pulsar (~10⁴ yrs) Low(er) magnetic field (~5x10⁵ G @LC) Large low-energy photon field (FIR)

High energy radiation from pulsars **Surprises at TeV energies**

A number of bright pulsars detected in the TeV regime Where is the emission produced? How much can pulsars accelerate?

High energy radiation from pulsars Is there any common trend?

- => Same electron (e±) population
- Sizeable low energy photon fields => susceptible of being up-scattered to high energies
- The exponential cutoff seems to be favoured => A clear second component = Inverse Compton on soft photon fields

• The light curve in the GeV and TeV agree and we observe the same tendency (i.e. peak ratio, width evolution)

High energy radiation from pulsars Is there any common trend?

- => Same electron (e±) population
- Sizeable low energy photon fields => susceptible of being up-scattered to high energies
- The exponential cutoff seems to be favoured => A clear second component = Inverse Compton on soft photon fields

DESY.

- $b \approx 15 E_{e,TeV}E_{target_ph,eV}$
 - $E = \Gamma m_e c^2$
 - $=> \Gamma = 4 \times 10^7$ (20 TeV) $=> \Gamma = 2 \times 10^{6}$ (TeV)

• The light curve in the GeV and TeV agree and we observe the same tendency (i.e. peak ratio, width evolution)

 Inverse Compton in Thomson regime if b<<1 => Klein-Nishina regime dominant (1-20 TeV)

Two implications for the electron spectrum

High energy radiation from pulsars The underlying electron population

- Inverse Compton: only depends on the photon field (known) and electron population
- Same electron population produces GeV (same light curve)
- GeV emission can be attributed to:

Curvature radiation (CR) Synchrotron emission (SYN)

non-ideal MHD plasma to go beyond ~160 MeV!

 Within the magnetosphere (or rather within the gaps): Electrons are accelerated in gaps through E_{||} = ηB HE => CR radiation
 VHE => IC on low-energy photon target

• Within the magnetosphere (or rather within the gaps): Electrons are accelerated in gaps through $E_{\parallel} = \eta B$ HE => CR radiation VHE => IC on low-energy photon target

 Within the magnetosphere (or rather within the gaps): Electrons are accelerated in gaps through E_{||} = ηB HE => CR radiation
 VHE => IC on low-energy photon target

• Within the magnetosphere (or rather within the gaps): Electrons are accelerated in gaps through $E_{\parallel} = \eta B$ HE => CR radiation VHE => IC on low-energy photon target

 $\eta \lessapprox 10\%$ Using Vela values dE $= e c \eta B$ dt $\Gamma_{\rm e} \approx 4.2 \times 10^7 \, \xi^{1/2} \eta_{-1}^{1/4}$ $\frac{dE}{dE} = \frac{2}{2} \frac{e^2 c}{r^2} \Gamma_o^4$ $\Gamma_{\rm e} = 4 \times 10^7$ (20 TeV) from TeV

$$R_{\rm C} = \xi R_{\rm LC} = \xi (cP/2\pi) \Longrightarrow \xi > 1$$

Acceleration & Emission beyond the magnetosphere

DESY.

High energy radiation from pulsars striped wind models

• Beyond the magnetosphere: Electrons are accelerated in the wind through magnetic reconnection in the current sheet (CS) HE => SYN emission on the CS VHE => IC emission on the CS

High energy radiation from pulsars striped wind models

• Beyond the magnetosphere: Electrons are accelerated in the wind through magnetic reconnection in the current sheet (CS) HE => SYN emission on the CS VHE => IC emission on the CS

by Simulatio

77

High energy radiation from pulsars **Surprises at TeV energies**

A number of bright pulsars detected in the TeV regime Where is the emission produced? How much can pulsars accelerate?

The maximum energy:

 $E_{\rm max} = q\eta_e B_{\rm TS} R_{\rm TS},$

The magnetic density is a fraction of the pulsar wind energy flux:

$$\frac{B_{\rm TS}^2}{8\pi} = \eta_{\rm B} \frac{\dot{E}}{(4\pi R_{\rm TS}^2 c)}$$

Then the Emax:

 $E_{\rm max} \approx 2 \,\eta_e \,\eta_{\rm B}^{1/2} \,\dot{E}_{36}^{1/2}$ PeV

and if CMB (only target >100 TeV) $E_{\rm e} \simeq 2.15 E_{\gamma,15}^{0.77} \, {\rm PeV}$ $E_{\gamma \max} \approx 0.9 \eta_e^{1.3} \eta_B^{0.65} \dot{E}_{36}^{0.65}$ PeV

~few

ylinder

LHAASO Observed ~10 PeVatrons - 9 have a bright pulsars associated

Cao et al, 2021

LHAASO Source	Pulsar	$E_{\gamma max}$	Emax
		[PeV]	[PeV]
J1825-1326	J1826-1256	2.06	3.79
	B1823-13	1.77	3.35
J1839-0545	J1837-0604	1.44	2.83
	J1838-0537	2.78	4.90
J1843-0338	J1841-0345	0.41	1.04
	J1844-0346	2.25	4.10
J1849-0003	J1849-0001	3.71	6.26
J1908+0621	J1907+0602	1.77	3.35
	J1907+0631	0.63	1.46
J1929+1745	J1925+1720	0.91	1.95
	J1928+1746	1.26	2.53
J1956+2845	J1954+2836	0.94	2.00
	J1958+2846	0.47	1.17
J2018+3651	J2021+3651	1.99	3.69
J2032+4102	J2032+4127	0.28	0.77
J2108+5157			
J2226+6057	J2229+6114	5.89	9.38

E_{e max} [PeV]

0.1

PULSARS AS PEVATRONS

0.1 Pulsar efficiency ($\eta_{\rm b}$)

5

Compact in binary systems

Photon field enhanced by the massive companion - modulated emission!

High Energy Binary

GeV and TeV often uncorrelated:

- * Max of orbital light curve
- * Two spectral components
- * Flares and rich phenomenology

	Flux (% Crab)	D (Kpc)	Flux variability (HE/VHE)	Periodic
LSI +61 303	0-15	2	yes/yes	yes (~I month)
LS 5039	5-15	2.5	yes/yes	yes (~4 days)
PSR B1259-63	0-10	1.5	yes/yes	yes (~3.4 years)
HESS J0632+057	0-3	1.5	no/yes	yes (~300 days)
Cyg X-I	0-10	2.2	yes/yes(?)	no
IFGL J1018.6-589	5-15	5	yes/?	yes (~16 days)

High Energy Binary

GeV and TeV often uncorrelated: * Max of orbital light curve

- * Two spectral components
- Flares and rich phenomenology *

Microquasars

activities

precessing with a period of 162.250 days

Black hole + massive companion GeV detection associated to X-ray

GeV/TeV detection associated to jets

High Energy Binary

GeV and TeV often uncorrelated: * Max of orbital light curve

- * Two spectral components
- Flares and rich phenomenology *

Microquasars

- Black hole + massive companion GeV detection associated to X-ray
- activities

GeV/TeV detection associated to jets

Novae

GeV Detection of a few First TeV detection of RS Oph

Novae

What are novae? lots of different kind of novae

- Luminous red novae probably stellar mergers
- Dwarf novae eruption on accretion disks in cataclysmic variables
- Kilonova neutron star mergers
- Classical novae thermo-nuclear explosions from outer layers of accreting white dwarfs WD
- Massive WD => fast ejecta with low ejecta mass
- Low-mass WD => opposite

"Classical Novae"	Helium Novae	Symbiotic Novae*	
Main-sequence companion star (weak and fast wind)	Companion is a Helium star, e.g. V445 Puppis	Companion is a Red Giant – symbiotic binary system, e.g. RS Oph	
Most common type of nova, few recurring	Rare	Less common overall, but mo often recurring	
Short period binary	Long period (~1 year)		
Low-density, fast wind fr	Dense slow wind from RG		
High-energy (FERMI-LAT) e to arise from interr	External shock for GeV/TeV emission (we argue)		
FERMI detections	?	FERMI and HESS	

Novae

$$E_{\rm max} = 1.5|Z| \left(\frac{\xi_{\rm esc}}{0.01}\right) \left(\frac{\dot{M}/v_{\rm wind}}{10^{11} \,\,{\rm kg m^{-1}}}\right)^{1/2} \left(\frac{u_{\rm sh}}{5000 \,\,{\rm km s^{-1}}}\right)^2 \,\,{\rm TeV}$$

In the GeV band:

Transitional ms-pulsar: a game between rotational <=> accretion

In the GeV band:

- Transitional ms-pulsar
- Glitching pulsars

Accelerators: Pulsar Wind Nebulae

The most numerous population in the Galaxy

Stage 2 (t~ 10–100 kyr)

Accelerators: Pulsar Wind Nebulae

The archetype: the Crab nebula

Bright in many wavelength

Different size <=> Different electron population

Accelerators: Pulsar Wind Nebulae Physic of Compact objets

Accelerators: Pulsar Wind Nebulae Physic of Compact objets

• Energetics:

Syn => Depends on the magnetic field $\dot{E}_{syn} = -\frac{4}{3}U_B c \gamma^4$

IC => Depends on the photon field

Sum of the electric fields of the incident waves

Motion of an electron in a **Bfield**

Very low magnetic fields when comparing with $Lx \sim few uG => Far from equipartition$

Shrinking towards high energies

But keep in mind for old systems we mixed: Inverse Compton cooling time Diffusion

Spectral variation with distance from the pulsar could result from: * energy loss of particles during propagation, with radiative cooling of electrons propagating outward from the pulsar termination shock

* energy dependent diffusion or convection speeds

* variation of the shape of the injection spectrum with age of the pulsar which, after propagation, translates into a spatial variation of spectra. If α = electron index -> synchrotron cooling ($\tau_{syn} \sim 400 \text{ B}^{-2}\text{G}\text{E}^{-1}\text{Te}\text{V}\text{ s}$) $\Delta \alpha = 1 \rightarrow \Delta \Gamma = 1/2$

Hofmann 2009

Spectral variation with distance from the pulsar could result from: * energy loss of particles during propagation, with radiative cooling of electrons propagating outward from the pulsar termination shock

* energy dependent diffusion or convection speeds

* variation of the shape of the injection spectrum with age of the pulsar which, after propagation, translates into a spatial variation of spectra. If α = electron index -> synchrotron cooling ($\tau_{syn} \sim 400 \text{ B}^{-2}\text{G}\text{E}^{-1}\text{Te}\text{V}\text{ s}$) $\Delta \alpha = 1 \rightarrow \Delta \Gamma = 1/2$

Hofmann 2009

Spectral variation with distance from the pulsar could result from: * energy loss of particles during propagation, with radiative cooling of electrons propagating outward from the pulsar termination shock

* energy dependent diffusion or convection speeds

* variation of the shape of the injection spectrum with age of the pulsar which, after propagation, translates into a spatial variation of spectra. If α = electron index -> synchrotron cooling ($\tau_{syn} \sim 400 \text{ B}^{-2}\text{G}\text{E}^{-1}\text{Te}\text{V}\text{ s}$) $\Delta \alpha = 1 \rightarrow \Delta \Gamma = 1/2$

Hofmann 2009

Spectral variation with distance from the pulsar could result from: * energy loss of particles during propagation, with radiative cooling of electrons propagating outward from the pulsar termination shock

* energy dependent diffusion or convection speeds

* variation of the shape of the injection spectrum with age of the pulsar which, after propagation, translates into a spatial variation of spectra. If α = electron index -> synchrotron cooling ($\tau_{syn} \sim 400 \text{ B}^{-2}\text{G}\text{E}^{-1}\text{Te}\text{V}\text{ s}$) $\Delta \alpha = 1 \rightarrow \Delta \Gamma = 1/2$

Hofmann 2009

In comparison with other sources of relativistic magnetised plasma, PWNe can be resolved in great detail

In comparison with other sources of relativistic magnetised plasma, PWNe can be resolved in great detail

The age of the pulsar/pwn The initial spin-down energy The magnetization fraction (or fraction of energy shared in particles and in magnetic field)

Wind

Pulsar

The age of the pulsar/pwn The initial spin-down energy The magnetization fraction (or fraction of energy shared in particles and in magnetic field)

Pulsar

Pulsar

Pulsar

The age of the pulsar/pwn The initial spin-down energy The magnetization fraction (or fraction of energy shared in particles and in magnetic field)

Pulsar

Understanding the Galactic ISM

Halo - Studying the diffusion of particles in the Galaxy

$$D(E) \approx 2 \times 10^{28} \text{ cm}^2 \text{ s}^{-1} \xi_{B,0.1}^{-1} \left(\frac{\lambda_{\text{pc}}}{E_{\text{TeV}}}\right)^{\alpha-1} B_{\mu}^{\alpha-1}$$

 $D \sim 4.5 \text{ x } 10^{27} \text{ cm}^2/\text{s}$ (mean value in the ISM is $\sim 10^{30}$ cm²/s) -2

Understanding the ISM / photon fields

[kpc]

- 32.50
- 33.00
- GeV] <u>م</u> 34.00 ش - 33.50 ਦ
- 35.00
- 35.50
- 36.00

Understanding the ISM / photon fields

[kpc]

L. Tibaldo

- 32.50
- 33.00
- 34.00 m · 33.50 A
- 35.00
- 35.50
- 36.00

Understanding the ISM / photon fields & the molecular content

longitude: 200º to 260º

latitude: 22º to 60º (+ & -)

The gamma-ray intensity exhibits a linear correlation with the atomic gas column density The flux of CR nuclei is consistent (10%) with 1 kpc with the one measured locally at the Earth

Understanding the ISM / photon fields & the molecular content

Using massive clouds are barometers for determine the pressure (energy density) of CRs Large number of photons to determine the spectrum with accuracy Nearby and dense clouds

Understanding the ISM / photon fields & the molecular content

CRs [p]

Understanding the ISM / photon fields & the molecular content

CRs [p]

Understanding the ISM / photon fields & the molecular content

- > 20 GeV: good agreement with CR spectrum measured at Earth
- Low energy part shows differs from cloud to cloud (deviating for pure power law)

Yang, EOW, Aharonian 2014

Related to different environment (local acceleration, low CR penetration effects, modulation effects?)

Using molecular clouds as barometers

Peron et al 2021

- Probing the CRs at different location far for us
- Analysis of molecular clouds provide localized information on the CR spectrum far from Earth
- Results from GMCs show deviations from the local emissivity only in the inner Galaxy, around 4-6 kpc. The deviations are fluctuating, discouraging a global variation

Galactic science in extragalactic objects

- HE gamma-ray emission from star burst Galaxies SBGs and nearby ordinary galaxies (Magellanic clouds, M31) scales quasi-linearly with Star Formation Rates (SFR) derived from IR observations
- Also correlates with radio continuum (from CR electrons)

Prospects for the upcoming years

The Multi-wavelength approach to astrophysics

cta cherenkov telescope array

MeV - GeV

SWGO LHAASO++

GeV - > 100 TeV

PeV

The Multi-wavelength approach to astrophysics

The Multi-wavelength approach to astrophysics

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
	: wency Ba	i	СТ	CTA Construction			Science Verification -> User Operation					
LOFAR												
MWA			MWA	(upgrade))		:				
	VLITE on	IVLA	>	(~2018? LO	BO)							
Mid-Hi Fr	requency I	Radio										
JVLA, VLBA, eMerlin, ATCA, EVN, JVN, KVN, VERA, LBA, GBT(many other smaller facilities)												
ASKA	P	CIT A DI	4			$ \rightarrow $						
Kat7 -	-> MeerKAT	> SKA Phas	e 1		:		100.0		:	:		
(aub)M(III	i Imotor Dec						1&2 (Lo/Mic	1)				
(SUD)MIII	Imeter Had	IIO	OFMA EM	EMT OF	Nanton? M	lanna Nahawa		ather crealles	- faailitias)	:		
ALMA												
	EHT	(protot	ype -> full (ops)							5	
Ontingly	Cronologt C	instanias/T	in an alant F	Indere								
Optical I	ransient F	actories/ II	ransient F	D Zudaku TE								
PanST	ARRS1 -> I	PanSTARRS2	-> (~2017) Zwicky IF			ST (buildup t	o full survey i	mode)			
		Blac	kGEM (Me	erlicht single	dish prototy	pe in 2016)	<u> </u>					
Ontical/I	R Large Fa	cilities										
VLT. Keck, GTC, Gemini, Magellan(many other smaller facilities)												
HST					IWST						WFIRST	
					(anar	:					GMT	
X-ray				-				ELT (full ope	cration 2024)	& TMT (time	line less clear)?	
Swift (incl. UV/opti	cal)										
XMM NoSTA	& Chandra						(IXPE					
190317	: (ASTROSAT					(ATHENA (2028)	
	_		HX	T								
			(NIC	ER)	-				:		
Gamma-	rav			(eRO	SITA		CUON C	last a base			-	
INTE	INTEGRAL SVOM (incl. soft gamma-ray + optical ground elements)											
Fermi).	
	HAWC										Gamma400	
		DAMPE				50					(2025+)	
Grav. Wa	ves			:	LHAA	50						
	Advanc	ced LIGO + A	dvanced VI	RGO (2017)	. ((-upgrade	to include LI	GO India-)			Einstein Tel.?	
Neutrino	S				KA	JKA						
		IceCu	be (SINCE 2	011)							IceCube-Gen2?)⇒	
ANTARES KM3NET-1 KM3NET-2 (ARCA) KM3NET-											KM3NET-3	

Boosting:

- Increase sensitivity by up to a factor ~6 at 1 TeV
- Increase the detection area for transients and at the highest energies
- Increase the angular resolution/maintaining a large FoV

- Energy coverage: tens of GeV => >100 TeV (~300 TeV)
- 2 Sites, flexibility of operation, allowing for sub-arrays and multi-mode
- Operate as an observatory

Boosting:

- Increase sensitivity by up to a factor ~6 at 1 TeV
- Increase the detection area for transients and at the highest energies
- Increase the angular resolution/maintaining a large FoV

- Energy coverage: tens of GeV => >100 TeV (~300 TeV)
- 2 Sites, flexibility of operation, allowing for sub-arrays and multi-mode
- Operate as an observatory

Boosting:

- Increase sensitivity by up to a factor ~6 at 1 TeV
- Increase the detection area for transients and at the highest energies
- Increase the angular resolution/maintaining a large FoV

- Energy coverage: tens of GeV => >100 TeV (~300 TeV)
- 2 Sites, flexibility of operation, allowing for sub-arrays and multi-mode
- Operate as an observatory

Boosting:

- Increase sensitivity by up to a factor ~6 at 1 TeV
- Increase the detection area for transients and at the highest energies
- Increase the angular resolution/maintaining a large FoV

- Energy coverage: tens of GeV => >100 TeV (~300 TeV)
- 2 Sites, flexibility of operation, allowing for sub-arrays and multi-mode
- Operate as an observatory

Galactic Physics with CTA

Galactic Physics with CTA

South: 99 telescopes spread out over ~5 km2 (70 SSTs, 25 MSTs, 4 LSTs)

North: 19 telescopes spread out over ~1 km2 (15 MSTs, 4 LSTs)

Cutout of CTA GPS from first Data Challenge

Plot credits: Christoph Deil, Roberta Zanin

Cutout of CTA GPS from first Data Challenge

Cutout of CTA GPS from first Data Challenge

Cutout of CTA GPS from first Data Challenge

- ideal region for dark matter searches

Slide courtesy of L. Tibaldo

Great resolution for extended sources:

0.004° XMM 10 keV

- - -

0.1° Simulation with CTA @ few TeV current IACT

(c) F. Acero & H. Gast

HESS 11858, 026

AE.

0.02°

a come of the second second

Source Confusion

Source Confusion

Short-time Scale Capabilities

Short-time Scale Capabilities

Distinguish between leptonic and hadronic models

Summary

- Cosmic particle acceleration, as traced by Galactic gamma rays, is a crucial component of our Galaxy
- We are starting to understand where CRs are accelerated and how do they distribute in our Galaxy, but still lacking lots of knowledg
- New analysis techniques + Large dataset + New instrument improves: exciting new results
- However the future is bright! many fantastic instruments to the rescue

